Frontier Materials for Adsorption of Antimony and Arsenic in Aqueous Environments: A Review
Abstract
:1. Introduction
2. Chemical Properties, Hazards, and Sources of Antimony and Arsenic
2.1. Chemical Properties of Antimony and Arsenic
2.2. The Harm of Antimony and Arsenic to Human Health
2.3. Pollution Sources of Antimony and Arsenic
2.4. Distribution of Antimony and Arsenic in Water
2.4.1. Surface Water
2.4.2. Groundwater
2.4.3. Sea Water
3. Antimony and Arsenic Pollution Treatment Technology
3.1. Coagulation/Flocculation Method
3.2. Ion Exchange Method
3.3. Membrane Technology
3.4. Electrochemical Method
3.5. Phytoremediation Technology
3.6. Adsorption Method
3.7. Advantages and Disadvantages of Various Technologies
Adsorbent | Heavy Metal | Initial Concentration (mg/L) | Adsorbent Dose (g/L) | Adsorption Temperature (°C) | Optimum pH | Adsorption Capacity (mg/g) | References |
---|---|---|---|---|---|---|---|
MNP@hematite | Sb(III) | 0.11 | 0.1 | 25 | 4.1 | 36.70 | [79] |
Erzurum clay | Sb(III) | 200 | 10 | 25 | 1.5 | 9.20 | [64] |
Diatomite | Sb(III) | 10 | 4 | 20 | 6 | 35.20 | [80] |
Mercapto−functionalized hybrid sorbent | Sb(III) | 515.3 | 5 | 25 | 5 | 108.80 | [81] |
Bentonite | Sb(III)/Sb(V) | 1 | 25 | 25 | 6 | 0.56/0.50 | [82] |
ZCN | Sb(III)/Sb(V) | 100–500 | 1 | 25 | 7 | 70.83/57.17 | [83] |
RGO | Sb(III)/Sb(V) | 0–300 | 1 × 10−3 | 25 | 6 | 168.59/206.72 | [73] |
MIL−101(Fe) | Sb(III)/Sb(V) | 5–250 | 0.5 | − | 6 | 151.80/472.80 | [71] |
Iron oxide coated cement (IOCC) | As(III) | 0.7–13.5 | 30 | 15 | 7 | 0.73 | [84] |
Granular ferric hydroxide (GFH) | As(V) | 0.01 | 0.25 | 20 | 6.5 | 1.10 | [60] |
Synthetic zeolite H−MFI−24 | As(V) | 10–150 | 2 | 20 | 6.5 | 35.80 | [85] |
Natural clay | As(V) | 20 | 2 | 25 | 3 | 86.86 | [86] |
Activated Alumina | As(III)/As(V) | 0.79–4.9/2.85–11.5 | 1 | 25 | 6.9/5.2 | 3.50/15.90 | [87] |
Iron−modified activated carbon | As(III)/As(V) | 20–22 | − | − | 6 | 38.80/51.30 | [57] |
MAF−RGO | As(III)/As(V) | 0.1–100 | 0.2 | − | 7 | 402.00/339.00 | [88] |
Fe−Co−MOF−74 | As(III)/As(V) | 1–250 | 0.5 | 25 | 3/7 | 266.00/292.00 | [89] |
4. Introduction of Frontier Adsorption Materials
4.1. Metal−Organic Frameworks (MOFs)
4.2. Organic Framework Material
4.2.1. Covalent Organic Frameworks (COFs)
4.2.2. Hydrogen−Bonded Organic Frameworks (HOFs)
4.3. Graphene
4.4. MXenes
4.5. Other Adsorbents
5. Application of Frontier Adsorption Materials to Remove Antimony and Arsenic
5.1. MOFs Removal of Antimony and Arsenic
5.2. COFs Removal of Antimony and Arsenic
5.3. Graphene to Remove Antimony and Arsenic
5.4. Other Adsorbents to Remove Antimony and Arsenic
6. Conclusions and Outlook
6.1. Conclusions
- In recent years, pollution incidents have occurred frequently, and the combined pollution of Sb and As is common. How to efficiently control combined pollution is one of the key areas of heavy metal pollution control.
- The current methods for removing Sb and As in water environments mainly include coagulation/flocculation, ion exchange, membrane technology, phytoremediation, and electrochemical methods. Compared with the above technologies, adsorption technology has high efficiency in removing Sb and As. Meanwhile, it has the advantages of low cost, high benefit, strong regeneration ability, no by−products, and simple operation.
- The type of adsorbents for heavy metals in sewage has changed from traditional adsorbent materials such as activated carbon and zeolite to the frontier of adsorbent materials with better adsorption effects, such as MOFs and COFs. Compared with traditional materials, these materials have a larger adsorption surface area, lower cost, and more flexible and adjustable structure.
- At present, the way of using micro carbon composite materials to treat heavy metals such as Sb and As has been accepted by more people due to the high efficiency of metal absorption ability. As a frontier adsorption material, COFs have been used to remove As in water environments with good adsorption effects. However, relevant research on Sb adsorption has not been carried out, and Sb is a kind of adsorption material with great potential.
6.2. Outlook
- The process of removing antimony and arsenic by various adsorbents is significantly affected by various factors, such as pH, initial concentration of antimony, arsenic in the solution, adsorbent dosage, and competitive ions. Future research on the removal of antimony and arsenic must not only overcome many unfavorable factors and improve the removal efficiency of antimony and arsenic but, more importantly, focus on developing new materials that are economical, environmentally friendly, and recyclable.
- Iron−based materials are highly efficient adsorption materials. Iron is thought to be the most effective metal at repairing antimony adsorption sites. It also appears to have some influence over arsenic adsorption. Additionally, it is simple to recycle and convert it into HFO, which can successfully encourage the adsorption of antimony and arsenic by the adsorbent. In particular, antimony has an adsorption impact that is many times greater than that of ordinary materials. Furthermore, iron−based MOFs can more effectively adsorb heavy metals in solution and use the coordination of coordination bonds with the formed HFO to accelerate the adsorption of antimony and arsenic in water. The materials are easier to recycle and reuse, thereby reducing costs and by−products. As a result, using iron−based materials to adsorb antimony and arsenic can significantly increase their adsorption capacity, making this a useful adsorption technique.
- Although many frontier materials, such as MXenes and HOFs, have not been used to study the adsorption of antimony and arsenic in water, they still have great research value. Among them, HOF materials are often used for gas adsorption, but their adsorption of metals is lacking. Given their similar structure to MOFs and COFs, the preparation is relatively simple, so HOFs have great application potential; MXenes have not been used to remove antimony and arsenic, but their structure is similar to graphene. MXenes have a larger surface area than graphene and are flexible and adjustable. COF materials are often used to remove heavy metals in water. Compared with MOFs, they have a more ordered channel structure, higher thermal and chemical stability, and lower density. Therefore, as a highly potent adsorbent, COFs have a significant effect on the adsorption of Cr, As, Hg, etc. However, COF materials have not been used to adsorb antimony. Given the strong antimony adsorption on iron−based metal−organic frameworks, iron−based covalent organic frameworks have a lot of potential for antimony adsorption research.
- Even though new adsorbents with outstanding performance are constantly being developed, recent research has discovered that these materials frequently struggle with poor desorption efficiency. After multiple cycles, the adsorption capacity decreases as a result of strong chemical interactions and redox conditions. There are few studies on how to improve the recycling rate of adsorbents and the disposal of waste adsorbents, which deserve further investigation.
- Currently, most adsorption studies are focused on simulating the adsorption performance of adsorbents in wastewater, including the exploration of adsorption isotherms, equilibrium, and adsorption kinetics. These are undoubtedly important, but practical methods for removing antimony and arsenic should also be actively explored in the research.
