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Abstract: The extreme climate caused by global warming has had a great impact on the earth’s ecology.
As the main greenhouse gas, atmospheric CO2 concentration change and its spatial distribution
are among the main uncertain factors in climate change assessment. Remote sensing satellites
can obtain changes in CO2 concentration in the global atmosphere. However, some problems
(e.g., low time resolution and incomplete coverage) caused by the satellite observation mode and
clouds/aerosols still exist. By analyzing sources of atmospheric CO2 and various factors affecting
the spatial distribution of CO2, this study used multisource satellite-based data and a random forest
model to reconstruct the daily CO2 column concentration (XCO2) with full spatial coverage in the
Beijing–Tianjin–Hebei region. Based on a matched data set from 1 January 2015, to 31 December
2019, the performance of the model is demonstrated by the determination coefficient (R2) = 0.96, root
mean square error (RMSE) = 1.09 ppm, and mean absolute error (MAE) = 0.56 ppm. Meanwhile, the
tenfold cross-validation (10-CV) results based on samples show R2 = 0.91, RMSE = 1.68 ppm, and
MAE = 0.88 ppm, and the 10-CV results based on spatial location show R2 = 0.91, RMSE = 1.68 ppm,
and MAE = 0.88 ppm. Finally, the spatially seamless mapping of daily XCO2 concentrations from
2015 to 2019 in the Beijing–Tianjin–Hebei region was conducted using the established model. The
study of the spatial distribution of XCO2 concentration in the Beijing–Tianjin–Hebei region shows
its spatial differentiation and seasonal variation characteristics. Moreover, daily XCO2 map has the
potential to monitor regional carbon emissions and evaluate emission reduction.

Keywords: satellite; remote sensing; CO2; mapping; random forest

1. Introduction

The global atmospheric CO2 concentration has increased dramatically since the in-
dustrial revolution. From ground observation, the atmospheric CO2 concentration has
increased from 280 ppm at the beginning of the industrial revolution to 413.2 ppm in 2020 [1]
and is also rising at a rate of nearly 2 ppm every year [2]. With the increase in atmospheric
CO2 concentration, the global greenhouse effect is also increasing [3], and extreme weather
and natural disasters are frequent [4]. Accurately estimating and effectively responding
to the change in atmospheric CO2 concentration are major scientific issues to achieve the
earth’s sustainable development [5]. Atmospheric CO2 column concentration (XCO2) is of-
ten used to represent atmospheric CO2 concentration [6]. Atmospheric XCO2 concentration
can be measured in two ways: (1) Observing CO2 concentration based on ground sta-
tions: The total carbon column observing network (TCCON) established by the American
Center for Atmospheric Research in 2004 can provide long-time and high-precision XCO2
concentration and effectively reveal the spatiotemporal variation trend of XCO2 concentra-
tion [7]. However, accurately representing the spatial distribution and temporal changes in
XCO2 concentration by a few TCCON stations is difficult [8]. (2) Observing CO2 concentra-
tion based on remote sensing satellites: XCO2 concentration with high spatial–temporal
resolution can be provided by remote sensing satellites [9], which have large-scale and
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long-time-series advantages. Currently, widely used CO2-monitoring satellites include
GOSAT [10], OCO-2 [11], TanSat [12], and so on.

Although a remote sensing satellite has many advantages in monitoring XCO2 con-
centration, it inevitably has some problems. (1) The monitored scope is limited by the
satellite observation mode [13]. (2) Satellites can be easily influenced by cloud cover and
aerosols [14]. For example, the valid observation of the OCO-2 satellite only account for
about 10% of all observation after quality control [15]. Currently, the coverage of atmo-
spheric XCO2 monitored by satellites is low. This low coverage of XCO2 concentration has
a negative influence on accurately estimating the carbon source and sink is difficult [16].

Researchers have developed various methods to reconstruct the high coverage of XCO2
data [17]. A high-accuracy surface modeling method was used to reconstruct the high
coverage of OCO-2 XCO2 data [18]. Monthly XCO2 concentration can be obtained using the
middle and low latitudes of the world. Additionally, the Goddard Earth Observing System
Chemistry model has been used to obtain XCO2 concentration with continuous space–time
coverage based on the atmospheric driving method [19,20]. However, the spatial resolution
of the XCO2 concentration data obtained by the above method is generally above 0.5◦,
which cannot support the detailed study of regional carbon sources and sinks [21].

Machine learning algorithms can effectively deal with nonlinear complex system
problems [22,23] and have been widely used in atmospheric XCO2 concentration estimation
models. For example, the artificial neural network (ANN) method and variables (e.g.,
longitude and latitude, sea temperature, salinity level, and chlorophyll-a concentration)
were used to model the XCO2 concentration over the ocean [24]. Siabi and Falahatkar
modeled the 5 km seamless XCO2 concentration over Iran using the ANN method [25],
OCO-2 XCO2, and eight environmental variables, including the normalized difference
vegetation index (NDVI), net primary productivity (NPP), leaf area index, land surface
temperature, wind direction, wind speed, air temperature, and land cover type.

Tarko and Usatyuk [26] showed that the temporal and spatial distributions of atmo-
spheric CO2 concentration are affected by multiple factors, among which atmospheric
meteorological conditions, vegetation carbon sink absorption, and carbon emissions from
human activities are the most significant factors. Focusing on the aforementioned three
types of variables is necessary to obtain more accurate XCO2 concentration [27].

