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Abstract: Numerous factors affect reproduction, including stress, diet, obesity, the use of stimulants,
or exposure to toxins, along with heavy elements (lead, silver, cadmium, uranium, vanadium,
mercury, arsenic). Metals, like other xenotoxins, can cause infertility through, e.g., impairment of
endocrine function and gametogenesis or excess production of reactive oxygen species (ROS). The
advancement of nanotechnology has created another hazard to human safety through exposure to
metals in the form of nanomaterials (NMs). Nanoparticles (NPs) exhibit a specific ability to penetrate
cell membranes and biological barriers in the human body. These ultra-fine particles (<100 nm) can
enter the human body through the respiratory tract, food, skin, injection, or implantation. Once
absorbed, NPs are transported to various organs through the blood or lymph. Absorbed NPs, thanks
to ultrahigh reactivity compared to bulk materials in microscale size, disrupt the homeostasis of the
body as a result of interaction with biological molecules such as DNA, lipids, and proteins; interfering
with the functioning of cells, organs, and physiological systems; and leading to severe pathological
dysfunctions. Over the past decades, much research has been performed on the reproductive effects
of essential trace elements. The research hypothesis that disturbances in the metabolism of trace
elements are one of the many causes of infertility has been unquestionably confirmed. This review
examines the complex reproductive risks for men regarding the exposure to potentially harmless
xenobiotics based on a series of 298 articles over the past 30 years. The research was conducted using
PubMed, Web of Science, and Scopus databases searching for papers devoted to in vivo and in vitro
studies related to the influence of essential elements (iron, selenium, manganese, cobalt, zinc, copper,
and molybdenum) and widely used metallic NPs on male reproduction potential.

Keywords: male fertility; reproduction; essential metals; nanoparticles; toxicity; environmental factor;
public health

1. Introduction

Infertility affects about 15% of couples of childbearing age and has now become a ma-
jor public health problem. The above fact is linked to numerous factors, e.g., obesity rates;
cardiovascular diseases; hormone-dependent tumors; developmental disorders; chronic
childhood diseases; early onset of puberty; altered gender ratio and maternal age; infections
of the reproductive system; diet; addictions; stress, which is usually a reaction to mental or
emotional pressure; and the accumulation of toxins in the body [1–3]. Over the past half-
century, we have seen a downward trend in men’s reproductive health. Epidemiological
studies have shown a systematic deterioration of the quality of male sperm [4]. One of the
important reasons for this is toxic environmental factors, exposure to chemicals, heavy met-
als, and air pollution [5]. Even small doses of environmental toxins have been characterized
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as “acting similarly as uncontrolled drugs” for humans [6]. The impact of environmental
toxins on health depends on the exposure time (critical “windows of susceptibility”, such
as ‘in utero’, adolescence, and adulthood), dose, and duration of exposure [5,7]. People are
constantly exposed to toxic environmental factors, particularly endocrine-disrupting chem-
icals (EDCs). EDC substances include pesticides (e.g., dichlorodiphenyltrichloroethane
[DDT], chlorpyrifos, atrazine, 2,4-dichlorophenoxyacetic acid [2,4-D]), lead (Pb), cadmium
(Cd) (children’s products), phenol, bisphenols (food packages, e.g., cans or plastic bottles),
brominated flame retardants (electronics and building materials), phthalates (e.g., personal
care products and tubing), triclosan (antibacterial agents), and perfluorochemicals (textiles
and clothing).