- In the current research on the removal of antimony and arsenic, many adsorption materials can remove antimony and arsenic alone, such as manganese dioxide, titanium dioxide, and nano zero−valent iron. However, there is a lack of research on the coremoval of antimony and arsenic. In future studies on the adsorption of antimony and arsenic, the adsorption performance of the adsorbent should be continuously improved. The combined removal of antimony and arsenic by a certain adsorbent can be compared with the single adsorption effect of antimony and arsenic. Exploring the feasibility of coremoval of antimony and arsenic will lay the foundation for in−depth research on removing antimony and arsenic.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ungureanu, G.; Santos, S.; Boaventura, R.; Botelho, C. Arsenic and antimony in water and wastewater: Overview of removal techniques with special reference to latest advances in adsorption. J. Environ. Manag. 2015, 151, 326–342. [Google Scholar] [CrossRef] [PubMed]
- Crecelius, E.A.; Bothner, M.H.; Carpenter, R. Geochemistries of arsenic, antimony, mercury, and related elements in sediments of Puget Sound. Environ. Sci. Technol. 1975, 9, 325–333. [Google Scholar] [CrossRef]
- Fei, J.-C.; Min, X.-B.; Wang, Z.-X.; Pang, Z.-h.; Liang, Y.-J.; Ke, Y. Health and ecological risk assessment of heavy metals pollution in an antimony mining region: A case study from South China. Environ. Sci. Pollut. Res. 2017, 24, 27573–27586. [Google Scholar] [CrossRef]
- He, M.; Wang, N.; Long, X.; Zhang, C.; Ma, C.; Zhong, Q.; Wang, A.; Wang, Y.; Pervaiz, A.; Shan, J. Antimony speciation in the environment: Recent advances in understanding the biogeochemical processes and ecological effects. J. Environ. Sci. 2019, 75, 14–39. [Google Scholar] [CrossRef]
- Jang, Y.C.; Somanna, Y.; Kim, H. Source, Distribution, Toxicity and Remediation of Arsenic in the Environment—A review. Int. J. Appl. Environ. Sci. 2016, 11, 559–581. [Google Scholar]
- Long, X.J.; Wang, X.; Guo, X.J.; He, M.C. A review of removal technology for antimony in aqueous solution. J. Environ. Sci. 2020, 90, 189–204. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Singh, S.; Parihar, P.; Singh, V.P.; Prasad, S.M. Arsenic contamination, consequences and remediation techniques: A review. Ecotoxicol. Environ. Saf. 2015, 112, 247–270. [Google Scholar]
- Qi, C.; Liu, G.; Chou, C.L.; Zheng, L. Environmental geochemistry of antimony in Chinese coals. Sci. Total Environ. 2008, 389, 225–234. [Google Scholar] [CrossRef]
- He, M.C.; Wang, X.Q.; Wu, F.C.; Fu, Z.Y. Antimony pollution in China. Sci. Total Environ. 2012, 421, 41–50. [Google Scholar] [CrossRef]
- Guan, X.H.; Ma, J.; Dong, H.R.; Jiang, L. Removal of arsenic from water: Effect of calcium ions on As(III) removal in the KMnO4-Fe(II) process. Water Res. 2009, 43, 5119–5128. [Google Scholar] [CrossRef]
- Li, J.Y.; Zheng, B.H.; He, Y.Z.; Zhou, Y.; Chen, X.; Ruan, S.; Yang, Y.; Dai, C.H.; Tang, L. Antimony contamination, consequences and removal techniques: A review. Ecotoxicol. Environ. Saf. 2018, 156, 125–134. [Google Scholar] [CrossRef] [PubMed]
- Nicomel, N.R.; Leus, K.; Folens, K.; Van Der Voort, P.; Du Laing, G. Technologies for arsenic removal from water: Current status and future perspectives. Int. J. Environ. Res. Public Health 2016, 13, 62. [Google Scholar] [CrossRef] [PubMed]
- Meharg, A.A.; Hartley-Whitaker, J. Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species. New Phytol. 2002, 154, 29–43. [Google Scholar] [CrossRef]
- Zhou, J.; Deng, D.; Su, Y.; Lv, Y. Determination of total inorganic arsenic in water samples by cadmium ion assisted photochemical vapor generation-atomic fluorescence spectrometry. Microchem. J. 2019, 146, 359–365. [Google Scholar]
- Alka, S.; Shahir, S.; Ibrahim, N.; Ndejiko, M.J.; Vo, D.V.N.; Abd Manan, F. Arsenic removal technologies and future trends: A mini review. J. Clean. Prod. 2021, 278, 123805. [Google Scholar] [CrossRef]
- Mubarak, H.; Chai, L.Y.; Mirza, N.; Yang, Z.H.; Pervez, A.; Tariq, M.; Shaheen, S.; Mahmood, Q. Mahmood, Antimony (Sb)-pollution and removal techniques–critical assessment of technologies. Toxicol. Environ. Chem. 2015, 97, 1296–1318. [Google Scholar] [CrossRef]
- Shakoor, M.B.; Nawaz, R.; Hussain, F.; Raza, M.; Ali, S.; Rizwan, M.; Oh, S.E.; Ahmad, S. Human health implications, risk assessment and remediation of As-contaminated water: A critical review. Sci. Total Environ. 2017, 601, 756–769. [Google Scholar] [CrossRef]
- Filella, M.; Belzile, N.; Chen, Y.W. Antimony in the environment: A review focused on natural waters: I. Occurrence. Earth Sci. Rev. 2002, 57, 125–176. [Google Scholar] [CrossRef]
- He, J.; Charlet, L. A review of arsenic presence in China drinking water. J. Hydrol. 2013, 492, 79–88. [Google Scholar] [CrossRef]
- Zhang, Y.; Ding, C.; Gong, D.; Deng, Y.; Huang, Y.; Zheng, J.; Xiong, S.; Tang, R.; Wang, Y.; Su, L. A review of the environmental chemical behavior, detection and treatment of antimony. Environ. Technol. Innov. 2021, 24, 102026. [Google Scholar] [CrossRef]
- Zakhar, R.; Derco, J.; Čacho, F. An overview of main arsenic removal technologies. Acta Chim. Slovaca 2018, 11, 107–113. [Google Scholar]
- Herath, I.; Vithanage, M.; Bundschuh, J. Antimony as a global dilemma: Geochemistry, mobility, fate and transport. Environ. Pollut. 2017, 223, 545–559. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.Q.; He, M.C.; Xi, J.H.; Lu, X.F. Antimony distribution and mobility in rivers around the world’s largest antimony mine of Xikuangshan, Hunan Province. China. Microchem. J. 2011, 97, 4–11. [Google Scholar]
- Zhang, N.; Wei, C.Y.; Yang, L.S. Occurrence of arsenic in two large shallow freshwater lakes in China and a comparison to other lakes around the world. Microchem. J. 2013, 110, 169–177. [Google Scholar] [CrossRef]
- Mitrakas, M.; Mantha, Z.; Tzollas, N.; Stylianou, S.; Katsoyiannis, I.; Zouboulis, A. Removal of Antimony Species, Sb(III)/Sb(V), from Water by Using Iron Coagulants. Water 2018, 10, 1328. [Google Scholar]
- Frengstad, B.; Skrede, A.K.M.; Banks, D.; Krog, J.R.; Siewers, U. The chemistry of Norwegian groundwaters: III. The distribution of trace elements in 476 crystalline bedrock groundwaters, as analysed by ICP-MS techniques. Sci. Total Environ. 2000, 246, 21–40. [Google Scholar] [CrossRef]
- Rahman, M.M.; Asaduzzaman, M.; Naidu, R. Consumption of arsenic and other elements from vegetables and drinking water from an arsenic-contaminated area of Bangladesh. J. Hazard. Mater. 2013, 262, 1056–1063. [Google Scholar] [CrossRef]