Thus, this study aimed to obtain a high-coverage and high-spatial–temporal resolution
atmospheric XCO2 concentration based on a machine learning model by integrating mul-
tisource remote sensing satellite data, considering meteorological factors, anthropogenic
emissions, natural carbon sinks, and so on. Then, spatial–temporal changes in regional
XCO2 concentration were analyzed. Simultaneously, the geographical locations of regional
carbon sources and sinks are explored.

2. Data and Methods
2.1. Study Area and Data
2.1.1. Study Area

The study area was the Beijing–Tianjin–Hebei region in the North China Plain. The
Beijing–Tianjin–Hebei region is centered in Beijing, the capital of China, including Tian-
jin, Shijiazhuang, Tangshan, Handan, Baoding, Cangzhou, Xingtai, Langfang, Chengde,
Zhangjiakou, Hengshui, and Qinhuangdao, with a total area of 216,000 km2. The land
use type map of the study area in 2014 is shown in Figure 1. The land use data are
from the MODIS Land Cover (MCD12Q1) Product, which can be downloaded from
https://lpdaac.usgs.gov/products/mcd12q1v006, accessed on 1 September 2021.

https://lpdaac.usgs.gov/products/mcd12q1v006
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Figure 1. Land use types in the Beijing–Tianjin–Hebei (BTH) region in China. 

Li et al. [28] pointed out that population size has a great impact on carbon emissions. 
Beijing and Tianjin are the second and third largest cities in China, respectively, with de-
veloped industries and a large population [29]. The Beijing–Tianjin–Hebei region has be-
come a typical high-carbon-emission region in China. Thus, reconstructing high-coverage 
XCO2 map in the Beijing–Tianjin–Hebei region is necessary. 

2.1.2. Data 
1. OCO-2 XCO2 

Following the failure to launch the carbon olfactory satellite (OCO) in 2009, the Na-
tional Aeronautics and Space Administration launched the OCO-2 satellite in 2014 to 
monitor the change in atmospheric XCO2 concentration [30]. The level 2 product pub-
lished on the official website (https://search.earthdata.nasa.gov, accessed on 10 February 
2021) was used in this study. The spatial resolution and the measured period of this prod-
uct are 1.29 km × 2.25 km and 16 days, respectively [13]. The OCO-2 level 2 product in-
cludes three XCO2 products, namely, V7, V7r, and Lite_FP file products. For data applica-
tions, Lite_FP was selected in this study because it usually has the most effective data 
volume and relatively stable spatial coverage. Liang et al. [31] showed that OCO-2 XCO2 
has a random error of ~1.8 ppm compared with ground-based TCCON data, which was 
sufficient to improve the estimation of the carbon source and carbon sink. Obviously 
measured gaps in XCO2 retrievals due to the influence of the observation orbit, cloud cov-
erage, and aerosols (Figure 2). 

Figure 1. Land use types in the Beijing–Tianjin–Hebei (BTH) region in China.

Li et al. [28] pointed out that population size has a great impact on carbon emissions.
Beijing and Tianjin are the second and third largest cities in China, respectively, with
developed industries and a large population [29]. The Beijing–Tianjin–Hebei region has
become a typical high-carbon-emission region in China. Thus, reconstructing high-coverage
XCO2 map in the Beijing–Tianjin–Hebei region is necessary.

2.1.2. Data

1. OCO-2 XCO2

Following the failure to launch the carbon olfactory satellite (OCO) in 2009, the
National Aeronautics and Space Administration launched the OCO-2 satellite in 2014 to
monitor the change in atmospheric XCO2 concentration [30]. The level 2 product published
on the official website (https://search.earthdata.nasa.gov, accessed on 10 February 2021)
was used in this study. The spatial resolution and the measured period of this product
are 1.29 km × 2.25 km and 16 days, respectively [13]. The OCO-2 level 2 product includes
three XCO2 products, namely, V7, V7r, and Lite_FP file products. For data applications,
Lite_FP was selected in this study because it usually has the most effective data volume and
relatively stable spatial coverage. Liang et al. [31] showed that OCO-2 XCO2 has a random
error of ~1.8 ppm compared with ground-based TCCON data, which was sufficient to
improve the estimation of the carbon source and carbon sink. Obviously measured gaps in
XCO2 retrievals due to the influence of the observation orbit, cloud coverage, and aerosols
(Figure 2).

2. VIIRS S-NPP

The level of regional economic development is closely related to the population
size and the industrial development level, which are closely related to the magnitude
of anthropogenic carbon emissions [32]. The mean value of lighting data can effectively
reflect the overall economic development level of the region and then effectively reflect the
magnitude of anthropogenic carbon emissions [33].

https://search.earthdata.nasa.gov
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Figure 2. Average monthly data of OCO-2 XCO L2 Lite_FP in China: (a) January 2015, (b) January 
2016, (c) January 2017, and (d) January 2018. 
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The visible infrared imaging radiometer (VIIRS) night-light data used in this study
is an extension of the MODIS series and is carried on the S-NPP satellite [34]. Global
daily measurement of night-visible and near-infrared light can be provided by VIIRS, with
spatial and time resolutions of 500 m and 1 day, respectively. Level-3 data were used in this
study. This level of data has been geometrically and radiometrically corrected and can be
downloaded from https://search.earthdata.nasa.gov, accessed on 21 October 2020.