Apart from the fact that EDCs impede reproduction, more and more evidence indicates
their participation in the development of obesity, cardiovascular diseases, type 2 diabetes,
some cancers, neurodevelopmental disorders, mental diseases, and abnormalities of the
genitourinary system [6]. Toxic substances are primarily responsible for the production
of reactive oxidation species (ROS) and the impairment of hormonal functions that af-
fect the quality of sperm [8]. However, the mechanism of action of EDC is complex and
multidirectional. EDCs can alter cellular processes by binding to nuclear steroid hormone
receptors (e.g., ThR and GPR30 thyroid receptor) and activating genomic and non-genomic
pathways, activating ion channels, inducing pro-inflammatory cytokines and chemokines,
promoting oxidative stress, and altering cell proliferation and differentiation [7]. A growing
body of evidence suggests that epigenetic mechanisms are also involved, including DNA
methylation, histone modifications, and micro-RNA expression [7]. These, in turn, affect
gene expression, cell and tissue function, and disease risk. Given the changes in methyla-
tion/demethylation that normally occur during gametogenesis and embryogenesis [9], the
effects of EDC may be significant for generation-to-generation reproductive success.

Heavy metals have been confirmed to present negative effects on male fertility. Partic-
ularly dangerous is exposure to Pb, Cd, arsenic (As), bismuth (Bi), chromium (Cr), gold
(Au), silver (Ag), mercury (Hg), nickel (Ni), i.e., metals commonly found in the human en-
vironment. Many reports describe the negative impact of heavy metals on fertility [10–16].
Toxic metals cause changes in the morphology, qualitative and quantitative parameters
of sperm, as well as biochemical and endocrine disorders. Disruption of hormonal home-
ostasis is associated with the influence of toxins on the endocrine function of the pituitary
and hypothalamus in the brain, and the testes, which are the site of spermatogenesis and
androgen production.

Given the high prevalence of infertility worldwide [17,18] and the fact that exposure
to toxic trace elements is extremely common, growing attention has been given to the
potential effects of exposure to toxic trace elements on human fertility [19,20].

The results of the meta-analysis based on data collected by Sun et al. [21] from the
PubMed, Web of Science, and Chinese National Knowledge Infrastructure (CNKI) database
until 2016 indicate that low-fertility males have higher Pb, Cd, and lower zinc (Zn) levels in
their semen. Similarly, Louis [22] suggested a toxic effect of Cd and Pb on reproduction. A
systematic review in PubMED for reports published between 1975 and 2017 on the effects of
Hg exposure on human fertility [20] unequivocally found that elevated Hg levels were also
associated with infertility. Exposure to Hg induced hormonal disruptions, DNA damage to
sperm, abnormal sperm morphology, and motility.

Although the meta-analysis studies support the adverse effect of heavy metals on the
semen and sperm quality on fertility, individual studies seem to be no longer conclusive
or consistent. For example, most authors describe higher concentrations of Cd and Pb in
the sperm plasma [23–25], while the study by Mendiola et al. [26] does not confirm the
existence of significant differences between infertility and fertility in the concentration of
Pb, Cd, and Hg in sperm. Similarly, Garcia-Fortea et al. [27] noticed a positive relationship
between the number of mature oocytes and the concentration of Pb in a woman’s hair.

Another example is selenium (Se), the consumption of which has been considered
beneficial for human health for many years [28,29]. Even recent case–control studies have
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suggested a protective effect of Se on human fertility [30,31]. However, being over-zealous
in increasing Se intake sometimes has negative consequences, reminding us that Se was
originally regarded as a toxic element [32].

To protect sperm from oxidative stress, seminal fluid (SF) has a defense system in
the form of enzymatic antioxidants, including superoxide dismutase (SOD), glutathione
peroxidase (GPx), and catalase (CAT). Trace metals, such as iron (Fe), Zn, and Se, are also
assigned the role of components with antioxidant activity [33]. In general, essential metals,
especially Zn, Se, manganese (Mn), Fe, copper (Cu), molybdenum (Mo), and cobalt (Co),
are considered beneficial or even protective for male reproductive functions, but in excess,
also cause adverse effects [15,34].