- Ng, J.C. Environmental contamination of arsenic and its toxicological impact on humans. Environ. Chem. 2005, 2, 146–160. [Google Scholar] [CrossRef]
- Rahman, M.A.; Hasegawa, H.; Lim, R.P. Bioaccumulation, biotransformation and trophic transfer of arsenic in the aquatic food chain. Environ. Res. 2012, 116, 118–135. [Google Scholar]
- Mondal, P.; Bhowmick, S.; Chatterjee, D.; Figoli, A.; Van der Bruggen, B. Remediation of inorganic arsenic in groundwater for safe water supply: A critical assessment of technological solutions. Chemosphere 2013, 92, 157–170. [Google Scholar] [CrossRef]
- Guo, X.J.; Wu, Z.J.; He, M.C. Removal of antimony(V) and antimony(III) from drinking water by coagulation–flocculation-sedimentation (CFS). Water Res. 2009, 43, 4327–4335. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.J.; Fu, Z.Y.; Wang, H.; Liu, S.S.; Wu, F.C.; Giesy, J.P. Removal of antimonate (Sb(V)) and antimonite (Sb(III)) from aqueous solutions by coagulation-flocculation-sedimentation (CFS): Dependence on influencing factors and insights into removal mechanisms. Sci. Total Environ. 2018, 644, 1277–1285. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, A.; Paul, B. The global menace of arsenic and its conventional remediation-A critical review. Chemosphere 2016, 158, 37–49. [Google Scholar] [CrossRef]
- Dembele, S.; Akcil, A.; Panda, S. Technological trends, emerging applications and metallurgical strategies in antimony recovery from stibnite. Miner. Eng. 2022, 175, 107304. [Google Scholar] [CrossRef]
- Kameda, T.; Nakamura, M.; Yoshioka, T. Removal of antimonate ions from an aqueous solution by anion exchange with magnesium-aluminum layered double hydroxide and the formation of a brandholzite-like structure. J. Environ. Sci. Health A 2012, 47, 1146–1151. [Google Scholar] [CrossRef]
- Balaji, T.; Matsunaga, H. Adsorption characteristics of As(III) and As(V) with titanium dioxide loaded Amberlite XAD-7 resin. Anal. Sci. 2002, 18, 1345–1349. [Google Scholar]
- Ma, B.W.; Wang, X.; Liu, R.P.; Jefferson, W.A.; Lan, H.C.; Liu, H.J.; Qu, J.H. Synergistic process using Fe hydrolytic flocs and ultrafiltration membrane for enhanced antimony(V) removal. J. Membr. Sci. 2017, 537, 93–100. [Google Scholar] [CrossRef]
- Abejón, A.; Garea, A.; Irabien, A. Arsenic removal from drinking water by reverse osmosis: Minimization of costs and energy consumption. Sep. Purif. Technol. 2015, 144, 46–53. [Google Scholar] [CrossRef]
- Kang, M.; Kawasaki, M.; Tamada, S.; Kamei, T.; Magara, Y. Effect of pH on the removal of arsenic and antimony using reverse osmosis membranes. Desalination 2000, 131, 293–298. [Google Scholar] [CrossRef]
- Koparal, A.S.; Özgür, R.; Öğütveren, Ü.B.; Bergmann, H. Bergmann, Antimony removal from model acid solutions by electrodeposition. Sep. Purif. Technol. 2004, 37, 107–116. [Google Scholar] [CrossRef]
- Song, P.P.; Yang, Z.H.; Zeng, G.M.; Yang, X.; Xu, H.Y.; Huang, J.; Wang, L.K. Optimization, kinetics, isotherms, and thermodynamics studies of antimony removal in electrocoagulation process. Water Air Soil Pollut. 2015, 226, 1–12. [Google Scholar] [CrossRef]
- Lakshmanan, D.; Clifford, D.A.; Samanta, G. Comparative study of arsenic removal by iron using electrocoagulation and chemical coagulation. Water Res. 2010, 44, 5641–5652. [Google Scholar] [CrossRef] [PubMed]
- Maitlo, H.A.; Kim, J.H.; Kim, K.H.; Park, J.Y.; Khan, A. Metal-air fuel cell electrocoagulation techniques for the treatment of arsenic in water. J. Clean. Prod. 2019, 207, 67–84. [Google Scholar] [CrossRef]
- Tangahu, B.V.; Sheikh Abdullah, S.R.; Basri, H.; Idris, M.; Anuar, N.; Mukhlisin, M. A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int. J. Chem. Eng. 2011, 2011, 155–185. [Google Scholar] [CrossRef]
- Nazir, M.I.; Idrees, I.; Idrees, P.; Ahmad, S.; Ali, Q.; Malik, A. Potential of water hyacinth (Eichhornia crassipes L.) for phytoremediation of heavy metals from waste water. Biol. Clin. Sci. Res. J. 2020, 4, 347–353. [Google Scholar] [CrossRef]
- Feng, R.W.; Wei, C.Y.; Tu, S.; Tang, S.X.; Wu, F.C. Simultaneous hyperaccumulation of arsenic and antimony in Cretan brake fern: Evidence of plant uptake and subcellular distributions. Microchem. J. 2011, 97, 38–43. [Google Scholar] [CrossRef]
- Baskan, M.B.; Pala, A. A statistical experiment design approach for arsenic removal by coagulation process using aluminum sulfate. Desalination 2010, 254, 42–48. [Google Scholar] [CrossRef]
- Hesami, F.; Bina, B.; Ebrahimi, A.; Amin, M.M. Arsenic removal by coagulation using ferric chloride and chitosan from water. Int. J. Environ. Health Eng. 2012, 1, 1–6. [Google Scholar]
- Moghimi, F.; Jafari, A.H.; Yoozbashizadeh, H.; Askari, M. Adsorption behavior of Sb(III) in single and binary Sb(III)—Fe(II) systems on cationic ion exchange resin: Adsorption equilibrium, kinetic and thermodynamic aspects. T. Nonferr. Metal. Soc. 2020, 30, 236–248. [Google Scholar] [CrossRef]
- Du, X.; Qu, F.S.; Liang, H.; Li, K.; Yu, H.R.; Bai, L.M.; Li, G.B. Removal of antimony(III) from polluted surface water using a hybrid coagulation-flocculation-ultrafiltration (CF-UF) process. Chem. Eng. J. 2014, 254, 293–301. [Google Scholar] [CrossRef]
- Zhu, J.; Wu, F.; Pan, X.; Guo, J.; Wens, D. Removal of antimony from antimony mine flotation wastewater by electrocoagulation with aluminum electrodes. J. Environ. Sci. 2011, 23, 1066–1071. [Google Scholar] [CrossRef]
- Ali, I.; Asim, M.; Khan, T.A. Arsenite removal from water by electro-coagulation on zinc–zinc and copper–copper electrodes. Int. J. Environ. Sci. Technol. 2013, 10, 377–384. [Google Scholar] [CrossRef]
- Gilhotra, V.; Das, L.; Sharma, A.; Kang, T.S.; Singh, P.; Dhuria, R.S.; Bhatti, M.S. Electrocoagulation technology for high strength arsenic wastewater: Process optimization and mechanistic study. J. Clean. Prod. 2018, 198, 693–703. [Google Scholar] [CrossRef]
- Jasrotia, S.; Kansal, A.; Kishore, V. Arsenic phyco-remediation by Cladophora algae and measurement of arsenic speciation and location of active absorption site using electron microscopy. Microchem. J. 2014, 114, 197–202. [Google Scholar] [CrossRef]
- Ebadollahzadeh, H.; Zabihi, M. Competitive adsorption of methylene blue and Pb (II) ions on the nano-magnetic activated carbon and alumina. Mater. Chem. Phys. 2020, 248, 122893. [Google Scholar] [CrossRef]