Atmospheric CO2 is distributed in the form of aggregation and fog. The difference
of XCO2 concentration within a certain range is small, while the night-light values of
different grid points are very different. The point-to-point matching mode cannot effectively
correspond to the XCO2 concentration. Therefore, the mean night-light value was adopted
to represent the overall emissions in a region.

Firstly, the four-scene noctilucent data were spliced to obtain the complete lighting
data in the Beijing–Tianjin–Hebei region. Then, the lighting map was resampled to 0.05◦ ×
0.05◦. The sum of lighting value in each city was counted and then divided by the region
area of each city to obtain the average value. The formula is as follows:

DNmean =
DNall

Areacity
(1)

where DNall is the sum of lighting value in a city; Areacity is the area of the city, counted by
the number of pixels; and DNmean represents the mean value of the city’s lighting data.

The same processing was performed on the light data for each day from 1 January
2015 to 31 December 2019. Examples of regional mean light values are shown in Figure 3.

https://search.earthdata.nasa.gov
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3. Natural carbon sink

As an important part of the carbon sink, the growth status and spatial coverage of sur-
face vegetation have a very significant impact on atmospheric CO2 concentration [35,36]. In
this study, the NDVI was used to characteristic the vegetation growth status and vegetation
coverage. The calculation formula is shown in Equation (2). The NDVI data used in this
study are from Terra’s MODIS sensor, with spatial and time resolutions of 500 m × 500 m
and 16 days, respectively, downloaded from https://search.earthdata.nasa.gov, accessed
on 10 October 2021.

NDVI =
NIR− Red
NIR + Red

(2)

where, NIR and Red are the near-infrared band and red band surface reflectance, respectively.

4. Meteorological factors

In this study, the impact of meteorological parameters on atmospheric CO2 concentra-
tion was also considered in addition to selecting the influencing factors of carbon sources
and sinks of anthropogenic emissions and natural vegetation [24,25,37]. As one of the
atmospheric chemical components, the temporal and spatial variations in CO2 concentra-
tion are greatly affected by meteorological factors. The meteorological factors affecting the
concentration of atmospheric chemical components mainly include wind speed, tempera-
ture, and atmospheric stability. Such as, wind can dilute the atmospheric molecules. The
temperature can reflect the stability of the atmosphere. In winter, the temperature is low,
and the atmospheric structure is relatively stable, which is not conducive to the vertical
diffusion of pollutants.

Five meteorological factors, including temperature (TEMP), relative humidity (RELH),
pressure (PRES), wind speed (WS), and boundary layer height (BLH), were selected. Mete-
orological data from the European Meteorological Center reanalysis data set (ERA5) were
used in this study. These are the fifth-generation ECMWF global climate data for atmo-
spheric reanalysis. The spatial resolution of ERA5 data used in this study is 0.25◦ × 0.25◦

with a time resolution of 1 h, which can be downloaded from the ECMWF official website
(https://cds.climate.copernicus.eu, accessed on 3 June 2021). All meteorological data were
resampled to a resolution of 0.05◦ to fit the OCO-2 XCO2 data by a bilinear interpolation
method in this study, and the meteorological data at 13:00 local time were selected to match
the XCO2 data.

Table 1 shows the data sets used in this study.

https://search.earthdata.nasa.gov
https://cds.climate.copernicus.eu
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Table 1. Data sets used in this study.

Data Variable Unit Time Resolution Spatial Resolution Source

XCO2 XCO2 ppm 1 day 2.25 km × 1.29 km OCO-2
Lighting data DN Unitless 1 day 500 m S-NPP
Carbon sink NDVI Unitless 16 days 500 m MODIS

RELH % 1 h 0.25◦

Meteorological data
TEMP K 1 h 0.25◦

ERA5WS m/s 1 h 0.25◦

PRES Kpa 1 h 0.25◦

BLH km 1 h 0.25◦

5. Time series variables

Relevant studies have shown that the atmospheric CO2 concentration has obvious
seasonal variation characteristics. Keeling et al. [38] put forward the classical formula for
the variation in atmospheric CO2 concentration over time:

y = A1 sin 2πt + A2 cos 2πt + A3 sin 4πt + A4 cos 4πt + A5 + A6t (3)

In the above formula, A1 − A4 determines the periodic change law of atmospheric CO2
concentration with seasons, A5 determines the background atmospheric CO2 concentration,
and A6 represents the interannual linear increment. t represents the time from the start
date in years, and y represents the XCO2 concentration in ppm.

In this study, the seasonal variation characteristics of atmospheric CO2 concentration were
also considered, and time series variables were added to the model to improve performance.

2.2. Methodology
2.2.1. Methodological Process

The flow chart of this study is shown in Figure 4, which mainly consists of three parts.
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The first part was mainly to obtain the data and screen the model variables. By
analyzing influence factors of atmospheric CO2 and the correlation between the variables
and XCO2 concentration, the appropriate variables were selected to build the model.

The second part was mainly to build the model and verify the accuracy, including select
the appropriate algorithm to build the model, and use statistical indicators to evaluate the
model’s results. Finally, cross-validation was used to check whether the model overfitting
or not.

The third part was mainly to compare and analyze the spatio-temporal differences
between the XCO2 data set simulated by the model and the XCO2 data set monitored by
the satellite.

