Association between Polymorphism rs1799732 of DRD2 Dopamine Receptor Gene and Personality Traits among Cannabis Dependency
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Measures
2.3. Genotyping
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Center for Behavioral Health Statistics and Quality. Results from the 2010 National Survey on Drug Use and Health: Summary of National Findings; Center for Behavioral Health Statistics and Quality: Rockville, MD, USA, 2011.
- EMCDDA. 2009 Annual Report on the State of the Drugs Problem in Europe; EMCfDaDA: Lisbon, Portugal, 2009.
- Adlaf, E.M.; Begin, P.; Sawka, E.; Canadian Addiction Survey (CAS). A National Survey of Canadians’ Use of Alcohol and Other Drugs: Prevalence of Use and Related Harms: Detailed Report; Canadian Addiction Survey: Ottawa, ON, Canada, 2005. [Google Scholar]
- Grzywacz, A.; Barczak, W.; Chmielowiec, J.; Chmielowiec, K.; Suchanecka, A.; Trybek, G.; Masiak, J.; Jagielski, P.; Grocholewicz, K.; Rubiś, B. Contribution of Dopamine Transporter Gene Methylation Status to Cannabis Dependency. Brain Sci. 2020, 10, 400. [Google Scholar] [CrossRef] [PubMed]
- United Nations. World Drug Report 2020; United Nations: New York, NY, USA, 2020. [Google Scholar]
- Connor, J.P.; Stjepanović, D.; le Foll, B.; Hoch, E.; Budney, A.J.; Hall, W.D. Cannabis Use and Cannabis Use Disorder. Nat. Rev. Dis. Primers 2021, 7, 16. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. ICD-11 for Mortality and Morbidity Statistics 11th Revision) (WHO, Version 09/2020). Available online: https://icd.who.int/browse11/l-m/en (accessed on 5 April 2022).
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders (DSM-5); American Psychiatric Association: Washington, DC, USA, 2013; ISBN 0890425558. [Google Scholar]
- Degenhardt, L.; Charlson, F.; Ferrari, A.; Santomauro, D.; Erskine, H.; Mantilla-Herrara, A.; Whiteford, H.; Leung, J.; Naghavi, M.; Griswold, M.; et al. The Global Burden of Disease Attributable to Alcohol and Drug Use in 195 Countries and Territories, 1990–2016: A Systematic Analysis for the Global Burden of Disease Study 2016. Lancet Psychiatry 2018, 5, 987. [Google Scholar] [CrossRef]
- SAMHSA. Results from the 2010 National Survey on Drug Use and Health: Detailed Tables; SAMHSA: Rockville, MD, USA, 2011.
- World Health Organization (WHO). The Health and Social Effects of Nonmedical Cannabis Use; World Health Organization: Geneva, Switzerland, 2016. [Google Scholar]
- Ridenour, T.A.; Maldonado-Molina, M.; Compton, W.M.; Spitznagel, E.L.; Cottler, L.B. Factors Associated with the Transition from Abuse to Dependence among Substance Abusers: Implications for a Measure of Addictive Liability. Drug Alcohol Depend. 2005, 80, 1. [Google Scholar] [CrossRef] [PubMed]
- Bossong, M.G.; van Berckel, B.N.M.; Boellaard, R.; Zuurman, L.; Schuit, R.C.; Windhorst, A.D.; van Gerven, J.M.A.; Ramsey, N.F.; Lammertsma, A.A.; Kahn, R.S. Δ9-tetrahydrocannabinol induces dopamine release in the human striatum. Neuropsychopharmacology 2009, 34, 759–766. [Google Scholar] [CrossRef]