The advancement of nanotechnology has created another threat to human safety
through exposure to metals in the form of nanomaterials (NMs). Due to their common
occurrence in the environment and the fact that they can freely pass through placental
barriers and the blood–testicle barrier [35,36], nanoparticles (NPs) pose a serious threat
to the reproductive process of humans and animals. Ultrafine particles directly affect
reproductive cells, the internal organs, and the endocrine system (i.e., hypothalamus–
pituitary–gonad–sperm axis, HPG-S [37]. Nanomaterial (NM) reproductive toxicity refers
to the stage of embryo formation [38] and is a consequence of adverse effects on the structure
and function of the reproductive organs. Developmental toxicity related to NMs, on the
other hand, concerns structural or functional changes that interfere with the differentiation
and development of the embryo [39]. Consequently, there is a risk of structural defects,
fetal growth retardation, various functional/behavioral abnormalities, and ultimately
spontaneous abortion. The exact mechanism of the reproductive toxicity of xenobiotics such
as NPs is complex, but one of the key causes appears to be oxidative stress, mitochondrial
dysfuncton, and related complications.

Human reproductive health is a complex problem that includes gonadal steroidogene-
sis, sperm quality, female and male fertility, placental function, the effects of pregnancy,
polycystic ovarian syndrome, endometriosis, uterine fibroids, and menopause. Much of
the information we have about the health effects of different chemicals comes from animal
models, occupational exposure, environmental accidents, and epidemiological data from
different populations. Higher doses and short-term exposures are used in animal models,
which is not applicable in typical human exposure situations. In addition, human research
is associated with epidemiological limitations and stringent requirements for clinical trials.

The current review provides up-to-date knowledge of the effects of essential microele-
ments and metallic NPs on male reproductive toxicity. The review was developed due to
the need to constantly monitor and describe the problem from different perspectives and to
highlight current research trends. Taking into account the inevitable environmental expo-
sure to hardly biodegradable metals and NPs, which can have catastrophic consequences
for the life of the individual and the survival of the species, is necessary for the most precise
risk estimation.

This review focuses on the literature on reproductive nanotoxicity and the possible
beneficial or dangerous effects of essential trace metals (Se, Zn, Fe, Co, Cu, Mn, Mo)
on male fertility. This study was inspired by individual reported cases of men who had
higher levels of microelements such as Zn, Cr, and Cu and lower concentrations of Fe in
semen, which were associated with lower sperm motility and serious DNA damage [40]. To
our knowledge, no one has previously collected such data in one study. Publications that
investigated the relationship between essential metals and NPs on male fertility were extracted
from openly available scientific literature using the online version of the Pubmed, Web of
Science, and Scopus databases in the range of 1990–2022. The review focuses on experimental
studies conducted on animal models and cell cultures (in vivo and in vitro). The connection
between men’s infertility with the subject of this review is illustrated in Figure 1.



Int. J. Environ. Res. Public Health 2022, 19, 11066 4 of 36

Int. J. Environ. Res. Public Health 2022, 19, 11066 4 of 37 
 

 

that investigated the relationship between essential metals and NPs on male fertility were 
extracted from openly available scientific literature using the online version of the 
Pubmed, Web of Science, and Scopus databases in the range of 1990–2022. The review 
focuses on experimental studies conducted on animal models and cell cultures (in vivo 
and in vitro). The connection between men’s infertility with the subject of this review is 
illustrated in Figure 1. 

 
Figure 1. Causes of male infertility. This review is devoted to essential metals with potential toxicity 
and covers bulk materials and nanomaterials. Orange boxes show the connection of infertility with 
the subject of this review. 

1.1. Sources of Metals 
Toxic elements such as Cr, Ni, Cd, Pb, and As are commonly found in the anthropo-

genic environment. They persist in soil, water, and air [41] because they are not biode-
gradable. People can be exposed to toxic metals and metalloids through inhalation of dust, 
ingestion with diet, and direct skin contact [42–44]. Cigarette smoke contains about 30 
metals, the highest concentrations of which are represented by Cd, As, and Pb. It has been 
shown that the burden of Cd in smokers is about twice as high as in non-smokers [45]. 
Alcoholic beverages, including wine, may be contaminated with metals such as aluminum 
(Al), As, Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn in concentrations exceeding the acceptable 
standards, causing toxic effects, especially in heavy drinkers [46]. 