2.2.2. Random Forest Model

The atmospheric system is a complex system with uncertainty. The number of at-
mospheric molecules (e.g., CO2) is influenced by different atmospheric conditions. For
example, CO2 near the ground can be rapidly transported to the upper air and surrounding
areas in summer due to intense atmospheric convection. In addition, some gases con-
taining the element C, such as CO and CH4, will be converted into CO2 under the action
of atmospheric chemistry for a long time. Therefore, certain limitations were observed
in modeling and estimating CO2 concentration using the mechanism model. A neural
network algorithm has a strong nonlinear and self-learning ability. However, it has some
problems (e.g., slow convergence, serious overfitting, and so on) for the estimation of
high-dimensional features and needs to continuously optimize the model parameters to
achieve optimal results [39].

The random forest model selected in this study, which was first proposed by Cutler et al. [40].
It is an integrated algorithm, including multiple decision trees. The stochastic forest model
has the following advantages:

1. The model has few adjustment parameters and does not require too much time.
2. The random selection of sample sets and split attributes can effectively reduce the

overfitting of the model.

Through the continuous implementation and verification of the fitting results of the
model, the random forest model established in this study mainly adjusts two important
parameters: the maximum depth of the decision tree and the minimum number of samples
of leaf nodes. The deeper the decision tree is, the longer time the model takes, but the
model performance may be improved to some extent. In this research model, the maximum
depth of the decision tree was set to 30. The larger the minimum number of leaf nodes, the
smaller the branches of the decision tree, and it has a certain ability to resist overfitting.
However, as the minimum number of leaf nodes increases to a certain extent, the accuracy
of the decision tree will be difficult to guarantee. Through continuous experiments, the
minimum number of samples of leaf nodes was set to 3 in the model.

2.2.3. Data Resampling and Matching Method

In the process of building the model, bilinear interpolation was used to uniformly
sample with a spatial resolution of 0.05◦. The matched data include XCO2 concentration,
VIIRS S-NPP, NDVI, temperature, relative humidity, atmospheric pressure, wind speed,
and boundary layer height. By matching the data from 1 January 2015 to 31 December 2019,
62,964 samples were obtained. Subsequently, the matched samples were used for model
training and verification.

2.2.4. Model Validation Method

In this study, in addition to the direct fitting results of model, the model was also
verified by tenfold cross-validation (10-CV), which can avoid the potential overfitting in
the model. After randomly dividing 62,964 pieces of data into 10 subparts, 9 of them were
used for training, and 1 was used for estimation. The estimated results were compared
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with the measurements, the process was repeated ten times until each piece of data was
estimated, and finally, the estimated values of all data were obtained.

The determination coefficient (R2), root mean square error (RMSE), mean absolute
error (MAE), and other statistical indicators were used to evaluate the accuracy of the
model. The formulas of R2, RMSE, and ME are as follows:

R2 =

 ∑n
i = 1(xi − x)(yi − y)√

∑n
i = 1 (xi − x)2·∑n

i = 1 (yi − y)2

2

(4)

where x and y represent the satellite-based and model estimated XCO2, respectively, x
represents the mean XCO2 value observed by the satellite, y represents the mean XCO2
value estimated by the model, and n represents the number of samples.

RMSE =

√
∑n

i = 1 (Xi − X̂)
2

n− 1
(5)

where Xi represents model fitting results, X̂ represents the mean value of model fitting,
and n represents the total number of samples.

MAE =
1
n

n

∑
i = 1
|Ŷ−Yi| (6)

where Yi represents model fitting results, Ŷ represents the mean value of the model fitting
results, and n represents the total number of samples.

3. Results
3.1. Descriptive Statistics

Before modeling, the above-mentioned various types of data were matched one by
one according to longitude, dimension, and time, and a total of 69,512 pieces of data were
matched. Statistical analysis of the 62,964 matched data was performed y to avoid problems
in the data preprocessing process. The frequency histogram of each parameter is shown
in Figure 5. The statistical results showed that the maximum, minimum, and average
values of XCO2 concentration are 428.33, 354.54, and 405.64 ppm, respectively. The XCO2
concentration in the region is relatively high.

In addition, the study also conducted a correlation analysis between each variable
parameter. The correlation analysis is shown in Table 2.

Table 2. Pearson correlation coefficient matrix of XCO2 concentration reconstruction model with
matching data set variables.

Time XCO2 TEMP RELH PRES uwind vwind BLH NDVI DN

Time 1.00 0.62 0.07 −0.10 −0.02 0.03 0.01 0.07 0.07 0.00
XCO2 1.00 −0.21 −0.30 0.16 0.10 0.03 −0.01 −0.26 0.08
TEMP 1.00 0.05 0.22 −0.39 0.29 0.42 0.65 0.08
RELH 1.00 0.04 −0.24 0.18 −0.49 0.13 0.00
PRES 1.00 −0.33 0.08 −0.10 0.11 0.37
uwind 1.00 −0.17 0.19 −0.30 −0.11
vwind 1.00 −0.26 0.16 0.01
BLH 1.00 0.24 −0.01

NDVI 1.00 0.05
DN 1.00
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Through the calculation of the correlation coefficient, a certain correlation was noted
between the XCO2 concentration and the selected modeling variables. Some variables
have poor correlations, which may be attributed to the low spatial resolution of the data
themselves. Data authenticity cannot be guaranteed when resampling to a finer spatial
resolution. In addition, the correlation between temperature and NDVI is high, because
the vegetation growth process is closely related to temperature [41]. The correlation
between temperature and boundary layer height is high, mainly because temperature
affects the stability of atmospheric molecules, resulting in certain changes in the boundary
layer height.