- Thiruchselvam, T.; Malik, S.; Le Foll, B. A review of positron emission tomography studies exploring the dopaminergic system in substance use with a focus on tobacco as a co-variate. Am. J. Drug Alcohol Abuse 2017, 43, 197–214. [Google Scholar] [CrossRef]
- Urban, N.B.; Slifstein, M.; Thompson, J.L.; Xu, X.; Girgis, R.R.; Raheja, S.; Haney, M.; Abi-Dargham, A. Dopamine release in chronic cannabis users: A [11c]raclopride positron emission tomography study. Biol. Psychiatry 2012, 71, 677–683. [Google Scholar] [CrossRef]
- van de Giessen, E.; Weinstein, J.J.; Cassidy, C.M.; Haney, M.; Dong, Z.; Ghazzaoui, R.; Ojeil, N.; Kegeles, L.S.; Xu, X.; Vadhan, N.P.; et al. Deficits in striatal dopamine release in cannabis dependence. Mol. Psychiatry 2017, 22, 68–75. [Google Scholar] [CrossRef]
- Volkow, N.D.; Wang, G.J.; Telang, F.; Fowler, J.S.; Alexoff, D.; Logan, J.; Jayne, M.; Wong, C.; Tomasi, D. Decreased dopamine brain reactivity in marijuana abusers is associated with negative emotionality and addiction severity. Proc. Natl. Acad. Sci. USA 2014, 111, E3149–E3156. [Google Scholar] [CrossRef]
- Bloomfield, M.A.; Morgan, C.J.A.; Egerton, A.; Kapur, S.; Curran, H.V.; Howes, O.D. Dopaminergic function in cannabis users and its relationship to cannabis-induced psychotic symptoms. Biol. Psychiatry 2014, 75, 470–478. [Google Scholar] [CrossRef]
- Bloomfield, M.A.; Morgan, C.J.; Kapur, S.; Curran, H.V.; Howes, O.D. The link between dopamine function and apathy in cannabis users: An [18F]-DOPA PET imaging study. Psychopharmacology 2014, 231, 2251–2259. [Google Scholar] [CrossRef] [PubMed]
- Ferland, J.M.N.; Hurd, Y.L. Deconstructing the neurobiology of cannabis use disorder. Nat. Neurosci. 2020, 23, 600–610. [Google Scholar] [CrossRef] [PubMed]
- Masiak, J.; Chmielowiec, J.; Chmielowiec, K.; Grzywacz, A. DRD4, DRD2, DAT1, and ANKK1 Genes Polymorphisms in Patients with Dual Diagnosis of Polysubstance Addictions. J. Clin. Med. 2020, 9, 3593. [Google Scholar] [CrossRef]
- Calabria, B.; Degenhardt, L.; Briegleb, C.; Vos, T.; Hall, W.; Lynskey, M.; Callaghan, B.; Rana, U.; McLaren, J. Systematic Review of Prospective Studies Investigating “Remission” from Amphetamine, Cannabis, Cocaine or Opioid Dependence. Addict. Behav. 2010, 35, 741–749. [Google Scholar] [CrossRef] [PubMed]
- Freeman, T.P.; Winstock, A.R. Examining the Profile of High-Potency Cannabis and Its Association with Severity of Cannabis Dependence. Psychol. Med. 2015, 45, 3181. [Google Scholar] [CrossRef]
- Agrawal, A.; Lynskey, M.T.; Bucholz, K.K.; Martin, N.G.; Madden, P.A.F.; Heath, A.C. Contrasting Models of Genetic Co-Morbidity for Cannabis and Other Illicit Drugs in Adult Australian Twins. Psychol. Med. 2007, 37, 49–60. [Google Scholar] [CrossRef]
- von Sydow, K.; Lieb, R.; Pfister, H.; Höfler, M.; Wittchen, H.U. What Predicts Incident Use of Cannabis and Progression to Abuse and Dependence? A 4-Year Prospective Examination of Risk Factors in a Community Sample of Adolescents and Young Adults. Drug Alcohol Depend. 2002, 68, 49–64. [Google Scholar] [CrossRef]
- DRD2 Gene-GeneCards|DRD2 Protein|DRD2 Antibody. Available online: https://www.genecards.org/cgi-bin/carddisp.pl?gene=DRD2&keywords=DRD2 (accessed on 11 April 2022).