- Eeshwarasinghe, D.; Loganathan, P.; Vigneswaran, S. Simultaneous removal of polycyclic aromatic hydrocarbons and heavy metals from water using granular activated carbon. Chemosphere 2019, 223, 616–627. [Google Scholar] [CrossRef]
- Chen, W.; Parette, R.; Zou, J.; Cannon, F.S.; Dempsey, B.A. Arsenic removal by iron-modified activated carbon. Water Res. 2007, 41, 1851–1858. [Google Scholar] [CrossRef]
- Ajith, N.; Bhattacharyya, K.; Ipte, P.R.; Satpati, A.K.; Tripathi, A.K.; Verma, R.; Swain, K.K. Interaction of arsenic (III) and arsenic (V) on manganese dioxide: XPS and electrochemical investigations. J. Environ. Sci. Health Part A 2019, 54, 277–285. [Google Scholar] [CrossRef]
- Xu, W.; Wang, H.; Liu, R.; Zhao, X.; Qu, J. The mechanism of antimony (III) removal and its reactions on the surfaces of Fe–Mn binary oxide. J. Colloid Interface Sci. 2011, 363, 320–326. [Google Scholar] [CrossRef]
- Banerjee, K.; Amy, G.L.; Prevost, M.; Nour, S.; Jekel, M.; Gallagher, P.M.; Blumenschein, C.D. Kinetic and thermodynamic aspects of adsorption of arsenic onto granular ferric hydroxide (GFH). Water Res. 2008, 42, 3371–3378. [Google Scholar] [CrossRef]
- Rahimi Bourestan, N.; Nematollahzadeh, A.; Parchehbaf Jadid, A.; Basharnavaz, H. Chromium removal from water using granular ferric hydroxide adsorbents: An in-depth adsorption investigation and the optimization. Chem. Phys. Lett. 2020, 748, 137395. [Google Scholar] [CrossRef]
- Belova, T.P. Adsorption of heavy metal ions (Cu2+, Ni2+, Co2+ and Fe2+) from aqueous solutions by natural zeolite. Heliyon 2019, 5, e02320. [Google Scholar] [CrossRef]
- Nekhunguni, P.M.; Tavengwa, N.T.; Tutu, H. Investigation of As (V) removal from acid mine drainage by iron (hydr) oxide modified zeolite. J. Environ. Manag. 2017, 197, 550–558. [Google Scholar] [CrossRef] [PubMed]
- Targan, Ş.; Tirtom, V.N.; Akkuş, B. Removal of antimony(III) from aqueous solution by using grey and red Erzurum clay and application to the Gediz River sample. Int. Sch. Res. Not. 2013, 2013, 962781. [Google Scholar] [CrossRef]
- Ozola, R.; Krauklis, A.; Leitietis, M.; Burlakovs, J.; Vircava, I.; Ansone-Bertina, L.; Bhatnagar, A.; Klavins, M. FeOOH-modified clay sorbents for arsenic removal from aqueous solutions. Environ. Technol. Innov. 2019, 13, 364–372. [Google Scholar] [CrossRef]
- Dai, C.; Zhou, Z.; Zhou, X.; Zhang, Y. Removal of Sb(III) and Sb(V) from aqueous solutions using nZVI. Water Air Soil Pollut. 2016, 225, 1–22. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, X.; Ju, N.; Jia, H.; Sun, Z.; Liang, J.; Guo, R.; Niu, D.; Sun, H.-b. High capacity adsorption of antimony in biomass-based composite and its consequential utilization as battery anode. J. Environ. Sci. 2023, 126, 211–221. [Google Scholar] [CrossRef]
- Bai, Y.; Tang, X.; Sun, L.; Yin, W.; Hu, G.; Liu, M.; Gong, Y. Application of iron-based materials for removal of antimony and arsenic from water: Sorption properties and mechanism insights. Chem. Eng. J. 2021, 431, 134143. [Google Scholar] [CrossRef]
- Deng, R.; Jin, C.; Ren, B.; Hou, B.; Hursthouse, A.S. The potential for the treatment of antimony-containing wastewater by iron-based adsorbents. Water 2017, 9, 794. [Google Scholar] [CrossRef] [Green Version]
- Hao, L.L.; Liu, M.Z.; Wang, N.N.; Li, G.J. A critical review on arsenic removal from water using iron-based adsorbents. RSC Adv. 2018, 8, 39545–39560. [Google Scholar] [CrossRef]
- Zhang, W.; Li, N.; Xiao, T.; Tang, W.; Xiu, G. Removal of antimonite and antimonate from water using Fe-based metal-organic frameworks: The relationship between framework structure and adsorption performance. J. Environ. Sci. 2019, 86, 213–224. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.-H.; Chang, J.-S.; Lee, D.-J. Covalent organic framework EB-COF: Br as adsorbent for phosphorus (V) or arsenic (V) removal from nearly neutral waters. Chemosphere 2020, 253, 126736. [Google Scholar] [CrossRef] [PubMed]
- Nundy, S.; Ghosh, A.; Nath, R.; Paul, A.; Tahir, A.A.; Mallick, T.K. Reduced graphene oxide (rGO) aerogel: Efficient adsorbent for the elimination of antimony (III) and (V) from wastewater. J. Hazard. Mater. 2021, 420, 126554. [Google Scholar] [CrossRef] [PubMed]
- Das, T.K.; Sakthivel, T.S.; Jeyaranjan, A.; Seal, S.; Bezbaruah, A.N. Ultra-high arsenic adsorption by graphene oxide iron nanohybrid: Removal mechanisms and potential applications. Chemosphere 2020, 253, 126702. [Google Scholar] [CrossRef] [PubMed]
- Yuan, M.; Gu, Z.; Minale, M.; Xia, S.; Zhao, J.; Wang, X. Simultaneous adsorption and oxidation of Sb (III) from water by the pH-sensitive superabsorbent polymer hydrogel incorporated with Fe-Mn binary oxides composite. J. Hazard. Mater. 2022, 423, 127013. [Google Scholar] [CrossRef]
- Bullough, F.; Weiss, D.J.; Dubbin, W.E.; Coles, B.J.; Barrott, J.; SenGupta, A.K. Evidence of competitive adsorption of Sb (III) and As (III) on activated alumina. Ind. Eng. Chem. Res. 2010, 49, 2521–2524. [Google Scholar] [CrossRef]
- Mohanty, D. Conventional as well as Emerging Arsenic Removal Technologies—A Critical Review. Water Air Soil Pollut. 2017, 228, 381. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, X.; Xiang, Y.; Wang, P.; Zhang, J.; Zhang, F.; Wei, J.; Luo, L.; Lei, M.; Tang, L. Modification of biochar derived from sawdust and its application in removal of tetracycline and copper from aqueous solution: Adsorption mechanism and modelling. Bioresour. Technol. 2017, 245, 266–273. [Google Scholar] [CrossRef]
- Shan, C.; Ma, Z.; Tong, M. Efficient removal of trace antimony (III) through adsorption by hematite modified magnetic nanoparticles. J. Hazard. Mater. 2014, 268, 229–236. [Google Scholar] [CrossRef]
- Sarı, A.; Çıtak, D.; Tuzen, M. Equilibrium, thermodynamic and kinetic studies on adsorption of Sb(III) from aqueous solution using low-cost natural diatomite. Chem. Eng. J. 2010, 162, 521–527. [Google Scholar] [CrossRef]
- Fan, H.-T.; Sun, W.; Jiang, B.; Wang, Q.-J.; Li, D.-W.; Huang, C.-C.; Wang, K.-J.; Zhang, Z.-G.; Li, W.-X. Adsorption of antimony (III) from aqueous solution by mercapto-functionalized silica-supported organic–inorganic hybrid sorbent: Mechanism insights. Chem. Eng. J. 2016, 286, 128–138. [Google Scholar] [CrossRef]
- Xi, J.H.; He, M.C.; Lin, C.Y. Adsorption of antimony(III) and antimony(V) on bentonite: Kinetics, thermodynamics and anion competition. Microchem. J. 2011, 97, 85–91. [Google Scholar] [CrossRef]