3.2. Model Accuracy

By establishing random forest model for the XCO2 reconstruction by integrating
multisource remote sensing data, the model accuracy statistics were computed, including
the direct fitting results of the training model, the cross-validation results based on samples,
and the spatial cross-validation results based on spatial locations (Figure 6). The longitude
and latitude information of each group of data were recorded. During the spatial cross-
validation, all matched data were randomly divided into ten equal parts according to
longitude and latitude.
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Figure 6. Scatter density plot of (a) direct fitting, (b) sample-based cross-validation, and (c) spatial
cross-validation.

The direct fitting results obtained are R2 = 0.96, RMSE = 1.09 ppm, and MAE = 0.56
ppm; the 10-CV results based on samples are R2 = 0.91, RMSE = 1.68 ppm, and MAE = 0.88
ppm; and the 10-CV results based on spatial location are R2 = 0.91, RMSE = 1.68 ppm, and
MAE = 0.88 ppm. The validation results show that the estimation results of the model
in this study are relatively close to the XCO2 concentration monitored by the satellite.
Simultaneously, according to the results of direct fitting and 10-CV based on samples, their
R2 values are relatively close (0.96 vs. 0.91), which can be used to judge that the model does
not have a serious overfitting phenomenon. In addition, according to the 10-CV results
based on spatial location (R2 = 0.91), it can be found that the estimation ability of the model
at different positions is also outstanding. Therefore, it can be used to estimate the XCO2
concentration in this region.

In addition, to conduct a more detailed analysis of the accuracy of the model, the
current study computed the seasonal accuracy of the model for a total of 21 seasons from 1
January 2015 to 31 December 2019. The statistical results of model accuracy by season are
shown in Table 3.

Table 3. Statistical results of seasonal accuracy of the model from 1 January 2015 to 31 December 2019
(21 seasons, n = 62,964 is the total number of samples, and the evaluation indicators are R2, MAE,
and RMSE).

Season
Direct Fitting Results 10-CV Results Based on Samples

Number
R2 MAE (ppm) RMSE (ppm) R2 MAE (ppm) RMSE (ppm)

2014 Winter 0.89 0.43 0.87 0.77 0.65 1.25 2078
2015 Spring 0.91 0.49 0.91 0.79 0.73 1.35 3603

2015 Summer 0.89 0.83 1.43 0.73 1.27 2.14 2913
2015 Autumn 0.88 0.61 1.25 0.70 0.94 1.93 3342
2015 Winter 0.92 0.53 1.09 0.81 0.82 1.66 6015
2016 Spring 0.81 0.53 0.94 0.57 0.81 1.37 2586

2016 Summer 0.87 0.87 1.61 0.71 1.30 2.37 2318
2016 Autumn 0.93 0.57 1.17 0.82 0.87 1.76 3200
2016 Winter 0.93 0.50 1.00 0.82 0.78 1.57 3703
2017 Spring 0.82 0.55 1.04 0.59 0.83 1.51 3158

2017 Summer 0.91 0.72 1.22 0.79 1.11 1.82 1700
2017 Autumn 0.89 0.61 1.23 0.72 0.93 1.85 1702
2017 Winter 0.86 0.47 1.07 0.68 0.70 1.56 4971
2018 Spring 0.85 0.45 0.82 0.65 0.68 1.22 2789

2018 Summer 0.85 0.98 1.64 0.66 1.48 2.43 2509
2018 Autumn 0.90 0.51 0.99 0.78 0.76 1.44 3894
2018 Winter 0.90 0.44 0.84 0.74 0.66 1.30 2899
2019 Spring 0.81 0.51 1.06 0.60 0.75 1.46 3147

2019 Summer 0.90 0.86 1.51 0.76 1.29 2.20 2020
2019 Autumn 0.92 0.43 0.78 0.83 0.64 1.15 3493
2019 Winter 0.92 0.51 0.94 0.82 0.76 1.38 924
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Due to the influence of cloud cover and aerosols, the number of effective XCO2
concentration obtained in each season is different. The performance of the model in spring
is poor. The mean R2 of the direct fitting results in the 5 years is 0.84, and the mean value of
the 10-CV results is 0.64. In the 4 years from 2016 to 2019, the model accuracy in spring is the
lowest. The R2 values of the direct fitting results are 0.81, 0.82, 0.85, and 0.81, respectively,
and the R2 of the 10-CV results of the sample are 0.57, 0.59, 0.65, and 0.60, respectively. The
performance of the model is similar in summer, autumn, and winter. The mean R2 values
of the direct fitting results of the model in summer, autumn, and winter in the 5 years
from 2015 to 2019 are 0.88, 0.90, and 0.90, respectively, and the mean values of the sample
10-CV results are 0.73, 0.77, and 0.77, respectively. The statistical results of model accuracy
by season will decline to a certain extent because the model is guaranteed to be globally
optimal. In addition, the MAE of the 10-CV results of the model is within 1.5 ppm for the
period between the winter of 2014 and the autumn of 2019, and the average value of MAE
is 0.89 ppm. It can be seen that this model can estimate regional XCO2 concentrations with
high performance.