- Chmielowiec, J.; Chmielowiec, K.; Suchanecka, A.; Trybek, G.; Mroczek, B.; Małecka, I.; Grzywacz, A. Associations Between the Dopamine D4 Receptor and DAT1 Dopamine Transporter Genes Polymorphisms and Personality Traits in Addicted Patients. Int. J. Environ. Res. Public Health 2018, 15, 2076. [Google Scholar] [CrossRef]
- Arinami, T.; Gao, M.; Hamaguchi, H.; Toru, M. A functional polymorphism in the promoter region of the dopamine D2 receptor gene is associated with schizophrenia. Hum. Mol. Genet. 1997, 6, 577–582. [Google Scholar] [CrossRef]
- Jönsson, E.G.; Nöthen, M.M.; Grünhage, F.; Farde, L.; Nakashima, Y.; Propping, P.; Sedvall, G.C. Polymorphisms in the dopamine D2 receptor gene and their relationships to striatal dopamine receptor density of healthy volunteers. Mol. Psychiatry 1999, 4, 290–296. [Google Scholar] [CrossRef] [Green Version]
- Voisey, J.; Swagell, C.D.; Hughes, I.P.; van Daal, A.; Noble, E.P.; Lawford, B.R.; Young, R.M.; Morris, C.P. A DRD2 and ANKK1 haplotype is associated with nicotine dependence. Psychiatry Res. 2012, 196, 285–289. [Google Scholar] [CrossRef] [PubMed]
- Grzywacz, A.; Jasiewicz, A.; Małecka, I.; Suchanecka, A.; Grochans, E.; Karakiewicz, B.; Samochowiec, A.; Bie ´nkowski, P.; Samochowiec, J. Influence of DRD2 and ANKK1 polymorphisms on the manifestation of withdrawal syndrome symptoms in alcohol addiction. Pharmacol. Rep. 2012, 64, 1126–1134. [Google Scholar] [CrossRef]
- Jabłoński, M.; Jasiewicz, A.; Kucharska-Mazur, J.; Samochowiec, J.; Bienkowski, P.; Mierzejewski, P.; Samochowiec, A. The effect of selected polymorphisms of the dopamine receptor gene DRD2 and the ANKK-1 on the preference of concentrations of sucrose solutions in men with alcohol dependence. Psychiatr. Danub. 2013, 25, 371–378. [Google Scholar] [PubMed]
- Samochowiec, J.; Kucharska-Mazur, J.; Grzywacz, A.; Jabłoński, M.; Rommelspacher, H.; Samochowiec, A.; Sznabowicz, M.; Horodnicki, J.; Sagan, L.; Pełka-Wysiecka, J. Family-based and case-control study of DRD2, DAT, 5HTT, COMT genes polymorphisms in alcohol dependence. Neurosci. Lett. 2006, 410, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Suchanecka, A.; Chmielowiec, J.; Chmielowiec, K.; Masiak, J.; Sipak-Szmigiel, O.; Sznabowicz, M.; Czarny, W.; Michałowska-Sawczyn, M.; Trybek, G.; Grzywacz, A. Dopamine Receptor DRD2 Gene rs1076560, Personality Traits and Anxiety in the Polysubstance Use Disorder. Brain Sci. 2020, 10, 262. [Google Scholar] [CrossRef]
- Chen, D.; Liu, F.; Shang, Q.; Song, X.; Miao, X.; Wang, Z. Association between polymorphisms of DRD2 and DRD4 and opioid dependence: Evidence from the current studies. Am. J. Med. Genet B Neuropsychiatr. Genet. 2011, 156B, 661–670. [Google Scholar] [CrossRef]
- Sutin, A.R.; Terracciano, A.; Deiana, B.; Uda, M.; Schlessinger, D.; Lakatta, E.G.; Costa, P.T. Cholesterol, Triglycerides, and the Five-Factor Model of Personality. Biol. Psychol. 2010, 84, 186. [Google Scholar] [CrossRef]
- Terracciano, A.; Esko, T.; Sutin, A.R.; de Moor, M.H.M.; Meirelles, O.; Zhu, G.; Tanaka, T.; Giegling, I.; Nutile, T.; Realo, A.; et al. Meta-Analysis of Genome-Wide Association Studies Identifies Common Variants in CTNNA2 Associated with Excitement-Seeking. Transl. Psychiatry 2011, 1, e49. [Google Scholar] [CrossRef]