- Luo, J.M.; Luo, X.B.; Crittenden, J.; Qu, J.H.; Bai, Y.H.; Peng, Y.; Li, J.H. Removal of antimonite (Sb(III)) and antimonate (Sb(V)) from aqueous solution using carbon nanofibers that are decorated with zirconium oxide (ZrO2). Environ. Sci. Technol. 2015, 49, 11115–11124. [Google Scholar] [CrossRef] [PubMed]
- Kundu, S.; Gupta, A.K. Adsorptive removal of As(III) from aqueous solution using iron oxide coated cement (IOCC): Evaluation of kinetic, equilibrium and thermodynamic models. Sep. Purif. Technol. 2006, 51, 165–172. [Google Scholar] [CrossRef]
- Chutia, P.; Kato, S.; Kojima, T.; Satokawa, S. Arsenic adsorption from aqueous solution on synthetic zeolites. J. Hazard. Mater. 2008, 162, 440–447. [Google Scholar] [CrossRef]
- Foroutan, R.; Mohammadi, R.; Adeleye, A.S.; Farjadfard, S.; Esvandi, Z.; Arfaeinia, H.; Sorial, G.A.; Ramavandi, B.; Sahebi, S. Efficient arsenic(V) removal from contaminated water using natural clay and clay composite adsorbents. Environ. Sci. Pollut. Res. 2019, 26, 29748–29762. [Google Scholar] [CrossRef]
- Lin, T.F.; Wu, J.K. Adsorption of arsenite and arsenate within activated alumina grains: Equilibrium and kinetics. Water Res. 2001, 35, 2049–2057. [Google Scholar] [CrossRef]
- Penke, Y.K.; Yadav, A.K.; Sinha, P.; Malik, I.; Ramkumar, J.; Kar, K.K. Arsenic remediation onto redox and photo-catalytic/electrocatalytic Mn-Al-Fe impregnated rGO: Sustainable aspects of sludge as supercapacitor. Chem. Eng. J. 2020, 390, 124000. [Google Scholar] [CrossRef]
- Sun, J.Q.; Zhang, X.B.; Zhang, A.P.; Liao, C.Y. Preparation of Fe-Co based MOF-74 and its effective adsorption of arsenic from aqueous solution. J. Environ. Sci. China 2019, 80, 197–207. [Google Scholar] [CrossRef]
- Geim, A.K.; Novoselov, K.S. The rise of graphene. Nanosci. Technol. 2010, 11–19. [Google Scholar] [CrossRef]
- Jiao, L.; Seow, J.Y.R.; Skinner, W.S.; Wang, Z.U.; Jiang, H.-L. Metal–organic frameworks: Structures and functional applications. Mater. Today 2019, 27, 43–68. [Google Scholar] [CrossRef]
- Wen, J.; Fang, Y.; Zeng, G.M. Progress and prospect of adsorptive removal of heavy metal ions from aqueous solution using metal-organic frameworks: A review of studies from the last decade. Chemosphere 2018, 201, 627–643. [Google Scholar] [CrossRef] [PubMed]
- Karimi, M.A.; Masrouri, H.; Karami, H.; Andishgar, S.; Mirbagheri, M.A.; Pourshamsi, T. Highly efficient removal of toxic lead ions from aqueous solutions using a new magnetic metal-organic framework nanocomposite. J. Chin. Chem. Soc. 2019, 66, 1327–1335. [Google Scholar] [CrossRef]
- Seyfi Hasankola, Z.; Rahimi, R.; Shayegan, H.; Moradi, E.; Safarifard, V. Removal of Hg2+ heavy metal ion using a highly stable mesoporous porphyrinic zirconium metal-organic framework. Inorg. Chim. Acta 2020, 501, 119264. [Google Scholar] [CrossRef]
- Zhong, X.; Lu, Z.P.; Liang, W.; Hu, B.W. The magnetic covalent organic framework as a platform for high-performance extraction of Cr (VI) and bisphenol a from aqueous solution. J. Hazard. Mater. 2020, 393, 122353. [Google Scholar] [CrossRef]
- Wang, J.L.; Zhuang, S.T. Covalent organic frameworks (COFs) for environmental applications. Coord. Chem. Rev. 2019, 400, 213046. [Google Scholar] [CrossRef]
- Sharma, R.K.; Yadav, P.; Yadav, M.; Gupta, R.; Rana, P.; Srivastava, A.; Zbořil, R.; Varma, R.S.; Antonietti, M.; Gawande, M.B. Recent development of covalent organic frameworks (COFs): Synthesis and catalytic (organic-electrophoto) applications. Mater. Horiz. 2020, 7, 411–454. [Google Scholar] [CrossRef]
- Cote, A.P.; Benin, A.I.; Ockwig, N.W.; O’Keeffe, M.; Matzger, A.J.; Yaghi, O.M. Porous, crystalline, covalent organic frameworks. Science 2005, 310, 1166–1170. [Google Scholar] [CrossRef]
- Gendy, E.A.; Ifthikar, J.; Ali, J.; Oyekunle, D.T.; Elkhlifia, Z.; Shahib, I.I.; Khodair, A.I.; Chen, Z.Q. Removal of heavy metals by Covalent Organic Frameworks (COFs): A review on its mechanism and adsorption properties. J. Environ. Chem. Eng. 2021, 9, 105687. [Google Scholar] [CrossRef]
- Ding, S.Y.; Dong, M.; Wang, Y.W.; Chen, Y.T.; Wang, H.Z.; Su, C.Y.; Wang, W. Thioether-based fluorescent covalent organic framework for selective detection and facile removal of mercury (II). J. Am. Chem. Soc. 2016, 138, 3031–3037. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, Y.; Zheng, H.; Zhang, B.; Zuo, Q.; Fan, K. Functionalized dual modification of covalent organic framework for efficient and rapid trace heavy metals removal from drinking water. Chemosphere 2022, 290, 133215. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Wang, J.; Hou, B.; Huang, X.; Wang, T.; Bao, Y.; Hao, H. Porous hydrogen-bonded organic frameworks (HOFs): From design to potential applications. Chem. Eng. J. 2020, 399, 125873. [Google Scholar] [CrossRef]
- Luo, J.; Wang, J.W.; Zhang, J.H.; Lai, S.; Zhong, D.C. Hydrogen-bonded organic frameworks: Design, structures and potential applications. CrystEngComm 2018, 20, 5884–5898. [Google Scholar] [CrossRef]
- He, Y.B.; Xiang, S.C.; Chen, B.L. A microporous hydrogen-bonded organic framework for highly selective C2H2/C2H4 separation at ambient temperature. J. Am. Chem. Soc. 2011, 133, 14570–14573. [Google Scholar] [CrossRef] [PubMed]
- Bao, Z.B.; Xie, D.Y.; Chang, G.G.; Wu, H.; Li, L.Y.; Zhou, W.; Wang, H.L.; Zhang, Z.G.; Xing, H.B.; Yang, Q.W.; et al. Fine tuning and specific binding sites with a porous hydrogen-bonded metal-complex framework for gas selective separations. J. Am. Chem. Soc. 2018, 140, 4596–4603. [Google Scholar] [CrossRef]
- Liu, X.; Bie, Z.; Wang, J.; Sun, L.; Tian, M.; Oterkus, E.; He, X. Investigation on fracture of pre-cracked single-layer graphene sheets. Comput. Mater. Sci. 2019, 159, 365–375. [Google Scholar] [CrossRef]
- Wang, T.; Wen, J.Y.; Guo, S.Q.; Mu, L. Hypochlorite and visible-light irradiation affect the transformation and toxicity of graphene oxide. Sci. Total Environ. 2020, 723, 138010. [Google Scholar] [CrossRef]
- Farooq, M.U.; Jalees, M.I. Application of magnetic graphene oxide for water purification: Heavy metals removal and disinfection. J. Water Process. Eng. 2020, 33, 101044. [Google Scholar]
- Verger, L.; Xu, C.; Natu, V.; Cheng, H.M.; Ren, W.; Barsoum, M.W. Overview of the synthesis of MXenes and other ultrathin 2D transition metal carbides and nitrides. Curr. Opin. Solid State Mater. 2019, 23, 149–163. [Google Scholar] [CrossRef]
- Natu, V.; Pai, R.; Sokol, M.; Carey, M.; Kalra, V.; Barsoum, M.W. 2D Ti3C2Tz MXene synthesized by water-free etching of Ti3AlC2 in polar organic solvents. Chemosphere 2020, 6, 616–630. [Google Scholar]