3.3. Seasonal Maps

To better reflect the overall change in XCO2 concentration in the Beijing–Tianjin–Hebei
region, the proposed model was used to estimate and map the XCO2 concentration in
the whole region from 1 January 2015 to 31 December 2019. First of all, this study used
the original OCO-2 satellite observation data to map the seasonal mean values of XCO2
concentration in Beijing, Tianjin, and Hebei. Since the winter data in 2019 are only in
December, only the seasonal mean value results of OCO-2 XCO2 concentration in spring,
summer, autumn, and winter from 2015 to 2018 are plotted (Figure 7).
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summer, autumn, and winter, respectively.
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Figure 7 shows that the coverage of the original OCO-2 XCO2 data in the
Beijing–Tianjin–Hebei region is very low, and effective XCO2 monitoring cannot be con-
ducted in many regions. Simultaneously, the return period of the OCO-2 satellite is 16 days,
and XCO2 concentration data are only obtained once in 16 days. Due to the low coverage
degree of original satellite observations, it is difficult to reflect the situation of the carbon
source and carbon sink in the region. The XCO2 satellite observation results, as shown in
Figure 7, show that the XCO2 concentration in the region has seasonal periodic change
characteristics, and it is high in winter and spring and low in summer and autumn.

Secondly, the proposed model and multisource remote sensing satellite data were
used to estimate the XCO2 concentration in the region and map the seasonal mean of the
XCO2 concentration from 2015 to 2018 (Figure 8).
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Figure 8 shows that compared with the XCO2 data directly observed by the OCO-2
satellite, the XCO2 reconstruction model established in this study can estimate the regional
XCO2 concentration with the complete spatial distribution and can conduct more accurate
studies on the regional carbon source and sink. In addition, the time resolution of the XCO2
concentration obtained in this study is 1 day, which can carry out more precise detection in
the time dimension and effectively monitor the short-term anomaly of CO2 emissions.

Simultaneously, a quantitative analysis of the seasonal mean values of the XCO2
concentration monitored by the OCO-2 satellite and the XCO2 concentration estimated by
the random forest model was conducted. Since the winter data in 2019 are only 1 month’s
data, statistics were not computed here. The statistical results of other seasons are shown
in Table 4.
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Table 4. Statistical results of the seasonal mean values of the XCO2 concentration monitored by the
OCO-2 satellite and the XCO2 concentration estimated by the random forest model.

Season
Monitored by Satellite Estimated by Model Bias

Mean Median Standard
Deviation Mean Median Standard

Deviation Mean Median Standard
Deviation

201501 402.59 402.77 2.85 402.40 402.66 0.75 0.18 0.11 2.10
201502 395.50 395.55 4.10 395.39 395.61 0.83 0.11 −0.06 3.27
201503 398.74 398.73 3.30 398.59 399.00 1.67 0.15 −0.27 1.63
201504 404.13 404.19 3.10 403.77 404.01 1.86 0.36 0.18 1.24

201601 406.02 406.13 2.00 405.42 405.55 0.54 0.60 0.58 1.47
201602 398.50 398.41 4.44 399.19 399.29 0.92 −0.69 −0.88 3.52
201603 403.15 403.49 3.85 403.18 402.92 1.36 −0.03 0.57 2.49
201604 407.43 407.52 3.77 407.66 407.80 1.91 −0.23 −0.28 1.86

201701 408.68 408.58 2.25 408.24 408.55 0.86 0.44 0.03 1.39
201702 404.18 404.47 3.84 404.33 404.43 0.94 −0.15 0.04 2.91
201703 406.24 406.68 3.05 406.70 407.17 1.17 −0.46 −0.49 1.89
201704 408.77 408.84 2.71 408.75 409.23 1.52 0.02 −0.39 1.19

201801 411.09 410.99 2.01 409.67 409.76 0.85 1.42 1.23 1.16
201802 404.09 404.06 4.18 403.71 403.69 0.46 0.39 0.37 3.72
201803 407.22 407.35 3.00 407.53 407.86 1.13 −0.31 −0.51 1.87
201804 411.05 411.08 2.59 411.35 411.91 1.29 −0.30 −0.83 1.30

201901 412.96 412.86 2.10 411.94 411.94 0.54 1.02 0.92 1.56
201902 406.09 406.26 4.43 406.33 406.46 0.86 −0.24 −0.20 3.57
201903 409.63 409.72 2.73 409.35 409.89 1.16 0.27 −0.17 1.58

Table 4 shows that little difference exists between the seasonal mean values of XCO2
concentration estimated by the random forest model and the seasonal mean values of XCO2
concentration observed by the OCO-2 satellite. The maximum difference in the mean value
occurred in the spring of 2018, reaching 1.42 ppm, and the minimum difference in mean
value occurred in the autumn of 2016, with a difference of only 0.03 ppm. Simultaneously,
the seasonal median values of the two groups of data were calculated. Moreover, Table 4
shows that the maximum value of the median difference also appeared in the spring of
2018, reaching 1.23 ppm, and the minimum value of the difference appeared in the spring
of 2017, with a difference of only 0.03 ppm. The statistical results also show that the
XCO2 concentration was higher in spring and winter every year, followed by autumn,
and smallest in summer, with periodic changes, and this is completely compatible with
the findings of Yingying et al. and Bie et al. [6,42]. In this area, a dense population, high
anthropogenic CO2 emissions, and major grain-producing areas in North China exist.
However, severe seasonal changes in crops [43] and human activities make the regional
seasonal change range in this area reach 9 ppm.