- Costa, P.T.; McCrae, R.R. The Revised NEO Personality Inventory (NEO-PI-R). In The SAGE Handbook of Personality Theory and Assessment: Volume 2-Personality Measurement and Testing; Sage Publications, Inc.: Thousand Oaks, CA, USA, 2008; pp. 179–198. [Google Scholar] [CrossRef]
- DeYoung, C.G.; Hirsh, J.B.; Shane, M.S.; Papademetris, X.; Rajeevan, N.; Gray, J.R. Testing Predictions From Personality Neuroscience: Brain Structure and the Big Five. Psychol. Sci. 2010, 21, 820. [Google Scholar] [CrossRef]
- Chmielowiec, J.; Chmielowiec, K.; Masiak, J.; Pawłowski, T.; Larysz, D.; Grzywacz, A. Analysis of Relationships between DAT1 Polymorphism Variants, Personality Dimensions, and Anxiety in New Psychoactive Substance (Designer Drug) (NPS) Users. Genes 2021, 12, 1977. [Google Scholar] [CrossRef]
- Grzywacz, A.; Suchanecka, A.; Chmielowiec, J.; Chmielowiec, K.; Szumilas, K.; Masiak, J.; Balwicki, Ł.; Michałowska-Sawczyn, M.; Trybek, G. Personality Traits or Genetic Determinants—Which Strongly Influences E-Cigarette Users? Int. J. Environ. Res. Public Health 2020, 17, 365. [Google Scholar] [CrossRef] [PubMed]
- Kendler, K.S.; Karkowski, L.M.; Neale, M.C.; Prescott, C.A. Illicit Psychoactive Substance Use, Heavy Use, Abuse, and Dependence in a US Population-Based Sample of Male Twins. Arch. Gen. Psychiatry 2000, 57, 261–269. [Google Scholar] [CrossRef] [PubMed]
- Grove, W.M.; Eckert, E.D.; Heston, L.; Bouchard, T.J.; Segal, N.; Lykken, D.T. Heritability of Substance Abuse and Antisocial Behavior: A Study of Monozygotic Twins Reared Apart. Biol. Psychiatry 1990, 27, 1293–1304. [Google Scholar] [CrossRef]
- Dash, G.F.; Martin, N.G.; Slutske, W.S. Big Five personality traits and illicit drug use: Specificity in trait- drug associa-tions. Psychol Addict Behav. 2021, 11, adb0000793. [Google Scholar] [CrossRef] [PubMed]
- Jutras-Aswad, D.; Jacobs, M.M.; Yiannoulos, G.; Roussos, P.; Bitsios, P.; Nomura, Y.; Liu, X.; Hurd, Y.L. Cannabis- dependence risk relates to synergism between neuroticism proenkephalin SNOs associated with amygdala gene expression: Case control study. PLoS ONE 2012, 7, e39243. [Google Scholar] [CrossRef] [PubMed]
- Merikangas, K.R.; Swendsen, J.D.; Preisig, M.A.; Chazan, R.Z. Psychopathology and Temperament in Parents and Offspring: Results of a Family Study. J. Affect Disord. 1998, 51, 63–74. [Google Scholar] [CrossRef]
- Ersche, K.D.; Turton, A.J.; Chamberlain, S.R.; Müller, U.; Bullmore, E.T.; Robbins, T.W. Cognitive Dysfunction and Anxious-Impulsive Personality Traits Are Endophenotypes for Drug Dependence. Am. J. Psychiatry 2012, 169, 926. [Google Scholar] [CrossRef]
- Pietras, T.; Witusik, A.; Panek, M.; Szemraj, J.; Górski, P. Anxiety, Depression and Methods of Stress Coping in Patients with Nicotine Dependence Syndrome. Med. Sci. Monit. 2011, 17, CR272. [Google Scholar] [CrossRef]
- Hyman, S.M.; Sinha, R. Stress-Related Factors in Cannabis Use and Misuse: Implications for Prevention and Treatment. J. Subst. Abuse Treat. 2009, 36, 400. [Google Scholar] [CrossRef] [Green Version]