We are inevitably exposed to metals due to their ubiquitous nature, wide industrial 
use, and long-term environmental durability. Information on the sources of exposure to 
metals has been compiled by the Agency for the Toxic Substances and Diseases Register 
(ATSDR). 

Exposure to metallic contaminants in the form of NPs has increased in recent years. 
Although humans have come into contact with this type of airborne pollution as a result 
of sandstorms, volcanic eruptions, and other natural processes, nowadays, due to the 
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the subject of this review.

1.1. Sources of Metals

Toxic elements such as Cr, Ni, Cd, Pb, and As are commonly found in the anthro-
pogenic environment. They persist in soil, water, and air [41] because they are not biodegrad-
able. People can be exposed to toxic metals and metalloids through inhalation of dust,
ingestion with diet, and direct skin contact [42–44]. Cigarette smoke contains about 30 met-
als, the highest concentrations of which are represented by Cd, As, and Pb. It has been
shown that the burden of Cd in smokers is about twice as high as in non-smokers [45].
Alcoholic beverages, including wine, may be contaminated with metals such as aluminum
(Al), As, Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn in concentrations exceeding the acceptable
standards, causing toxic effects, especially in heavy drinkers [46].

We are inevitably exposed to metals due to their ubiquitous nature, wide industrial use,
and long-term environmental durability. Information on the sources of exposure to metals has
been compiled by the Agency for the Toxic Substances and Diseases Register (ATSDR).

Exposure to metallic contaminants in the form of NPs has increased in recent years.
Although humans have come into contact with this type of airborne pollution as a result
of sandstorms, volcanic eruptions, and other natural processes, nowadays, due to the
advancement of nanotechnology, the risk has increased dramatically [47]. Due to their
size, NPs can cross biological membranes and reach many tissues and organs [48–50]. It is,
therefore, not difficult to notice the serious health risks of NPs. The influence of titanium
dioxide (TiO2) NPs on the viability and proliferation of mouse Leydig cells; reduction in
sperm motility in the presence of Au-NPs; inhibition of postimplantation development
of mouse embryos by quantum dots from Cd and Se core; toxicity to the stem of mouse
spermatogonia by Ag-NPs, Al-NPs, Mo-NPs; and inhibition of embryo differentiation
mouse stem cells by silica NPs were all confirmed [51–58].

It can be observed that numerous published studies describe the effects of exposure
to a single metal, although, in reality, we are exposed to both toxic and essential metals
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that interact with each other. There is little research examining mixed exposures to metals.
For example, an increase in the number of spontaneous abortions and low birth weights
of children born in a vicinity of a copper smelter in Sweden, which emitted Pb, As com-
pounds, and sulfur dioxide, has been reported [59]. Scientists from Finland reported similar
observations regarding the threats from the metal industry [60]. An increased number of
miscarriages was noted in women employed in a factory producing Zn and Co compared
to the control group recruited from women not related to the metallurgical industry.

Belles et al. [61] examined the effects of co-exposure to the three metallic compounds,
lead (II) nitrate (Pb(NO3)2), methylmercury(II) chloride (CH3HgCl), and sodium arsenite
(NaAsO2), on developmental toxicity in mice as an animal model. Various metal combina-
tions were administered on day 10 of pregnancy. The maternal toxicity in the population
exposed to Pb, Hg, and As turned out to be the highest as the metals entered a supra-
additive interaction.

A multi-element study on a population of men and women who underwent in vitro
fertilization (IVF)/intracytoplasmic semen injection (ICSI) was conducted in China in
2020 [62]. In this research, the relationship between the level of trace elements and the
results of IVF was investigated. Serum and follicular fluid (FF) samples and semen plasma
were collected from both partners on the day of oocyte collection. The samples were tested
for Cr, Ni, As, Se, Cd, and Pb by inductively coupled plasma mass spectrometry (ICP-
MS). The authors searched for associations between the levels of toxic and essential trace
elements and IVF final results. The study found that the serum Cr level of female partners
was inversely correlated with the number of mature oocytes collected (p = 0.033). The
exposure to toxic elements (Cr, As, and Cd) was related to the results of IVF. In the case of
males, exposure to Se may be indirectly associated with better pregnancy outcomes.

