HRV-Guided Training for Elders after Stroke: A Protocol for a Cluster-Randomized Controlled Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Setting
2.2. Eligibility Criteria
2.3. Interventions
2.4. Outcomes
2.4.1. VO2peak
2.4.2. Heart Rate Variability
2.4.3. Functional Performance
2.4.4. Relative Weight and Body Fat Distribution Measures
2.4.5. Quality of Life
2.4.6. Blood Analysis
2.4.7. Cognitive Function
2.4.8. Exercise Adherence, Feasibility, and Safety
2.5. Sample Size and Power
2.6. Recruitment
2.7. Allocation and Blinding
2.8. Data Analysis
2.9. Monitoring
2.10. Ethics and Dissemination
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Appendix A
Appendix A.1. Patient Information Sheet
Appendix A.2. Nature of the Consent
Appendix A.3. Importance
Appendix A.4. Implications for the Patient
Appendix A.5. Risks of Research to the Patient
Appendix A.6. Written Informed Consent of the Patient
- I (Name and Surname) ------------------------------------------------------------------------------
- I have read the information document that accompanies this consent (Patient Information)
- I have been able to ask questions about the study--------------------------------------------------------
- I have received sufficient information about the study----------------------------------------------
- I have spoken with the medical/health professional specialist-----------------------------------
- I understand that my participation is voluntary, and that I am free to participate or not in the study.
- ⮚
- Without having to give explanations
- ⮚
- Without this having an impact on my medical care
References
- Roth, G.A.; Abate, D.; Abate, K.H.; Abay, S.M.; Abbafati, C.; Abbasi, N.; Abbastabar, H.; Abd-Allah, F.; Abdela, J.; Abdelalim, A.; et al. Global, regional and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: A systematic analysis for the Global Burden of Disease Study. Lancet 2017, 392, 1736–1788. [Google Scholar] [CrossRef]
- Caplan, L.R. Multiple potential risks for stroke. JAMA 2000, 283, 1479–1480. [Google Scholar] [CrossRef] [PubMed]
- Wisloff, U.; Stoylen, A.; Loennechen, J.P.; Bruvold, M.; Rognmo, O.; Haram, P.M.; Tjonna, A.E.; Helgerud, J.; Slordahl, S.A.; Lee, S.J.; et al. Superior cardiovascular effect of aerobic interval training versus moderate continuous training in heart failute patients: A randomized study. Circulation 2007, 115, 3086–3094. [Google Scholar] [CrossRef] [PubMed]
- Pecherstorfer, T.; Fink, A.; Doppelmayr, M. Neurofeedback and HRV Biofeedback after Stroke; VDM Verlag Dr. Müller: Sarrebruck, Germany, 2009; p. 16. [Google Scholar]
- Vidale, S.; Consoli, A.; Arnaboldi, M.; Consoli, D. Postischemic Inflammation in Acute Stroke. J. Clin. Neurol. 2017, 13, 1–9. [Google Scholar] [CrossRef]
- Amarenco, P.; Bogousslaysky, J.; Caplan, L.R.; Donnan, G.A.; Hennerici, M.G. Classification of stroke subtypes. Cerebrovasc. Dis. 2009, 27, 493–501. [Google Scholar] [CrossRef]
- Taylor, R.S.; Brown, A.; Ebrahim, S.; Jolliffe, J.; Noorani, H.; Rees, K.; Skidmore, B.; Stone, J.A.; Thompson, D.R.; Oldridge, N. Exercise-based rehabilitation for patients with coronary heart disease: Systematic review and meta-analysis of randomized controlled trials. Am. J. Med. 2004, 116, 682–692. [Google Scholar] [CrossRef]
- Kraus, W.E.; Powell, K.E.; Haskell, W.L.; Janz, K.F.; Campbell, W.W.; Jakicie, J.M.; Troiano, R.P.; Sprow, K.; Torres, A.; Piercy, K.L. Physiccal Activity, All-Cause and Cardiovascular Mortality and Cardiovascular Disease. Med. Sci. Sports Exerc. 2019, 51, 1270–1281. [Google Scholar] [CrossRef]