- Terracciano, A.; Löckenhoff, C.E.; Crum, R.M.; Bienvenu, O.J.; Costa, P.T. Five-Factor Model Personality Profiles of Drug Users. BMC Psychiatry 2008, 8, 22. [Google Scholar] [CrossRef]
- Soler, J.; Arias, B.; Moya, J.; Ilbaniez, M.I.; Ortet, G.; Fananas, L.; Fatjo-Vilas, M. The interaction between the ZNF804A gene and cannabis use on the risk of psychosis in a non-clinical sample. Prog. Neuropsychopharmacol. Biol. Psychiatry 2019, 89, 174–180. [Google Scholar] [CrossRef]
- Yao, J.; Pan, Y.; Ding, M.; Pang, H.; Wang, B. Association between DRD2 (rs1799732 and rs1801028) and ANKK1 (rs1800497) polymorphisms and schizophrenia: A meta- analysis. Am. J. Med. Genet B Neuropsychiatr. Genet. 2015, 168B, 1–13. [Google Scholar] [CrossRef]
- Filbey, F.M.; Claus, E.D.; Morgan, M.; Forester, G.R.; Hutchison, K. Dopaminergic genes modulate response inhibition in alcohol abusing adults. Addict Biol. 2012, 17, 1046–1056. [Google Scholar] [CrossRef]
- le Bon, O.; Basiaux, P.; Streel, E.; Tecco, J.; Hanak, C.; Hansenne, M.; Ansseau, M.; Pelc, I.; Verbanck, P.; Dupont, S. Personality Profile and Drug of Choice; a Multivariate Analysis Using Cloninger’s TCI on Heroin Addicts, Alcoholics, and a Random Population Group. Drug Alcohol Depend. 2004, 73, 175–182. [Google Scholar] [CrossRef]
- Cloninger, C.R.; Svrakic, D.M.; Przybeck, T.R. A Psychobiological Model of Temperament and Character. Arch. Gen. Psychiatry 1993, 50, 975–990. [Google Scholar] [CrossRef]
- 3Ebstein, R.P.; Novick, O.; Umansky, R.; Priel, B.; Osher, Y.; Blaine, D.; Bennett, E.R.; Nemanov, L.; Katz, M.; Belmaker, R.H. Dopamine D4 Receptor (D4DR) Exon III Polymorphism Associated with the Human Personality Trait of Novelty Seeking. Nat. Genet 1996, 12, 78–80. [Google Scholar] [CrossRef]
- Koob, G.F. Neurobiology of Addiction. Toward the Development of New Therapies. Ann. N. Y. Acad. Sci. 2000, 909, 170–185. [Google Scholar] [CrossRef]
- Mahoney, J.J.; Thompson-Lake, D.G.Y.; Cooper, K.; Verrico, C.D.; Newton, T.F.; de La Garza, R. A Comparison of Impulsivity, Depressive Symptoms, Lifetime Stress and Sensation Seeking in Healthy Controls versus Participants with Cocaine or Methamphetamine Use Disorders. J. Psychopharmacol. 2015, 29, 50–56. [Google Scholar] [CrossRef] [PubMed]
- 3Ismael, F.; Baltieri, D.A. Role of Personality Traits in Cocaine Craving throughout an Outpatient Psychosocial Treatment Program. Rev. Bras. Psiquiatr. 2014, 36, 24–31. [Google Scholar] [CrossRef] [Green Version]
- Jang, K.L.; Livesley, W.J.; Vernon, P.A. Heritability of the Big Five Personality Dimensions and Their Facets: A Twin Study. J. Pers. 1996, 64, 577–592. [Google Scholar] [CrossRef]
- Gorwood, P.; le Strat, Y.; Ramoz, N.; Dubertret, C.; Moalic, J.M.; Simonneau, M. Genetics of Dopamine Receptors and Drug Addiction. Hum. Genet. 2012, 131, 803–822. [Google Scholar] [CrossRef] [PubMed]
Hardy–Weinberg Equilibrium Calculator, Including Analysis for Ascertainment Bias | Observed (Expected) | Allele Freq | χ2 (p Value) | |
---|---|---|---|---|
