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1. Introduction

With advances in medical care and efforts to care for continually smaller and younger
preterm infants, the gestational age of viability has decreased, including as young as 21
or 22 weeks of gestation [1]. While many extremely preterm infants (born <28 weeks
gestation) [2] may be considered extremely low birth weight (ELBW, <1000 g), those born
at the youngest ages often fall into the subcategory of “micropremie” (<750 g). Regarding
the care of micropremies or those born in the earliest half of the extremely preterm age
category (<25 weeks gestation), clinical care teams must consider the optimal approaches
to managing nutritional support. Nutrition support and growth are critical components
in the care of these vulnerable infants [3], so nutrition management practices must focus
on two factors: (1) the provision of adequate nutrition to support “normal” growth and
development, and (2) the prevention of nutrition-related complications.

Though extremely preterm or ELBW infants are at a high risk for nutrition-related
complications, comprehensive evidence-based nutritional interventions for this popu-
lation have not yet been established and endorsed by national working groups. Thus,
evidence-based nutrition research within a micropremie patient population grows ever
more deficient as younger infants are cared for in the neonatal intensive care unit (NICU)
setting. Consequently, clinical care teams aiming to develop nutrition support protocols
for this extreme subcategory must consider if nutrition practices for a broader population
of extremely preterm or ELBW infants are fully applicable at the smallest weights and
periviable gestational ages. As recognized within the World Review of Nutrition and
Dietetics Nutritional Care for Preterm Infants, “the optimal nutrition of the critically ill VLBW
(very low birth weight, <1500 g) infant is largely unknown” [4], highlighting a deeper lack
in the smallest infants. It is recognized that “consensus” or “expert” opinions may exist
regarding the optimal strategies for nutritional management in preterm infants [4]. While
guiding in the presence of conflicting or limited data, these opinions may not be solely
evidence-based nor adequately compare the immediate or life-long physical or develop-
mental effects resulting from specific nutritional interventions. Thus, more evidence-based
research is necessary to determine the optimal nutritional interventions for the population
of infants born micropremie (<750 g) or at gestational ages <25 weeks.

2. Physiologic Considerations

Why do we consider this subcategory of preterm infants unique? Wide proportional differ-
ences exist among a categorized population of extremely preterm and ELBW infants. For
an example from the 2013 Fenton preterm infant growth chart, the average size (z-score = 0)
ranges from ~480 g for a female at 22 0/7 weeks to ~950 g for a male at 27 0/7 weeks [5].
While both instances are generalized as extremely preterm and ELBW, this spans a 2×
increase in body size and a more than 20% longer duration of intrauterine growth and
development before birth. Thus, we must consider if these relatively large proportional
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differences indicate the need for more tailored enteral and parenteral nutrition management
strategies within the subcategories of the extremely preterm and ELBW population.

These considerations are stressed when reviewing data on fetal lung development.
Many extremely preterm infants will be in or transitioning to the saccular stage of lung
development; however, infants born <24 weeks will still be in the canalicular stage, with
little to no production of surfactant [6]. Additional focused research may allow us to
identify whether macronutrient- or micronutrient-related needs are altered during these
earliest stages of lung development. Furthermore, it may be theorized that the lung tissue
during the canalicular phase is fragile and that inflammatory exposures (pre or postnatally)
and alterations to its physical structure caused by life-saving medical interventions may
alter the normal trajectory of development, therefore contributing to a later development
of bronchopulmonary dysplasia. Hence, future research may help determine whether
lung tissue integrity at these earliest developmental stages can be preserved or whether
inflammatory damage can be lessened by specific early-life nutritional interventions, such
as the supplementation of Vitamin A [7] or antioxidative micronutrients [8].