- Ballesta-García, I.; Ruvio-Arias, J.A.; Ramos-Campo, D.J.; González-Moro, I.M.; Carrasco-Poyatos, M. High-Intensity Interval Training Dosage for Heart Failure and Coronary Artery Disease Cardiac Rehabilitation. A Systematic Review and Meta-analysis. Rev. Esp. Cardiol. 2019, 72, 233–243. [Google Scholar] [CrossRef]
- Petersen, B.; Hastings, B.; Gottschall, J. High Intensity Interval Cycling Improves Physical Fitness in Trained Adults. J. Fit. Res. 2016, 5, 39–47. [Google Scholar]
- Zheng, G.; Qiu, P.; Xia, R.; Lin, H.; Ye, B.; Tao, J.; Chen, L. Effect of aerobic exercise on inflammatory markers in healthy middle-aged and older adults: A systematic review and meta-analysis of randomized controlled trials. Front. Aging Neurosci. 2019, 26, 11–98. [Google Scholar] [CrossRef]
- Batacan, R.B.; Duncan, M.J.; Dalbo, V.J.; Tucker, P.S.; Fenning, A.S. Effects of high-intensity Interval training on cardiometabolic health: A systematic review and meta-analysis of intervention studies. BMJ 2017, 51, 494–503. [Google Scholar] [CrossRef]
- Noguera, C.; Sánchez-Horcajo, R.; Álvarez-Cazorla, D.; Cimadevilla, J.M. Ten years younger: Practice of chronic aerobic exercise improves attention and spatial memory functions in ageing. Exp. Gerontol. 2019, 117, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Bouchard, C.; Rankinen, T. Individual differences in response to regular physical activity. Med. Sci. Sports Exerc. 2001, 33, 446–451. [Google Scholar] [CrossRef] [PubMed]
- Hautala, A.; Kiviniemi, A.M.; Mäkikallio, T.H.; Kinnunen, H.; Nissilä, S.; Huikuri, H.V.; Tulppo, M.P. Individual differences in the responses to endurance and resistance training. Eur. J. Appl. Physiol. 2006, 96, 535–542. [Google Scholar] [CrossRef] [PubMed]
- Taylor, J.L.; Holland, D.J.; Spathis, J.G.; Beetham, K.S.; Wisloff, U.; Keating, S.E.; Coombes, J.S. Guidelines for the delivery and monitoring if high intensity interval training in clinical populations. Prog. Cardiovasc. Dis. 2019, 62, 140–146. [Google Scholar] [CrossRef]
- Schmitt, L.; Willis, S.; Fardel, A.; Coulmy, N.; Millet, G. Live high-train low guided by daily heart rate variability in elite Nordi-skiers. Eur. J. Appl. Physiol. 2018, 118, 419–428. [Google Scholar] [CrossRef]
- Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability. Standars of measurement, physiological interpretation, and clinical use. Circulation 1996, 93, 1043–1065. [CrossRef]
- Doctor Naranjo Orellana. Manual de Variabilidad de la Frecuencia Cardíaca. Available online: https://doctornaranjo.blogspot.com/2021/01/manual-de-variabilidad-de-la-frecuencia.html (accessed on 5 July 2022).
- Maver, J.; Strucl, M.; Accetto, R. Autonomic nervous system and microvascular alterations in normotensives with a family history of hypertension. Blood Press 2009, 13, 95–100. [Google Scholar] [CrossRef]
- Roach, D.; Wilson, W.; Ritchie, D.; Sheldon, R. Dissection of Long-Range Heart Rate Variability. J. Am. Coll. Cardiol. 2004, 43, 2271–2277. [Google Scholar] [CrossRef]
- Xie, L.; Mengjun, L.; Shijie, D.; Chaomin, L.; Wang, X.; Liu, B.; Mei, M.; Zhang, J. Impaired cardiorespiratory coupling in young normotensives with a family history of hypertension. J. Hypertens. 2018, 36, 2157–2167. [Google Scholar] [CrossRef]
- Aubert, A.E.; Verheyden, B. Neurocardiología: Un puente entre el cerebro y el corazón. In Fundamentos del Biofeedback de Variabilidad del Ritmo Cardiaco HRV.; Moss, D., Shaffer, F., Eds.; Association for Applied Psychophysiology and Biofeedback: Denver, CO, USA, 2016; pp. 69–74. [Google Scholar]