Metals can act additively, synergistically, or antagonistically in processes involving
absorption, distribution, and excretion (ADME). Toxic metals may compete with essential
metals, reducing their concentration in the body or lowering their bioavailability [63–66].
An example would be the competition between Pb and/or Cd and Zn for the same binding
site in enzymes, proteins, and transporters. Such interaction may alter enzyme activity,
affect the structure and/or function of cell membranes, induce oxidative stress and apop-
tosis, and inhibit DNA and RNA synthesis and repair processes in the cell. This can have
serious consequences for cell growth, development, and differentiation. On the other hand,
essential metals (e.g., Zn, Se) can reduce the absorption and retention of toxic metals and
prevent their toxic effects. There are also many other examples of competition between
metals. An example is Cd, which can substitute other elements such as Cu, causing a
reduction in plasma ceruloplasmin; substituting Zn in metallothionein; and replacement of
Fe in ferritin, which causes a decrease in hemoglobin concentration. In turn, lead (Pb) has
an affinity for antioxidant enzymes, such as SOD, CAT, and GPx, and competes with their
natural cofactors (Zn, Cu, and Se), resulting in enzyme inactivation.

1.2. Mechanism of Metal Action

Toxic trace elements can be transported into the cell through cell membranes [67]. The
heavy metals function through ROS generation or the inactivation of enzymes usually
involved in the antioxidant defense. Currently, it is believed that the main mechanism
explaining the loss of fertilization by sperm cells is processes caused by oxidative stress
at the cellular level. Oxidative stress (OS)is a state of the overproduction of oxygen and
nitrogen free radicals (ROS, RNS) such as HO•, 1[O]2, O2

•−, HOO•, ROO•, RO•, H2O2,
ONOO−, NO• [68]. The production of free radicals causes lipid peroxidation (LPO), protein
oxidation, and sperm DNA damage [69]. The state of oxidative stress is confirmed by
the analysis of biomarkers such as MDA (malondialdehyde); HAE (4-hydroxyalkenals);
TBARS (thiobarbituric acid reactive substances assay); protein carbonyl content; 8-hydroxy-
2′-deoxyguanosine [8-OhdG]; and the level of enzymes involved in the antioxidant defense
system, such as SOD, CAT, GPx, and glutathione reductase (GRd).
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The consequences of oxidative stress are cell membrane and DNA damage, leading to
cell apoptosis and changes in protein conformation, and the inhibition of enzyme activity.
Moreover, toxic elements can disrupt endogenous signaling. It has been confirmed that
metals can bind to the estrogen receptors and disrupt hormone signaling, thus causing
disturbances in the secretion of sex hormones [70].

1.3. Male Fertility Indicators

The quality of sperm largely determines male fertility. The current requirements for
semen analysis are described in the guidelines of the World Health Organization (World
Health Organization (WHO) 2021) [71]. The spermiogram involves the assessment of
various characteristics of the ejaculate fluid. Sperm samples are tested for movement,
expressed as percentages, including progressive, non-progressive, and total motility deter-
mined under phase contrast microscopy. WHO (2021) reference levels are the following:
total motility from 40 to 43%, progressive motility from 29 to 31%, and non-progressive
motility at exactly 1%. The reference ranges for immotile sperm and sperm vitality are
between 19 and 20% and 50–56%, respectively [71]. Based on the above data, sperm motil-
ity can be categorized into fast, progressively motile (a); slow, progressively motile (b);
non-progressively motile (c); and immotile (d). Parameters of semen quality involve semen
odor, semen volume (1.3–1.5 mL), and total sperm number expressed as 106 per ejaculate
(35–40). Furthermore, the morphology of sperm (anomalies of the head, intermediate piece,
and tail) and sperm DNA fragmentation (SDF) using different tests (the TUNEL assay,
sperm chromatin dispersion assay, Comet assay, and acridine orange flow cytometry assay),
oxidative stress (OS), and ROS are evaluated.