3.4. Long-Term Pattern of XCO2 Concentration

To make a more detail comparison between the XCO2 concentration monitored by the
OCO-2 satellite and the XCO2 concentration estimated by the random forest model, the
monthly mean values of the XCO2 concentration were also determined in this study. The
results are shown in Figure 9.
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Figure 9. Comparison between monthly XCO2 concentrations from the OCO-2 satellite (red line) and
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Figure 9 shows that the monthly mean values of the XCO2 concentration estimated by
this model are in good agreement with the XCO2 concentrations observed by the OCO-2
satellite. A large concentration deviation of the two groups of data generally occurs in
the peak area of each cycle (i.e., around April and May of each year). By comparing the
monthly mean values of the two groups of data, it can be found that the XCO2 concentration
estimated by this model is consistent with the XCO2 concentration observed by the OCO-2
satellite. All monthly deviations are around 2 ppm, and the average absolute value of all
deviations is 0.53 ppm. Simultaneously, the monthly mean concentration changes observed
by the satellite and estimated by the model were compared in this study. The results are
shown in Table 5.

Table 5. The monthly mean concentration changes observed by the satellite and estimated by the model.

Observed by the OCO-2 satellite
Minimum 393.73 201508
Maximum 413.46 201904

Bias 19.73

Estimated by the random
forest model

Minimum 394.10 201508
Maximum 413.00 201903

Bias 18.94

Bias
Minimum 0.00 201610
Maximum 1.67 201511

Table 5 shows that the minimum monthly mean values of the XCO2 concentration
observed by satellite and estimated by the model in the region appeared in August 2015,
with concentrations of 393.73 and 394.10 ppm, respectively. The maximum monthly mean
value of the XCO2 concentration observed by the satellite appeared in April 2019, with a
concentration of 413.46 ppm. The maximum monthly mean value of XCO2 concentration
estimated by the model appeared in March 2019, with a concentration of 413.00 ppm. The
minimum difference in the monthly mean values of the XCO2 concentration observed by
the satellite and estimated by the model was about 0.00 ppm, which occurred in October
2016, and the maximum difference occurred in November 2015, which was 1.67 ppm.
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3.5. Spatial Distribution of Monthly XCO2 Concentration

To show the temporal and spatial changes in XCO2 concentration in this study, the
monthly maps of the XCO2 concentration in 2015 and 2016 are drawn (Figures 10 and 11).

Int. J. Environ. Res. Public Health 2022, 19, x FOR PEER REVIEW 16 of 21 
 

 

the satellite and estimated by the model was about 0.00 ppm, which occurred in October 
2016, and the maximum difference occurred in November 2015, which was 1.67 ppm. 

3.5. Spatial Distribution of Monthly XCO2 Concentration 
To show the temporal and spatial changes in XCO2 concentration in this study, the 

monthly maps of the XCO2 concentration in 2015 and 2016 are drawn (Figures 10 and 11). 

 
Figure 10. Monthly average XCO2 concentrations in the Beijing–Tianjin–Hebei region from January 
2015 to December 2015. ZJK, CD, BJ, TJ, TS, and SJZ represent Zhangjiakou, Chengde, Beijing, Tian-
jin, Tangshan, and Shijiazhuang, respectively. (a–l) represent January to December respectively. 

Figure 10. Monthly average XCO2 concentrations in the Beijing–Tianjin–Hebei region from January
2015 to December 2015. ZJK, CD, BJ, TJ, TS, and SJZ represent Zhangjiakou, Chengde, Beijing, Tianjin,
Tangshan, and Shijiazhuang, respectively. (a–l) represent January to December respectively.

Figures 10 and 11 show that the XCO2 concentration in the Beijing–Tianjin–Hebei
region shows fluctuations. Simultaneously, it has a rhythm: the XCO2 concentration is
higher in spring and winter, followed by autumn, and the lowest in summer, which has a
rhythm of seasonal change.
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Figure 11. Monthly average XCO2 concentrations in the Beijing–Tianjin–Hebei region from January
2016 to December 2016. ZJK, CD, BJ, TJ, TS, and SJZ represent Zhangjiakou, Chengde, Beijing, Tianjin,
Tangshan, and Shijiazhuang, respectively. (a–l) represent January to December respectively.

According to the monthly change in net primary productivity in the Beijing–Tianjin–Hebei
region, Quanhong [44] pointed out that the vegetation in this region recovers in spring
and enters the growth season. After summer, the water and heat conditions are suitable,
the vegetation grows vigorously, the ecosystem productivity is the best, and the carbon
fixation capacity is the strongest. In autumn, due to the maturity of agricultural crops, the
ecological productivity of the whole region gradually decreases.

The high XCO2 concentration from March to May may be caused by the CO2, CH4, and
other gases released by the decaying litter of forest vegetation. The low XCO2 concentration
from July to September is mainly caused by a large amount of CO2 absorbed by forest
vegetation during the growth process. The CO2 release from forest vegetation is greater
than the absorption from March to June every year, while the CO2 absorption of forest
vegetation from July to October is greater than the release. Therefore, in the process of the
carbon cycle, the carbon source is the main feature in spring, and the carbon sink is the
main feature in summer and autumn. In spring, plants begin to grow and absorb CO2 in
the atmosphere but are offset by CO2 released into the atmosphere by plant decay. These
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plants do not completely decay between the colder late autumn and winter due to the low
activity of humus organisms.