- Abreu, L.C.; Adami, F.; Vanderlei, F.M.; de Carvalho, T.D.; Moreno, I.L.; Pereira, V.X.; Valenti, V.E.; Sato, M.A. Heart rate variability in stroke patients submitted to an acute bout of aerobic exercise. Transl. Stroke Res. 2013, 4, 488–499. [Google Scholar] [CrossRef]
- Curtis, B.M.; O’Keefe, J.H. Autonomic tone as a cardiovascular risk factor: The dangers of chronic fight or flight. Mayo Clin. Proc. 2002, 77, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Del Pozo, J.M.; Gevirtz, R.N.; Scher, B.; Guarneri, E. Biofeedback treatment increases heart rate variability in patients with known coronary artery disease. Am. Heart J. 2003, 147, 545. [Google Scholar] [CrossRef] [PubMed]
- Mason, H.; Vandoni, M.; deBarbieri, G.; Codrons, E.; Ugargol, V.; Bernardi, L. Cardiovascular and Respiratory Effect of Yogic Slow Breathing in the Yoga Beginner: What Is the Best Approach? Evid. Based Complement. Altern. Med. 2013, 2013, 743504. [Google Scholar] [CrossRef] [PubMed]
- Nishime, E.O.; Cole, C.R.; Blackstone, E.H.; Pashkow, F.J.; Lauer, M.S. Heart rate recovery and treadmill exercise score as predictors of mortality in patients referred for exercise ECG. JAMA 2000, 284, 1392–1398. [Google Scholar] [CrossRef]
- López-Chicarro, J.; Vicente-Campos, D.; Cancino-López, J. Fisiología del Entrenamiento Aeróbico. Una Visión Integrada; Edición Médica Panamerica: Madrid, Spain, 2013. [Google Scholar]
- Hackney, A.C. Stress and the neuroendocrine system: The role of exercise as a stressor and modifier of stress. Expert Rev. Endocrinol. Metab. 2006, 1, 783–793. [Google Scholar] [CrossRef]
- Abreu, R.M.; Rehder-Santos, P.; Simões, R.P.; Catai, A.M. Can high-intensity interval training change cardiac autonomic control? A systematic review. Braz. J. Phys. Ther. 2019, 23, 279–289. [Google Scholar] [CrossRef]
- Chan, A.W.; Tetzlaff, J.M.; Gotzsche, P.C.; Altman, D.G.; Mann, H.; Berlin, J.A.; Dickersin, K.; Hrobjartsson, A.; Schulz, K.F.; Parulekar, W.R.; et al. SPIRIT 2013 explanation and elaboration: Guidance for protocols of clinical trails. BMJ 2013, 346, e7586. [Google Scholar] [CrossRef]
- Hoffmann, T.C.; Glasziou, P.P.; Boutron, I.; Milne, R.; Perera, R.; Moher, D.; Altman, D.G.; Barbour, V.; Macdonald, H.; Johnston, M.; et al. Better reporting of interventions: Template for intervention description and replication (TIDieR) checklist and guide. BMJ 2014, 348, g1687. [Google Scholar] [CrossRef]
- Gerlach, S.; Mermier, C.; Kravitz, L.; Degnan, J.; Dallek, L.; Zuhl, M. Comparison of Treadmill and Cycle Ergometer Exercise during Cardiac Rehabilitation: A meta-analysis. Arch. Phys. Med. Rehabil. 2020, 101, 690–699. [Google Scholar] [CrossRef]
- Taylor, R.D.; Oberle, E.; Durlak, J.A.; Weissberg, R.P. Promoting Positive youth development through School-Based Social and Emotional Learning Interventions: A Meta-Analysis of Follow-Up Effects. Child Dev. 2017, 88, 1156–1171. [Google Scholar] [CrossRef] [PubMed]
- Kiviniemi, A.M.; Hautala, A.J.; Kinnunen, H.; Tulppo, M.P. Endurance training guided individually by daily heart rate variability measurements. Eur. J. Apply Physiol. 2007, 101, 743–751. [Google Scholar] [CrossRef] [PubMed]
- Carrasco-Poyatos, M.; González-Quílez, A.; Martínez-González-Moro, I.; Granero-Gallegos, A. HRV-guided training for professional endurance athletes: A protocol for a cluster-randomized controlled trial. Int. J. Environ. Res. Public Health 2020, 17, 5465. [Google Scholar] [CrossRef] [PubMed]
- Carrasco-Poyatos, M.; González-Quílez, A.; Altini, M.; Granero-Gallegos, A. Heart rate variability-guided training in professional runners: Effects on perfomance and vagal modulation. Physiol. Behav. 2022, 244, 113654. [Google Scholar] [CrossRef]