How might the developmental stages of other organs—such as the intestinal tract—impact
nutrition support strategies in this subset of preterm infants? Future research will guide us
more concretely on these answers, but the growth of other organs besides the lungs is rapid
and predisposition in early life to their proper or impaired functioning will lead to healthy
or diseased states in later life. A review of the prolific growth and organogenesis in fetuses
is truly astonishing and must be considered in the context of nutritional research and clinical
care in an extreme subpopulation. For example, (1) the fetal brain is estimated to grow at a
rate of 250,000 nerve cells per minute to achieve more than 100 billion nerve cells by the time
of normal term birth [9], and (2) the gastrointestinal tract contains hundreds of millions of
neurons [10] and grows from approximately 125 to 200 to 275 cm from 20 weeks to 30 weeks
and finally to term gestational age [11]. Consequently, an inappropriate delivery of nutrition
during these critical periods impairs the potential for proper or complete organ development
and function. For example, an insufficient level of vitamin A during fetal development may
be associated with a smaller kidney size [12,13] or a lower number of accrued nephrons [14],
whereas elevated levels of vitamin D may result in the development of nephrocalcinosis and
hypercalciuria [15]. These outcomes demonstrate the “U” shaped curve of nutritional status,
with the risk increasing in deficient or excess states.

In addition to the tailored need for macronutrients, the micronutrient requirements
immediately at birth and over the course of physiological development currently have the
potential to be more closely evaluated. First, many physiologic changes that occur through-
out hospitalization in the NICU may alter how these nutrients are metabolized, utilized,
and stored within the body. For example, fat-soluble micronutrients (e.g., vitamins A/E/D
and carotenoids) that are not circulating in the bloodstream can be stored in adipose tissue.
This concept must be considered, as the percentage of body fat in a 1000 g infant changes
dramatically from approximately 2% at birth [16] to roughly 16% at the term-corrected
age and 24% at 52 weeks gestational age [17]. Second, the development of comorbidities,
inflammatory and oxidative exposures, and the use of medication while in the NICU may
further alter metabolism and the use of micronutrients [4]. Third, the effectiveness of past
research on micronutrient supplementation (e.g., vitamin A) must be considered in the dual
context of modern medicine and the effectiveness within younger surviving gestational
ages. For example, Tyson et al., who provided intramuscular vitamin A in their evaluation
to lessen the risk for developing bronchopulmonary dysplasia, reported initial results that
were published more than two decades ago, and the average birth demographics of the
subjects were larger than a micropremie and older than 25 weeks at 770 g and 26.8 weeks
gestation [18]. While studies continue to evaluate the optimal vitamin A dose (per dose vs.
dose/kilogram) and route (enteral vs. intramuscular) for administration [7], the effect of
accumulative doses must be evaluated in a more significantly underdeveloped population.
Accumulative doses must account for the amount received through supplementation, but
also from parenteral nutrition or enteral feeding—in addition to the baseline nutrient status,
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which can vary widely at delivery [19]. Considering parenteral nutrition, ELBW infants
receive a lower daily parenteral multivitamin dosing (1.5 milliliters daily = 690 IU/day)
compared to those weighing >1000 g (3.25 milliliters daily = 1495 IU/day) [20]. Finally, the
statuses of non-essential nutrients must be evaluated, such as those of carotenoids lutein
and zeaxanthin, which are found in fetal tissue as early as 20 weeks gestation [21]. Past
research in preterm infants indicates a trend toward favorable clinical outcomes when pro-
vided via enteral supplementation during NICU hospitalization [22]. However, continued
research is needed to determine the full physiological effects during fetal development
according to the method of delivery, the timing of delivery, and the quantity of intake.