DRD2 rs1799732 Cannabis Dependency n = 214 | ins/ins | 158 (155.64) | p (ins) = 0.853 q (del) = 0.147 | 1.656 (>0.05) |
ins/del | 49 (53.73) | |||
del/del | 7 (4.64) | |||
DRD2 rs1799732 control n = 301 | ins/ins | 241 (240.40) | p (ins) = 0.894 q (del) = 0.106 | 0.132 (>0.05) |
ins/del | 56 (57.20) | |||
del/del | 4 (3.40) |
DRD2 rs1799732 | |||||
---|---|---|---|---|---|
Genotypes | Alleles | ||||
Del/Del n (%) | Ins/Ins n (%) | Ins/Del n (%) | Del n (%) | Ins n (%) | |
Cannabis Dependency n = 214 | 7 (3.27%) | 158 (73.83%) | 49 (22.90%) | 63 (14.72%) | 365 (85.28%) |
Control n = 301 | 4 (1.33%) | 241 (80.07%) | 56 (18.60%) | 64 (10.63%) | 538 (89.37%) |
χ2 (p value) | 3.966 0.138 | 3.870 (0.049) * |
STAI/NEO Five-Factor Inventory | Cannabis Dependency (n = 214) | Control (n = 301) | Z | (p-Value) |
---|---|---|---|---|
STAI trait/scale | 7.10 ± 2.35 | 5.16 ± 2.18 | 8.619 | 0.0000 * |
STAI state/scale | 5.82 ± 2.44 | 4.69 ± 2.14 | 5.418 | 0.0000 * |
Neuroticism/scale | 6.70 ± 2.25 | 4.68 ± 2.02 | 9.472 | 0.0000 * |
Extraversion/scale | 5.66 ± 2.15 | 6.37 ± 1.97 | −3.667 | 0.0002 * |
Openness/scale | 5.04 ± 2.00 | 4.53 ± 1.61 | 2.835 | 0.0045 * |
Agreeability/scale | 4.29 ± 1.97 | 5.60 ± 2.09 | −6.825 | 0.0000 * |
Conscientiousness/scale | 5.49 ± 2.25 | 6.08 ± 2.15 | −2.845 | 0.0044 * |
STAI/NEO Five-Factor Inventory | Group | DRD2 Gene rs1799732 | ANOVA | |||||
---|---|---|---|---|---|---|---|---|
Del/Del n = 11 M ± SD | Ins/Ins n = 397 M ± SD | Ins/Del n = 104 M ± SD | Factor | F (p Value) | ɳ2 | Power (Alfa = 0.05) | ||
STAI trait/scale | Cannabinoid dependence (CD); n = 214 | 7.57 ± 1.81 | 6.95 ± 2.33 | 7.52 ± 2.45 | Intercept CD/control DRD2 CD/control × DRD2 | F1,507 = 597.45 (p < 0.0001) F1,507 = 27.02 (p < 0.0001) F2,507 = 0.16 (p = 0.844) F2,507 = 4.39 (p = 0.013) * | 0.541 0.051 0.001 0.017 | 1.000 0.999 0.076 0.757 |
Control; n = 301 | 4.50 ± 1.91 | 5.33 ± 2.16 | 4.48 ± 2.17 | |||||
STAI state/scale | Cannabinoid dependence (CD); n = 214 | 6.57 ± 2.15 | 5.71 ± 2.41 | 6.08 ± 2.62 | Intercept CD/control DRD2 CD/control × DRD2 | F1,507 = 430.42 (p < 0.0001) F1,507 = 12.60 (p < 0.001) F2,507 = 0.04 (p = 0.962) F2,507 = 1.48 (p = 0.228) | 0.459 0.024 0.0001 0.006 | 1.000 0.943 0.056 0.317 |
C: Control; n = 301 | 3.75 ± 1.50 | 4.75 ± 2.18 | 4.50 ± 2.02 | |||||
Neuroticism/scale | Cannabinoid dependence (CD); n = 214 | 6.85 ± 1.77 | 6.61 ± 2.19 | 6.98 ± 2.50 | Intercept CD/control DRD2 CD/control × DRD2 | F1,507 = 546.67 (p < 0.0001) F1,507 = 32.57 (p < 0.0001) F2,507 = 0.45 (p = 0.637) F2,507 = 1.90 (p = 0.151) | 0.519 0.060 0.002 0.007 | 1.000 0.999 0.123 0.395 |
Control; n = 301 | 3.25 ± 2.06 | 4.76 ± 2.01 | 4.41 ± 2.02 | |||||
Extraversion/scale | Cannabinoid dependence (CD); n = 214 | 4.28 ± 2.43 | 5.65 ± 2.17 | 5.87 ± 2.03 | Intercept CD/control DRD2 CD/control × DRD2 | F1,507 = 717.55 (p < 0.0001) F1,507 = 12.53 (p = 0.0004) F2,507 = 0.59 (p = 0.553) F2,507 = 2.34 (p = 0.097) | 0.586 0.024 0.002 0.009 | 1.000 0.942 0.148 0.474 |
Control; n = 301 | 7.75 ± 0.50 | 6.30 ± 1.98 | 6.57 ± 1.98 | |||||