The WHO guidelines recommend cytogenetic analysis by the use of fluorescence in
situ hybridization (FISH) with the aim of discovering chromosomal aberrations [71].

Parameters of endocrine function in serum are sex hormones, e.g., follicle-stimulating
hormone (FSH), luteinizing hormone (LH), testosterone (T), and estradiol. Measurements
of trace elements in the seminal fluid may be a better predictor of semen quality than tradi-
tional blood measurements in men who are not exposed to work contact [72]. Parameters
of seminal plasma include, e.g., metals (Zn, Cd, and others) and fructose.

There are also other tests evaluating, for instance, sperm acrosome reaction, the
aniline blue, and chromomycin A3 assays for the evaluation of chromatin condensation or
functional analysis of transmembrane ion flux.

It should be underlined that the reference values can not be the only criteria for the
diagnosis of normozoospermia, asthenozoospermia, necrozoospermia, and teratozoosper-
mia. To establish the causes of male infertility, we have to consider more parameters [72].
Boitrelle et al. [4], in a comprehensive and critical review, described the Sixth Edition of the
WHO manual for human semen analysis (SA).

2. Male Reproductive Toxicity of Micronutrient Metals

The seminal plasma contains, in addition to proteins, lipids, and macroelements
(sodium (Na), potassium (K), calcium (Ca), magnesium (Mg), phosphorus (P), chlorine (Cl)),
several trace elements such as Cu, Zn, and Mn, which are essential for normal spermatoge-
nesis, sperm maturation, and motility, and it is clear that their absence negatively affects the
efficiency of fertilization, including capacitation, hyperactivation, and acrosomal response.
Metal levels in the seminal fluid are dependent on ion exchange controlled by channels
and active transport systems on the cell membrane.

In 2022, Rodríguez-Díaz et al. [73] analyzed the influence of 22 metals in the seminal
plasma on sperm quality, as well as fertilization effects, such as the pregnancy rate, implan-
tation, and embryo quality. The importance of Na, K, Ca, and Mg, in particular, has been
described [74], in addition to the role of Fe and Zn [75]. Fe and Zn belong to non-enzymatic
antioxidants, being enzyme cofactors (enzymatic Fe-catalase), but in excess, they have a nega-
tive effect on the quality of sperm and even on the development of the embryo [76]. Similarly,
increased levels of Mn and Cu can also be dangerous and deteriorate sperm parameters [77].
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There are no reference levels for trace elements in semen or semen plasma, although
many studies have looked for a link between the concentration of trace elements in semen
or blood of patients and male infertility. The research usually distinguishes the test group,
which is compared with the control group recruited from fertile men distinguished by
normozoospermia. The concentrations of metals determined in samples taken from healthy
men are presented in Table 1. As can be seen, the obtained results were inconsistent.

Table 1. Concentrations of trace elements (mg L−1) in normal semen specimens or other biological
materials taken from fertile men.

Specimen n Ca Mg Zn Se Fe Cu Other
Metals Ref.

Blood
96

48.7–52.0 73.7–76.6 6.76–7.10 0.230–0.246 449–469 0.89–1.00
Pb, Cd, Hg [78]Serum 33.5–36.0 22.0–24.2 1.21–1.38 0.064–0.068 3.00–3.40 0.62–0.68

SP 59.0–62.3 71.7–75.4 138–152 0.034–0.035 269–283 148–165
SP 482 - - 0.117 0.026 0.121 0.063 18 metals [79]
SP 19 240.49 ± 50.5 60.85 ± 10.89 140.08 ± 20.01 - - - Na, K [80]
SP 47 - - 1.24–1.53 - - - - [81]
Semen

22
- - - 0.054 ± 0.023 - -

Cd, Pb [82]SP - - - 0.040 ± 0.016 - -
SP 40 - 13.14 ± 3.65 141.7 ± 30.23 0.061 ± 0.018 - 165.56 ± 40.13 - [83]