3. Current Evidence

Why do we still have nutrition-related questions about this smallest preterm population?
Many quandaries exist regarding the ideal theoretical versus feasible goals in providing
nutritional care to micropremie and <25 weeks gestation infants, particularly in the first
week/s of life. For example, the research on ELBW infants indicates that a higher energy
provision may reduce the risk of developing comorbidities such as bronchopulmonary
dysplasia and retinopathy of prematurity [23–25]. Yet in clinical practice, the smallest and
most preterm infants may exhibit hyperglycemia with an increased parenteral glucose
infusion due to stress from extrauterine adaptation, a decreased insulin release, and an
increased insulin resistance [4]. While an increased energy provision may decrease the
risk of developing certain comorbidities [23–25], hyperglycemia may increase the risk of
inflammation, mortality, and the development of alternative morbidities such as worsened
neurodevelopment and late-onset sepsis [4]. Hence, more research is needed to determine
whether early alterations in nutrition metabolism result from lower initial energy needs
during an infants’ adaptation to extrauterine life, or whether an extrauterine stress response
simply causes the initial impaired nutrient utilization despite the high nutritional needs.

We have yet to determine the most optimal management strategies for enteral and
parenteral nutrition with respect to the timing of initiation, the supplemental dosing
quantity, the substrate used, and the method of advancement due to the variability or lack
of evidence-based research. As previously acknowledged, the research on the extremely
preterm or ELBW population is less concrete compared to larger infants, such as those born
VLBW (<1500 g) or even at low birth weights (<2500 g). This is likely due to the smaller
number of ELBW infant births, the inclusion of growth-restricted infants who are ELBW
but not extremely preterm, the general variability in acuity after birth, and the increased
challenges of conducting clinical research [4,26,27]. While quandaries may also exist in
older or larger populations, these are less helpful in a more extreme population and when
results may not be fully extrapolated.

The variability of the available literature is exemplified in regard to enteral feeding
management. For instance, in VLBW infants (which also includes subsets of ELBW infants),
a 2022 Cochrane review revealed that delaying the introduction of enteral feedings has
no impact on the risk of developing necrotizing enterocolitis [27]. Likewise, the delayed
introduction of enteral feedings results in intestinal villous atrophy [28,29] and prolongs the
duration to achieve full enteral feeding [27]. Similarly, a 2021 Cochrane review concluded
that smaller advancements of enteral feeding volumes compared with higher volumes
do not reduce the risk of necrotizing enterocolitis or death in VLBW infants [26]. Yet,
these data starkly contrast with the available published research on micropremies (<750 g),
with the methods indicating that a lack of enteral feeding for up to the first two weeks
of life followed by methodically small volume advancements decreases the incidence of
necrotizing enterocolitis and the associated mortality [30]. However, these data must
still be weighed against alternative research that reports a higher risk for developing
bronchopulmonary dysplasia, retinopathy of prematurity, and comorbidities in infants
born <33 weeks gestation who started enteral feedings after three days of age compared
to before [31]. Given the sparse or differing results in the literature for varying preterm
populations, we need more published data on the cohort of micropremie and <25 weeks
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gestation infants. Additional information may help in developing more standardized
nutrition protocols within this subcategory of infants, with the importance summarized by
Koletzko et al.: “Implementation of standardized feeding protocols in the NICU is a simple
and inexpensive intervention that has resulted in improved outcomes . . . ” [4].

4. Future Research

What are some areas of future research within this specialized population? As suggested pre-
viously, more research is needed to concretely determine the optimal strategies for detailed
enteral and parenteral nutritional support. This includes research on the overall macronutrient
needs at varying ages and stages of development, the timing of nutrition introduction, the
nutrition source or substrate, and the method of nutritional advancement or modification.
Management strategies should also analyze the immediate biochemical, physical, clinical, and
developmental outcomes as well as the prospective and life-long results.

Likewise, future research can evaluate the detailed management of micronutrient
needs. In addition to the extreme lack of intrauterine micronutrient accrual by the time
of birth, extrauterine micronutrient needs may be altered in micropremies or those born
<25 weeks gestation to account for differences in metabolism or nutrient utilization re-
sulting from inflammatory exposures induced by medically necessary interventions [32].
The prolonged presence of inflammation is associated with the development of chronic
disease [33]; consequently, modifications to the current standard nutritional interventions
may have the potential to mitigate the negative consequences of inflammatory exposures.
However, evidence-based research is needed to answer these questions and hypotheses
more adequately.