- Xiong, D.; Shi, Y.; Yang, H.Y. Rational design of MXene-based films for energy storage: Progress, prospects. Mater Today 2021, 46, 183–211. [Google Scholar] [CrossRef]
- Gogotsi, Y.; Anasori, B. The rise of MXenes. ACS Nano 2019, 13, 8491–8494. [Google Scholar] [CrossRef] [PubMed]
- Peng, Q.; Guo, J.; Zhang, Q.M.; Xiang, J.X.; Liu, B.Z.; Zhou, A.G.; Liu, R.P.; Tian, Y.J. Unique lead adsorption behavior of activated hydroxyl group in two-dimensional titanium carbide. J. Am. Chem. Soc. 2014, 136, 4113–4116. [Google Scholar] [CrossRef]
- Fard, A.K.; Mckay, G.; Chamoun, R.; Rhadfi, T.; Preud’Homme, H.; Atieh, M.A. Barium removal from synthetic natural and produced water using MXene as two dimensional (2-D) nanosheet adsorbent. Chem. Eng. J. 2017, 317, 331–342. [Google Scholar] [CrossRef]
- Gan, D.; Huang, Q.; Dou, J.; Huang, H.; Chen, J.; Liu, M.; Wen, Y.; Yang, Z.; Zhang, X.; Wei, Y. Bioinspired functionalization of MXenes (Ti3C2TX) with amino acids for efficient removal of heavy metal ions. Appl. Surf. Sci. 2020, 504, 144603. [Google Scholar] [CrossRef]
- Abdullah, N.H.; Shameli, K.; Abdullah, E.C.; Abdullah, L.C. Solid matrices for fabrication of magnetic iron oxide nanocomposites: Synthesis, properties, and application for the adsorption of heavy metal ions and dyes. Compos. Part B Eng. 2019, 162, 538–568. [Google Scholar] [CrossRef]
- Wang, B.X.; Xu, W.; Yang, Z.; Wu, Y.; Pi, F. An overview on recent progress of the hydrogels: From material resources, properties, to functional applications. Macromol. Rapid Commun. 2022, 43, 2100785. [Google Scholar] [CrossRef]
- Choi, J.R.; Yong, K.W.; Choi, J.Y.; Cowie, A.C. Recent advances in photo-crosslinkable hydrogels for biomedical applications. BioTechniques 2019, 66, 40–53. [Google Scholar] [CrossRef]
- Khan, M.; Lo, I.M. A holistic review of hydrogel applications in the adsorptive removal of aqueous pollutants: Recent progress, challenges, and perspectives. Water Res. 2016, 106, 259–271. [Google Scholar] [CrossRef]
- Tavakoli, J.; Tang, Y.H. Hydrogel based sensors for biomedical applications: An updated review. Polymers 2017, 9, 364. [Google Scholar] [CrossRef]
- Massoudi, S.; Bagheri, M.; Hosseini, M. Poly (N vinyl imidazole) Nitrogen Doped Graphene Quantum Dot Hydrogel Adsorbent with Remarkable Capability for Metal Ion Removal from Aqueous Systems; Research Square: Durham, NC, USA, 2021. [Google Scholar]
- Ozay, O.; Ekici, S.; Baran, Y.; Aktas, N.; Sahiner, N. Removal of toxic metal ions with magnetic hydrogels. Water Res. 2009, 43, 4403–4411. [Google Scholar] [CrossRef] [PubMed]
- Akhter, F.; Zoppas, F.M.; Soomro, M.; Jatoi, A.S.; Noureen, F.; Akhtar, M.N.; Mehreen, F. Carbon-based sorbets for heavy metal removal from aqueous solution, discrepancies, and future prospects: A state-of-the-art review. Biomass Convers. Biorefinery 2021, 1–17. [Google Scholar] [CrossRef]
- Agarwal, M.; Singh, K. Heavy metal removal from wastewater using various adsorbents: A review. J. Water Reuse Desal. 2017, 7, 387–419. [Google Scholar]
- Nie, J.W.; Yao, Z.W.; Shao, P.H.; Jing, Y.P.; Bai, L.M.; Xing, D.F.; Yi, G.P.; Li, D.W.; Liu, Y.B.; Yang, L.M.; et al. Revisiting the adsorption of antimony on manganese dioxide: The overlooked dissolution of manganese. Chem. Eng. J. 2022, 429, 132468. [Google Scholar] [CrossRef]
- Yang, J.Y.; Hou, B.H.; Wang, J.K.; Tian, B.Q.; Bi, J.T.; Wang, N.; Li, X.; Huang, X. Nanomaterials for the removal of heavy metals from wastewater. Nanomaterials 2019, 9, 424. [Google Scholar] [CrossRef]
- Ghomi Avili, F. Removal of Heavy Metals (Lead and Nickel) from Water Sources by Adsorption of Activated Alumina. Anthropog. Pollut. 2021, 5, 1–7. [Google Scholar]
- Crini, G.; Lichtfouse, E.; Wilson, L.D.; Morin-Crini, N. Conventional and non-conventional adsorbents for wastewater treatment. Environ. Chem. Lett. 2019, 17, 195–213. [Google Scholar] [CrossRef]
- Rao, L.N.; Prabhakar, G. Removal of heavy metals by biosorption-an overall review. J. Eng. Res. Stud. 2019, 2, 17–22. [Google Scholar]
- Zamora-Ledezma, C.; Negrete-Bolagay, D.; Figueroa, F.; Zamora-Ledezma, E.; Ni, M.; Alexis, F.; Guerrero, V.H. Heavy metal water pollution: A fresh look about hazards, novel and conventional remediation methods. Environ. Technol. Innov. 2021, 22, 101504. [Google Scholar] [CrossRef]
- Kumar, P.; Pournara, A.; Kim, K.H.; Bansal, V.; Rapti, S.; Manos, M.J. Metal-organic frameworks: Challenges and opportunities for ion-exchange/sorption applications. Prog. Mater. Sci. 2017, 86, 25–74. [Google Scholar] [CrossRef]
- Kumar, P.; Bansal, V.; Kim, K.H.; Kwon, E.E. Metal-organic frameworks (MOFs) as futuristic options for wastewater treatment. J. Ind. Eng. Chem. 2017, 62, 130–145. [Google Scholar] [CrossRef]
- Qian, H.L.; Yang, C.X.; Wang, W.L.; Yang, C.; Yan, X.P. Advances in covalent organic frameworks in separation science. J. Chromatogr. A 2018, 1542, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Gatou, M.A.; Bika, P.; Stergiopoulos, T.; Dallas, P.; Pavlatou, E.A. Recent Advances in Covalent Organic Frameworks for Heavy Metal Removal Applications. Energies 2021, 14, 3197. [Google Scholar] [CrossRef]
- Liu, X.H.; Ma, R.; Wang, X.X.; Ma, Y.; Yang, Y.P.; Zhuang, L.; Zhang, S.; Jehan, R.; Chen, J.R.; Wang, X.K. Graphene oxide-based materials for efficient removal of heavy metal ions from aqueous solution: A review. Environ. Pollut. 2019, 252, 62–73. [Google Scholar] [CrossRef]
- Khatami, M.; Iravani, S. MXenes and MXene-based Materials for the Removal of Water Pollutants: Challenges and Opportunities. Comments Inorg. Chem. 2021, 41, 1–36. [Google Scholar] [CrossRef]
- Sinha, V.; Chakma, S. Advances in the preparation of hydrogel for wastewater treatment: A concise review. J. Environ. Chem. Eng. 2019, 7, 103295. [Google Scholar] [CrossRef]
- Li, J.; Li, X.D.; Hayat, T.; Alsaedi, A.; Chen, C.L. Screening of zirconium-based metal-organic frameworks for efficient simultaneous removal of antimonite (Sb(III)) and antimonate (Sb(V)) from aqueous solution. ACS Sustain. Chem. Eng. 2017, 5, 11496–11503. [Google Scholar] [CrossRef]
- He, X.Y.; Min, X.B.; Luo, X.B. Efficient removal of antimony(III, V) from contaminated water by amino modification of a zirconium metal-organic framework with mechanism study. J. Chem. Eng. Data 2017, 62, 1519–1529. [Google Scholar] [CrossRef]