In addition, compared with the banded XCO2 concentration observed by the OCO-2
satellite, some carbon source and sink regions can be effectively reflected by the seamless
XCO2 concentration monitored by the model of the Beijing–Tianjin–Hebei region. Figures 10
and 11 show that some areas in Beijing, Tianjin, Tangshan, and Shijiazhuang are carbon
source areas, and their monthly average XCO2 concentrations are significantly higher
than those of the surrounding areas. The main reason may be that the above cities have
large populations and large anthropogenic emissions. In some areas, such as Zhangjiakou
and Chengde, the monthly XCO2 concentration is significantly lower than that of the
surrounding areas. The main reason may be that the above two cities are underdeveloped,
have a small residential population, and have relatively low industrial CO2 emissions.

4. Discussion

Many models have been established to estimate regional CO2 concentrations to better
reveal the change in atmospheric CO2 concentration. Guo modeled the spatial distribution
of XCO2 in five continents, considering temperature and vegetable cover [45]. However,
the highest R2 was 0.75 in Eurasia, which is not sufficient to meet the requirements of
high-performance CO2 concentration analysis. With the development of artificial intel-
ligence, machine learning models have been used in XCO2 concentration monitoring.
Saibi et al. [25] modeled the spatial distribution of XCO2 to assess the spatial distribution of
CO2 concentration during the growing seasons in Iran, considering meteorological factors
and natural carbon sink factors. However, the highest and lowest R2 values were 0.77 and
0.38 for April and September, respectively.

To better estimate CO2 concentration, more influencing factors and model performance
need to be considered. The random forest model, based on the consideration of time series
factors, meteorological factors, anthropogenic emission factors, natural carbon sink factors,
and other factors affecting atmospheric CO2 concentration, can achieve higher R2 (0.96)
and 10-CV R2 (0.91) than other models (0.77 and 0.75). This high-precision model can be
used to estimate the XCO2 concentration, which can better reflect the changing trend and
spatial distribution of atmospheric CO2 concentration in the study area.

In addition, the observation data of the OCO-2 satellite were mainly used to model and
estimate the CO2 concentration in the Beijing–Tianjin–Hebei region in the study. However,
due to the insufficient spatial resolution of the OCO-2 satellite, the spatial resolution of
regional CO2 concentration obtained in this study is not sufficient to support the carbon
emission monitoring of large-scale power plants and coal-fired plants. Thanks to the
continuous development of remote sensing satellites, CO2 satellite monitoring data with
higher spatial resolution and higher accuracy are being continuously retrieved. In the next
work, more CO2 satellites, such as GF-5 and OCO-3 satellites, will be combined to retrieve
higher-quality CO2 data to achieve the monitoring of plant carbon emissions.

5. Conclusions

CO2 is the most abundant greenhouse gas in the atmosphere, and its rising concen-
tration has caused various climate changes and natural disasters, which have attracted
extensive attention. Since the 1970s, the means of monitoring atmospheric CO2 have been
continuously developed and updated. From station monitoring to satellite observation,
from surface concentration to column concentration, the accurate estimation of atmospheric
CO2 concentration and the accurate identification of regional and even global carbon
source and sink locations require high-precision, high-spatial–temporal-resolution, and
high-coverage atmospheric CO2 concentration monitoring data. In this study, multiple
sources of atmospheric CO2 were considered, multisource remote sensing data were fused,
and the random forest algorithm was used to build a high-coverage reconstruction model
of XCO2 concentration, and temporal and spatial differences in the XCO2 concentration
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data set in the Beijing–Tianjin–Hebei region obtained from the model were analyzed. The
main achievements are as follows:

1. Aiming at the problems of the low spatial coverage and insufficient temporal reso-
lution of the XCO2 concentration observation data obtained by the OCO-2 mon-
itoring satellite, this study developed a high-coverage reconstruction model for
XCO2 concentration by integrating multisource remote sensing data. Simultane-
ously, the accuracy of the model was evaluated. The direct fitting results are R2 = 0.96,
RMSE = 1.09 ppm, and MAE = 0.56 ppm; the 10-CV results based on samples are
R2 = 0.91, RMSE = 1.68 ppm, and MAE = 0.88 ppm; and the 10-CV results based on
spatial location are R2 = 0.91, RMSE = 1.68 ppm, and MAE = 0.88 ppm. The developed
model has the potential to play an important role in the monitoring of atmospheric
CO2 concentration.

2. Using the developed model, the high-coverage daily XCO2 concentration with a
spatial resolution of 0.05◦ in the Beijing–Tianjin–Hebei region from 2015 to 2019 was
outputted, and the monthly and seasonal means of XCO2 concentration were com-
pared with those measured by the OCO-2 satellite. The study found that the XCO2
concentration has obvious fluctuation and rhythm. The XCO2 concentration is higher
in spring and winter due to the decay of litter and human emissions. With the large
amount of CO2 absorbed by green vegetation photosynthesis, the XCO2 concentration
in summer is lower. In addition, in terms of the spatial XCO2 distribution concentra-
tion, some areas in Beijing, Tianjin, Tangshan, and Shijiazhuang are carbon source
areas, and their monthly average XCO2 concentrations are significantly higher than
those of the surrounding areas.

In general, this model has the potential to play a role in estimating the change in re-
gional XCO2 concentration, monitoring the location of carbon sources and to help constrain
city emissions on city scales.
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