- Seiler, S.; Haugen, O.; Kuffel, E. Autonomic recovery after exercise in trained athletes: Intensity and duration effects. Med. Sci. Sports Exerc. 2007, 39, 1366–1373. [Google Scholar] [CrossRef]
- Heyward, V. Evaluación de la Aptitud Física y Prescripción Del Ejercicio, 5th ed.; Editorial Médica Panamericana: Madrid, Spain, 2012. [Google Scholar]
- Taylor, J.; Keating, S.E.; Leveritt, M.D.; Holland, D.J.; Gomersall, S.R.; Coombes, J.S. Study protocol for the FITR Heart Study: Feasibility, safety, adherence, and efficacy of high intensity interval training in a hospital-initiated rehabilitation program for coronary heart disease. Contemp. Clin. Trials Commun. 2017, 13, 181–191. [Google Scholar] [CrossRef] [PubMed]
- Plews, D.J.; Scott, B.; Altini, M.; Wood, M.; Kilding, A.E.; Laursen, P.B. Comparison of Heart-Rate-Variability Recording with Smartphone Photoplethysmography, Polar H7 Chest Strap and Electrocardiography. Int. J. Sports Physiol. 2017, 12, 1324–1328. [Google Scholar] [CrossRef]
- Naranjo, J.; De la Cruz, B.; Sarabia, E.; De Hoyo, M.; y Domínguez-Cobo, S. Heart rate variability: A follow-up in elite soccer players throughout the season. Int. J. Sports Med. 2015, 94, 881–886. [Google Scholar] [CrossRef]
- Rikli, R.E.; Jones, C.J. Development and validation of criterion-referenced clinically relevant fitness standards for maintaining physical independence in later years. Gerontologist 2013, 53, 255–267. [Google Scholar] [CrossRef]
- Yusuf, S.; Hawken, S.; Ounpuu, S.; Bautista, L.; Grazia-Franxodi, M.; Commerford, P.; Lang, C.C.; Rumboldt, Z.; Onen, C.L.; Lisheng, L.; et al. Obesity and the risk of myocardial infarction in 27,000 participants from 52 countries: A case-control study. Lancet 2005, 366, 1640–1649. [Google Scholar] [CrossRef]
- Emdin, C.A.; Khera, A.V.; Natarajan, P.; Klarin, D.; Zekavat, S.M.; Hsiao, A.J.; Kathiresan, S. Genetex Association of Waist-to-Hip Ratio With Cardiometaboliz Traits, Type 2 Diabetes and Coronary Heart Disease. JAMA 2017, 317, 626–634. [Google Scholar] [CrossRef] [PubMed]
- Stewart, A.; Marfell-Jones, M.; Olds, T.; de Ridder, H. International Standars for Anthropometriz Assessment, International Society for Advancement of Kinanthropometry; International Society for the Advancement of Kinanthropometry: Lower Hutt, New Zealand, 2012. [Google Scholar]
- Savya, S.C.; Lamnisos, D.; Kafatos, A.G. Predicting cardiometabolic risk: Waist-to-height ratio or BMI. A meta-analysis. Diabetes Metad. Syndr. Obes. 2013, 6, 403–419. [Google Scholar] [CrossRef] [PubMed]
- Brotons-Cuizart, C.; Ribera-Solé, A.; Permanyer-Miralda, G.; Cascant-Castelló, P.; Moral-Peláez, I.; Pinar-Sopena, J.; Oldridge, N.B. Adaptation of the MacNew QLMI quality of life questionnaire after myocardial infarction to be used in the Spanish population. Clin. Med. 2000, 115, 768–771. [Google Scholar] [CrossRef]
- Valenti, L.; Lim, L.; Heller, R.F.; Knapp, J. An improved questionnaire for assessing quality of life after acute myocardial infarction. Qual. Life Res. 1996, 5, 151–161. [Google Scholar] [CrossRef] [PubMed]
- Tascón, L.; García-Moreno, L.M.; Cimadevilla, J.M. Almería spatial memory recognition test (ASMRT): Gender differences emerged in a new passive spatial task. Neurosci Lett. 2017, 651, 188–191. [Google Scholar] [CrossRef] [PubMed]
- Nori, R.; Piccardi, L.; Migliori, M.; Guidazzoli, A.; Frasca, F.; De Luca, D.; Giusberti, F. The virtual reality Walking Corsi Test. Comput. Hum. Behav. 2015, 48, 72–77. [Google Scholar] [CrossRef]