- Cheng, K.; Wu, Y.N.; Zhang, B.R.; Li, F.T. New insights into the removal of antimony from water using an iron-based metal-organic framework: Adsorption behaviors and mechanisms. Colloids Surf. A Physicochem. Eng. Asp. 2020, 602, 125054. [Google Scholar] [CrossRef]
- Wu, H.; Ma, M.-D.; Gai, W.-Z.; Yang, H.; Zhou, J.-G.; Cheng, Z.; Xu, P.; Deng, Z.-Y. Arsenic removal from water by metal-organic framework MIL-88A microrods. Environ. Sci. Pollut. Res. 2018, 25, 27196–27202. [Google Scholar] [CrossRef]
- Li, J.; Wu, Y.N.; Li, Z.H.; Zhu, M.; Li, F.T. Characteristics of arsenate removal from water by metal-organic frameworks (MOFs). Water Sci. Technol. 2014, 70, 1391–1397. [Google Scholar] [CrossRef]
- Wang, C.H.; Liu, X.L.; Chen, J.P.; Li, K. Superior removal of arsenic from water with zirconium metal-organic framework UiO-66. Sci. Rep. 2015, 5, 16613. [Google Scholar] [CrossRef]
- Hou, S.L.; Wu, Y.N.; Feng, L.Y.; Chen, W.; Wang, Y.; Morlay, C.; Li, F.T. Green synthesis and evaluation of an iron-based metal-organic framework MIL-88B for efficient decontamination of arsenate from water. Dalton Trans. 2018, 47, 2222–2231. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Jian, M.P.; Wang, H.; Zhang, G.S.; Liu, R.P.; Zhang, X.W.; Qu, J.H. Comparing adsorption of arsenic and antimony from single-solute and bisolute aqueous systems onto ZIF-8. Colloids Surf. A Physicochem. Eng. Asp. 2018, 538, 164–172. [Google Scholar] [CrossRef]
- Leus, K.; Folens, K.; Nicomel, N.R.; Perez, J.P.H.; Filippousi, M.; Meledina, M.; Dîrtu, M.M.; Turner, S.; Tendeloo, G.V.; Garcia, V.; et al. Removal of arsenic and mercury species from water by covalent triazine framework encapsulated γ-Fe2O3 nanoparticles. J. Hazard. Mater. 2018, 353, 312–319. [Google Scholar] [CrossRef]
- Liu, X.S.; Xu, H.M.; Wang, L.L.; Qu, Z.; Yan, N.Q. Surface nanotraps of Fe0/COFs for arsenic(III) depth removal from wastewater in nonferrous smelting industry. Chem. Eng. J. 2020, 381, 122559. [Google Scholar] [CrossRef]
- Leng, Y.Q.; Guo, W.L.; Su, S.N.; Yi, C.L.; Xing, L.T. Removal of antimony(III) from aqueous solution by graphene as an adsorbent. Chem. Eng. J. 2012, 211, 406–411. [Google Scholar] [CrossRef]
- Yang, X.Z.; Shi, Z.; Yuan, M.Y.; Liu, L.S. Adsorption of trivalent antimony from aqueous solution using graphene oxide: Kinetic and thermodynamic studies. J. Chem. Eng. Data 2015, 60, 806–813. [Google Scholar] [CrossRef]
- Zou, J.P.; Liu, H.L.; Luo, J.; Xing, Q.J.; Du, H.M.; Jiang, X.H.; Luo, X.B.; Luo, S.L.; Suib, S.L. Three-dimensional reduced graphene oxide coupled with Mn3O4 for highly efficient removal of Sb(III) and Sb(V) from water. ACS Appl. Mater. Inter. 2016, 8, 18140–18149. [Google Scholar] [CrossRef]
- Mishra, A.K.; Ramaprabhu, S. Ultrahigh arsenic sorption using iron oxide-graphene nanocomposite supercapacitor assembly. J. Appl. Phys. 2012, 112, 104315. [Google Scholar] [CrossRef]
- Wei, J.X.; Aly Aboud, M.F.; Shakir, I.; Tong, Z.F.; Xu, Y.X. Graphene oxide-supported organo-montmorillonite composites for the removal of Pb(II), Cd(II), and As(V) contaminants from water. ACS Appl. Nano Mater. 2019, 3, 806–813. [Google Scholar] [CrossRef]
- Lin, S.; Lu, D.N.; Liu, Z. Removal of arsenic contaminants with magnetic γ-Fe2O3 nanoparticles. Chem. Eng. J. 2012, 211, 46–52. [Google Scholar] [CrossRef]
- Guo, X.J.; Du, Y.H.; Chen, F.H.; Park, H.S.; Xie, Y.N. Mechanism of removal of arsenic by bead cellulose loaded with iron oxyhydroxide (β-FeOOH): EXAFS study. J. Colloid Interface Sci. 2007, 314, 427–433. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Jiao, Y.; He, M.; Ouyang, W.; Lin, C.; Liu, X. Facile co-removal of As(V) and Sb(V) from aqueous solution using Fe-Cu binary oxides: Structural modification and self-driven force field of copper oxides. Sci. Total Environ. 2022, 803, 150084. [Google Scholar] [CrossRef]
- Liu, B.; Jian, M.; Liu, R.; Yao, J.; Zhang, X. Highly efficient removal of arsenic(III) from aqueous solution by zeolitic imidazolate frameworks with different morphology. Colloids Surf. A Physicochem. Eng. Asp. 2015, 481, 358–366. [Google Scholar] [CrossRef]
- Yu, W.T.; Luo, M.B.; Yang, Y.X.; Wu, H.; Huang, W.; Zeng, K.; Luo, F. Metal-organic framework (MOF) showing both ultrahigh As(V) and As(III) removal from aqueous solution. J. Solid State Chem. 2019, 269, 264–270. [Google Scholar] [CrossRef]
- Saleh, T.A.; Sarı, A.; Tuzen, M. Effective adsorption of antimony(III) from aqueous solutions by polyamide-graphene composite as a novel adsorbent. Chem. Eng. J. 2017, 307, 230–238. [Google Scholar] [CrossRef]
- Dong, S.X.; Dou, X.M.; Mohan, D.; Pittman Jr, C.U.; Luo, J.M. Synthesis of graphene oxide/schwertmannite nanocomposites and their application in Sb(V) adsorption from water. Chem. Eng. J. 2015, 270, 205–214. [Google Scholar] [CrossRef]
- Sherlala, A.I.A.; Raman, A.A.A.; Bello, M.M.; Buthiyappan, A. Buthiyappan, Adsorption of arsenic using chitosan magnetic graphene oxide nanocomposite. J. Environ. Manag. 2019, 246, 547–556. [Google Scholar] [CrossRef] [PubMed]
- Yoon, Y.; Park, W.K.; Hwang, T.M.; Yoon, D.H.; Yang, W.S.; Kang, J.W. Comparative evaluation of magnetite-graphene oxide and magnetite-reduced graphene oxide composite for As(III) and As(V) removal. J. Hazard. Mater. 2016, 304, 196–204. [Google Scholar] [CrossRef]
Method | Materials | Heavy Metal | Initial Concentration (mg/L) | Adsorption Temperature (°C) | Optimum pH | Adsorption Removal Efficiencies (%) | References |
---|---|---|---|---|---|---|---|
Coagulation/ flocculation | Ferric chloride | Sb(V) | 0.05 | 25 ± 1 | 4.5–5.5 | 98 | [31] |
HFO | Sb(III)/Sb(V) | 0.1 | 25 ± 1 | 6 | 94/59 | [31] | |
Aluminum sulfate | As(V) | 0.5 | − | 7 | 100 | [47] | |
Ferric chloride | As(III)/As(V) | 1 | − | 7 | 60/90 | [48] | |
Ion exchange | Purolite S957 | Sb(III) | 250 | 55 | 8 | 90 | [49] |
Amberlite XAD−7 | As(III) | − | − | 5–10 | >95 | [36] | |
Amberlite XAD−7 | As(V) | − | − | 1–5 | >95 | [36] | |
Membrane technology | CF−UF | Sb(III) | 0.0625 | 28 ± 1 | 7.1–9.0 | 90 | [50] |
NTR−729HF | Sb(III) | − | − | 5 | >60 | [39] | |
NTR−729HF | Sb(V) | − | − | 3–10 | >80 | [39] | |
ES−10 | Sb(III)/Sb(V) | − | − | 3–10 | >80 | [39] | |
NTR−729HF | As(III)/As(V) | − | − | 10 | 43/95 | [39] | |
Electrochemical methods | Al−Al electrodes | Sb(V) | 28.6 | − | 2 | 97.7 | [51] |
Fe−Al electrodes | Sb(III) | 0.521 | − | 5.2 | 99 | [41] | |
Copper–graphite | Sb | 3500 | − | − | 99.4 | [40] | |
Zinc–zinc electrodes | As(III) | 2 | 30 | 6 | 99.9 | [52] | |
Copper–copper electrodes | As(III) | 2 | 30 | 7 | 99.6 | [52] | |