Furthermore, the interconnections between essential organ systems must be considered
in the comprehensive care of these vulnerable infants. For example, consider that the
delayed start of enteral feedings may contribute to the occurrence of inflammation [31]
and alterations to the intestinal microbiome [34]. Systemic inflammation increases the
levels of pro-inflammatory compounds circulating in the blood, which may cross the infant
blood–brain barrier [35]. An increased inflammatory exposure of the brain during critical
periods is associated with worsened developmental outcomes, including increased mental
health disorders, autism, and developmental delays [36–38]. Likewise, alterations in the
intestinal microbiome are suspected to contribute to worsened developmental and health
outcomes [39,40] given associations with other organs including the “brain-gut” connection
and the even more novel “gut-lung axis” [41]. Thus, clinical questions regarding the enteral
timing, quantity, advancement methods, and substrate are necessary to decrease the risk of
adverse outcomes.

Additional topics of research may be novel and expansive. For example, amniotic
fluid contains a variety of nutritive and non-nutritive components that benefit the devel-
opment of the fetus, both internally and externally [42]. Considering the physiological
stages of development, the continued evaluation of amniotic components and their effects
on underdeveloped neonates may guide future nutritional strategies that promote the
development or protection of critical organs when infants are born at periviable gestational
ages. The evaluation of the related study outcomes may be immediate and/or long-range.
The immediate outcomes may evaluate biochemical indices, inflammatory markers, serum
amino acid or lipid concentrations, urine organic acids, or even epigenetic markers to
evaluate the state of stress vs. homeostasis during the neonatal period. These initial
outcomes will allow for a more detailed evaluation of early nutrition interventions, such
as the provision of parenteral nutrition or the early introduction of enteral feeding. The
intermediate outcomes will evaluate those throughout the NICU stay, such as mortality,
growth, and the development of comorbidities such as BPD. More prospective outcomes
will evaluate the neurodevelopmental outcomes and school performance, with the most
long-range being health outcomes in adulthood. Studies evaluating the effect of specific
nutrition interventions at these varying time points are critical. The evaluations at each
timepoint provide useful information, but the collective and prospective culmination of
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these varying outcomes will facilitate the most comprehensive understanding to enhance
the nutritional care of these high-risk infants. These outcomes will encompass decades of
evaluation, but immediate action is necessary as we consider how current clinical practices
have been influenced by past decades of research.

Future research may comprise retrospective, prospective, or cross-sectional results. It
may encompass basic science, translational, or clinical research. Randomized-controlled tri-
als are the gold-standard, but other methods of research may be needed in populations that
may take time to acquire consented eligible subjects and acknowledge that survival rates
will vary within a population at such high risk of early hospital mortality. Randomization
at the unit or hospital level may be necessary to acquire information about the impact of
important nutrition interventions as early as in the first hours of life.

5. Conclusions

The comprehensive and long-term nutritional care of the most extremely preterm
infants must be closely provided, monitored, and modified as indicated. Infants born
as early as 21–22 weeks will receive synthetic “intrauterine” nutrition for nearly half
of the period of fetal growth and development. The insufficient or overprovision of
nutrients during these critical stages is not benign and nutritional needs may change based
on infants’ physiological development, the necessary medical interventions, the infants’
physical growth, and their body composition and size—all of which are changing rapidly
throughout NICU hospitalization.

Given the fragility of micropremie infants and the current nutritional quandaries,
research on the details and intricacies of the management and outcomes of medicalnutri-
tion therapy must be continually evaluated and published. Only with reproducible and
transparent methods, multicenter trials, and the sharing of data can we determine the most
feasible and superior methods of nutritional care. While many variables surround delivery
and the baseline demographic factors cannot be altered, nutritional care remains modifiable
and past research has elucidated its role of critical importance.
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