- Bowie, C.R.; Harvey, P.D. Administration and interpretation of the Trail Making Test. Nat. Protoc. 2006, 1, 2277–2281. [Google Scholar] [CrossRef]
- Villelabeitia-Jaureguizar, K.; Vicente-Campos, D.; Senen, A.B.; Jiménez, V.H.; Garrido-Lestache, M.E.B.; Chicharro, J.L. Effects of high-intensity interval versus continuous exercise training on post-exercise heart rate recovery in coronary heart-disease patients. Int. J. Cardiol. 2017, 244, 17–23. [Google Scholar] [CrossRef]
- Moholdt, T.T.; Amundsen, B.H.; Rustad, L.A.; Wahba, A.; Lovo, K.T.; Gullikstad, L.R.; Bye, A.; Skogvoll, E.; Wisloff, U.; Slordahl, S.A. Aerobic interval training versus continuous moderate exercise after coronary artery bypass surgery: A randomized study of cardiovascular effects and quality of life. Am. Heart J. 2009, 158, 1031–1037. [Google Scholar] [CrossRef]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive Statistics for Studies in Sports Medicine and Exercise Science. Med. Sci. Sport Exerc. 2009, 41, 3–13. [Google Scholar] [CrossRef] [Green Version]
Period | Week | Day/Date | Session | Time | Intensity | Continuous Training | ||
FP | 1 | Day 1 | S1 | 25′–30′ | 65–70% max HR RPE 6–7 | |||
Day 2 | S2 | |||||||
Day 3 | S3 | |||||||
2 | Day 4 | S4 | 30′–35′ | 70–75% max HR RPE 6–7 | ||||
Day 5 | S5 | |||||||
Day 6 | S6 | |||||||
Period | Week | Day/Date | Session | Time | Intensity | Intervals | ||
W | Rest | W | Rest | |||||
TP | 3 | Day 7 | S7 | 1′30″ | 1′30″ | 85% max HR RPE 8–10 | 60–70% max HR RPE 5–6 | 8 |
Day 8 | S8 | 8 | ||||||
Day 9 | S9 | 8 | ||||||
4 | Day 10 | S10 | 1′30″ | 1′30″ | 85% max HR RPE 8–10 | 60–70% max HR RPE 5–6 | 8 | |
Day 11 | S11 | 8 | ||||||
Day 12 | S12 | 8 | ||||||
5 | Day 13 | S13 | 1′30″ | 1′15″ | 90–95% max HR RPE 9–10 | 60–70% max HR RPE 5–6 | 8 | |
Day 14 | S14 | 8 | ||||||
Day 15 | S15 | 8 | ||||||
6 | Day 16 | S16 | 1′30″ | 1′15″ | 90–95% max HR RPE 9–10 | 60–70% max HR RPE 5–6 | 9 | |
Day 17 | S17 | 9 | ||||||
Day 18 | S18 | 9 | ||||||
7 | Day 19 | S19 | 1′30″ | 1′ | 95–100% max HR RPE 9–10 | 60–70% max HR RPE 5–6 | 9 | |
Day 20 | S20 | 9 | ||||||
Day 21 | S21 | 9 | ||||||
8 | Day 22 | S22 | 1′30″ | 1′ | 95–100% max HR RPE 9–10 | 60–70% max HR RPE 5–6 | 9 | |
Day 23 | S23 | 9 | ||||||
Day 24 | S24 | 9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carrasco-Poyatos, M.; Granero-Gallegos, A.; López-García, G.D.; López-Osca, R. HRV-Guided Training for Elders after Stroke: A Protocol for a Cluster-Randomized Controlled Trial. Int. J. Environ. Res. Public Health 2022, 19, 10868. https://doi.org/10.3390/ijerph191710868
Carrasco-Poyatos M, Granero-Gallegos A, López-García GD, López-Osca R. HRV-Guided Training for Elders after Stroke: A Protocol for a Cluster-Randomized Controlled Trial. International Journal of Environmental Research and Public Health. 2022; 19(17):10868. https://doi.org/10.3390/ijerph191710868
Chicago/Turabian StyleCarrasco-Poyatos, María, Antonio Granero-Gallegos, Ginés D. López-García, and Rut López-Osca. 2022. "HRV-Guided Training for Elders after Stroke: A Protocol for a Cluster-Randomized Controlled Trial" International Journal of Environmental Research and Public Health 19, no. 17: 10868. https://doi.org/10.3390/ijerph191710868
APA StyleCarrasco-Poyatos, M., Granero-Gallegos, A., López-García, G. D., & López-Osca, R. (2022). HRV-Guided Training for Elders after Stroke: A Protocol for a Cluster-Randomized Controlled Trial. International Journal of Environmental Research and Public Health, 19(17), 10868. https://doi.org/10.3390/ijerph191710868