Stainless steel electrode | As | 10 | − | 5.2 | 99.6 | [53] | |
Phytoremediation | Cladophora | As | 6 | − | 7.5 | 99.8 | [54] |
Adsorption Materials | Advantages | Disadvantages | References | |
---|---|---|---|---|
Traditional material | Carbon−based materials | Environmentally friendly Large surface area Thermal stability High adsorption capacity High mechanical strength Tunable surface functional groups | Difficult to recover/regenerate May cause secondary pollution Not suitable for industrial production | [123] |
Clay minerals | Low cost High surface area Selectivity and regenerability Excellent structural/surface properties Excellent physical/chemical properties | Low removal efficiency Easily affected by environmental factors | [82,124] | |
Manganese oxides | Good stability Simple operation High surface area Porous structures Strong oxidation performance | High cost May cause secondary pollution Unfavourable physical/chemical properties | [125,126] | |
Activated alumina | High surface area For commercial use High mechanical strength | High preparation cost Sensitive to pH | [127,128] | |
Biomass material | Low cost Regenerative Environmentally friendly No secondary pollution Metal recovery possible | Effectiveness depends on pH and temperature Not suitable for industrial scale yet | [129,130] | |
Frontier materials | Metal−organic frameworks (MOFs) | High yields High surface area Multi−functionality Superior reusability Selective adsorption Good chemical/thermal stability Weakly toxic secondary products A highly ordered porous structure | Ions leakage Low conductivity Low−water stability | [131,132] |
Covalent organic frameworks (COFs) | Low density Great stability High adsorption capacity Large specific surface area Tunable, ordered, and stable structure | High cost Low yield Low crystallinity Poor reversibility Long synthesis time Complicated synthesis | [133,134] | |
Hydrogen−bonded frameworks (HOFs) | Easy purification Good recyclability Solution processability Highly crystalline structure | Structural instability No outstanding porosity | [102] | |
Graphene oxide (GO) | Low cost High mechanical strength Abundant functional groups Large specific surface area Strong adsorption capacity | Difficult to recycle and reuse Difficulty in large−scale synthesis Inactive surface chemical properties | [135] | |
MXenes | Hydrophilicity Large surface area High sorption selectivity Remarkable chemical stability High thermal/electrical conductivity Exclusive sorption−reduction capacity | Low yield High cost Possibly poisonous Weak water stability | [136] | |
Iron−based materials | Low cost Strong reactivity Easy preparation and recycling Great affinity towards Sb and As | Sensitive to pH Subject to corrosion Tendency to agglomerate Limited adsorption capacity Not thermodynamically stable | [69] | |
Hydrogels (HGs) | Insoluble Non−toxic hydrophilicity Thermo−stability Controllable pore structure | High crystallinity Soluble in dilute acid Poor chemical resistance Poor mechanical strength Limited adsorption capacity | [137] |
Adsorbent | Heavy Metal | Initial Concentration(mg/L) | Adsorbent Dose (g/L) | Adsorption Temperature (°C) | Optimum pH | Adsorption Capacity (mg/g) | References | |
---|---|---|---|---|---|---|---|---|
MOFs | ZIF−8 | Sb(V) | 0.06–1.1 mmol/L | 0.2 | 25 | 8.6 | 104.7 | [145] |
UIO−66−NH2 | Sb(III)/Sb(V) | 500 | 1 | 25 | 1.5 | 61.8/105.4 | [139] | |
Fe−MIL−88B | Sb(III)/Sb(V) | 0.06–30 | 0.02 | 25 | 10/6 | 566.1/318.9 | [140] | |
NU−1000 | Sb(III)/Sb(V) | 2–500 | 0.8 | − | 11/3 | 137.0/287.9 | [138] | |
Fe−based MIL−88A | As(V) | 100 | 0.4 | 25 | 5 | 145 | [141] | |
MIL−53 (Al) | As(V) | 0.054–2.428 | 0.02 | 25 | 8 | 105.6 | [142] | |
MIL−88B (Fe) | As(V) | 0.1–10 | 0.02 | − | 6 | 156.7 | [144] | |
UiO−66 | As(V) | 50 | 0.5 | 25 ± 1 | 2 | 303.4 | [143] | |
Cubic ZIF−8 | As(III) | 5–70 | 0.2 | 25 ± 0.5 | 8.5 | 122.6 | [156] | |
Leaf−shaped ZIF−8 | As(III) | 5–70 | 0.2 | 25 ± 0.5 | 8.5 | 108.1 | [156] | |
Dodecahedral ZIF−8 | As(III) | 5–70 | 0.2 | 25 ± 0.5 | 8.5 | 117.5 | [156] | |
ZIF−8 | As(III)/As(V) | 0.06–1.1 mmol/L | 0.2 | 25 | 8.6 | 151.3/106.4 | [145] | |
Zn−MOF−74 | As(III)/As(V) | 800 | 1 | 25 | 12/7 | 211.0/325.0 | [157] | |
COFs | γ−Fe2O3@CTF−1 | As(III)/As(V) | 10 | 4 | − | 7 | 198.0/102.3 | [146] |
EB−COF: Br | As(V) | 4 | 1 | 25 | 7 | 53.1 | [72] | |
Fe0/TAPB−PDA COFs | As(III) | 173 | 0.17 | − | 8 | 135.8 | [147] | |
Graphene | PAG | Sb(III) | 1–25 | 1.5 | 20 | 5 | 158.2 | [158] |
GO−SCH | Sb(V) | 0–55 | 0.3 | 25 ± 1 | 7 | 158.6 | [159] | |
RGO/Mn3O4 | Sb(III)/Sb(V) | 10–1000 | 1 | 20 | 7 | 151.8/105.5 | [150] | |
CMGO | As(III) | 10 | 5 | 25 | 7.3 | 45.0 | [160] | |
GO−OM | As(V) | 0–250 | 1 | − | 7 | 80.2 | [152] | |
Fe3O4−HEG | As(III)/As(V) | 50–300 | − | − | − | 180.3/172.1 | [151] | |
M−GO | As(III)/As(V) | 0.15–1 | 1 | 25 | 7/4 | 85.0/38.0 | [161] | |
Others | FMBO | Sb(III) | 0.2–2 mmol/L | 0.2 | 20 ± 1 | 3 | 203.3 | [59] |
PPAA−FMBO3 | Sb(III) | 40 | 1 | 15 | 5 | 105.6 | [75] | |
γ−Fe2O3 nanoparticles | As(III)/As(V) | 10–150/10–200 | 1.6 | 50 | 6/3 | 74.8/105.3 | [153] | |
Fe−Cu binary oxides−2/1 | Sb(V)/As(V) | 10–100 | 0.1 | − | 4 | 94.3/70.9 | [155] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, X.; Song, X.; Zheng, Q.; Liu, C.; Li, K.; Luo, Q.; Chen, J.; Wang, Z.; Luo, J. Frontier Materials for Adsorption of Antimony and Arsenic in Aqueous Environments: A Review. Int. J. Environ. Res. Public Health 2022, 19, 10824. https://doi.org/10.3390/ijerph191710824
Fu X, Song X, Zheng Q, Liu C, Li K, Luo Q, Chen J, Wang Z, Luo J. Frontier Materials for Adsorption of Antimony and Arsenic in Aqueous Environments: A Review. International Journal of Environmental Research and Public Health. 2022; 19(17):10824. https://doi.org/10.3390/ijerph191710824
Chicago/Turabian StyleFu, Xiaohua, Xinyu Song, Qingxing Zheng, Chang Liu, Kun Li, Qijin Luo, Jianyu Chen, Zhenxing Wang, and Jian Luo. 2022. "Frontier Materials for Adsorption of Antimony and Arsenic in Aqueous Environments: A Review" International Journal of Environmental Research and Public Health 19, no. 17: 10824. https://doi.org/10.3390/ijerph191710824
APA StyleFu, X., Song, X., Zheng, Q., Liu, C., Li, K., Luo, Q., Chen, J., Wang, Z., & Luo, J. (2022). Frontier Materials for Adsorption of Antimony and Arsenic in Aqueous Environments: A Review. International Journal of Environmental Research and Public Health, 19(17), 10824. https://doi.org/10.3390/ijerph191710824