Openness/scale | Cannabinoid dependence (CD); n = 214 | 4.57 ± 2.23 | 4.95 ± 2.02 | 5.37 ± 1.91 | Intercept CD/control DRD2 CD/control × DRD2 | F1,507 = 565.02 (p < 0.0001) F1,507 = 1.87 (p = 0.171) F2,507 = 0.62 (p = 0.535) F2,507 = 0.77 (p = 0.465) | 0.527 0.004 0.002 0.003 | 1.000 0.276 0.154 0.180 |
Control; n = 301 | 4.25 ± 2.99 | 4.55 ± 1.59 | 4.48 ± 1.61 | |||||
Agreeability/scale | Cannabinoid dependence (CD); n = 214 | 5.00 ± 2.23 | 4.30 ± 2.04 | 4.17 ± 1.69 | Intercept CD/control DRD2 CD/control × DRD2 | F1,507 = 583.61 (p < 0.0001) F1,507 = 17.50 (p < 0.0001) F2,507 = 4.33 (p = 0.013) * F2,507 = 1.39 (p = 0.249) | 0.535 0.033 0.017 0.005 | 1.000 0.987 0.751 0.299 |
Control; n = 301 | 8.25 ± 2.36 | 5.64 ± 2.11 | 5.21 ± 1.85 | |||||
Conscientiousness/scale | Cannabinoid dependence (CD); n = 214 | 6.14 ± 1.34 | 5.45 ± 2.32 | 5.54 ± 2.13 | Intercept CD/control DRD2 CD/control × DRD2 | F1,507 = 629.99 (p < 0.0001) F1,507 = 2.61 (p = 0.107) F2,507 = 1.04 (p = 0.351) F2,507 = 0.09 (p = 0.917) | 0.554 0.005 0.004 0.0003 | 1.000 0.364 0.233 0.063 |
Control; n = 301 | 7.25 ± 2.99 | 6.02 ± 2.11 | 6.21 ± 2.25 |
DRD2 Gene rs1799732 and STAI Trait Scale | ||||||
---|---|---|---|---|---|---|
{1} M = 7.57 | {2} M = 6.96 | {3} M = 7.52 | {4} M = 4.50 | {5} M = 5.33 | {6} M = 4.48 | |
Cannabinoid dependence del/del {1} | 1.0000 | 1.0000 | 0.4344 | 0.1396 | 0.0093 * | |
Cannabinoid dependence ins/ins {2} | 1.0000 | 0.4604 | 0.0000 * | 0.0000 * | ||
Cannabinoid dependence ins/del {3} | 0.1462 | 0.0000 * | 0.0000 * | |||
Control del/del {4} | 1.0000 | 1.0000 | ||||
Control ins/ins {5} | 0.1611 | |||||
Control ins/del {6} |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chmielowiec, J.; Chmielowiec, K.; Masiak, J.; Śmiarowska, M.; Strońska-Pluta, A.; Dziedziejko, V.; Grzywacz, A. Association between Polymorphism rs1799732 of DRD2 Dopamine Receptor Gene and Personality Traits among Cannabis Dependency. Int. J. Environ. Res. Public Health 2022, 19, 10915. https://doi.org/10.3390/ijerph191710915
Chmielowiec J, Chmielowiec K, Masiak J, Śmiarowska M, Strońska-Pluta A, Dziedziejko V, Grzywacz A. Association between Polymorphism rs1799732 of DRD2 Dopamine Receptor Gene and Personality Traits among Cannabis Dependency. International Journal of Environmental Research and Public Health. 2022; 19(17):10915. https://doi.org/10.3390/ijerph191710915
Chicago/Turabian StyleChmielowiec, Jolanta, Krzysztof Chmielowiec, Jolanta Masiak, Małgorzata Śmiarowska, Aleksandra Strońska-Pluta, Violetta Dziedziejko, and Anna Grzywacz. 2022. "Association between Polymorphism rs1799732 of DRD2 Dopamine Receptor Gene and Personality Traits among Cannabis Dependency" International Journal of Environmental Research and Public Health 19, no. 17: 10915. https://doi.org/10.3390/ijerph191710915
APA StyleChmielowiec, J., Chmielowiec, K., Masiak, J., Śmiarowska, M., Strońska-Pluta, A., Dziedziejko, V., & Grzywacz, A. (2022). Association between Polymorphism rs1799732 of DRD2 Dopamine Receptor Gene and Personality Traits among Cannabis Dependency. International Journal of Environmental Research and Public Health, 19(17), 10915. https://doi.org/10.3390/ijerph191710915