SP - - - 18–301 0.021–0.191 0.05–0.63 0.03–0.3 Mn, I, Pb,
Cd, Mo [84]

Semen 97 - - 7.626 ± 0.090 - - - - [85]
Serum 1

30
93.09 22.07 3.53 0.49 2.26 0.90 Na, K [86]

SP 1 103.78 25.72 1.10 0.09 2.66 0.87
SP 28 - - - 0.07 ± 0.020 - 0.195 ± 0.045 Mn, Pb, As [87]
SP 96 - 550.12 ± 282.51 188.42 ± 99.61 - 2.02 ± 0.74 1.29 ± 0.58 - [88]

SP
64

- - 0.127 ± 0.075 0.012 ± 0.019 - 0.041 ± 0.041

As, Sb, Hg,
Al, Cd, Ni,
Pb, V Mn,
Ti, Cr, Mo,

[89]

SpermDNA - - 0.018 ± 0.042 - - 0.00011 ±
0.0003 -

Blood
30

- - 0.213 ± 0.139 - - 0.107 ± 0.084
Pb, Cd [90]SP - - 0.131 ± 0.107 - - 0.106 ± 0.094

1 Data obtained for bulls. SP—seminal plasma.

Disturbances in the levels of metals in the body may have a different background,
i.e., incorrect supply, accumulation in the body in case of chronic exposure, or disturbances
in metal metabolism. There is a group of genetic disorders associated with defects in pro-
teins/enzymes involved in metal metabolism [91]. The accumulation or deficiency of metals
in various tissues can interfere with many biological functions. An example is Wilson’s
disease, which is characterized by disturbances in Cu metabolism, and many syndromes
that affect the metabolism of Fe, which is one of the key elements for fertility, such as
aceruloplasminemia, cerebellar ataxia, hypoceruloplasminemia, Kufor Rakeb syndrome,
neurodegeneration with brain accumulation, and HARP syndrome.

This chapter focuses on the literature devoted to the effects of metals on fertility and
reproduction in male laboratory animals. This review takes into account studies on the
potentially beneficial or dangerous effects represented by essential trace metals (Fe, Co, Cu,
Mo, Se, Zn, and Mn).

2.1. Zinc

Zn is the second trace mineral in terms of quantity in humans that must be supplied
by food. Its beneficial effect on reproduction, especially in men, is known and is described
in many review articles [76,77,92–95].

The importance of Zn for the functions of reproductive organs is emphasized by the
fact that its concentration in human seminal plasma is higher compared to other tissues [96].
The amount of Zn in the testes of vertebrates is comparable with that stored in the liver
and kidneys [97]. Zn accumulates in the testes during early spermatogenesis. The greatest
amount of Zn is found in germ cells. Zn is also detectable in Leydig cells, late-type B
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spermatogonia, and spermatids. In turn, a lack of Zn is noticed in interstitial tissue and
sterol cells. At the cellular level, half of the amount of Zn accumulates in the cytosol, a little
less is in the nucleus, and the least amount fills cell membranes [98]. Its function in the
nucleus is to stabilize chromatin through S-Zn-S bonds in the protamine structure [99].

The transport of Zn through the physiological membranes takes place via the Zip
family and the ZnT family of proteins. Inhibition of Zn transport to the gamete during
spermatogenesis causes impairment of testicular function [100,101].

Zn is the cofactor of SOD, an enzyme that is a part of the antioxidant defense system.
The antioxidant properties of Zn and the ability to compete with toxic metals are important
in protecting the testes against stress factors. Zn is also needed for the proper functioning
of the hypothalamus–pituitary–gonadal axis (HPG axis). The synthesis of testosterone in
the Leydig cell, and thus the serum testosterone level, depends on Zn [102,103] since Zn
is a cofactor of the 5α reductase enzyme transforming testosterone into active 5α dihy-
drotestosterone [104].

The most important role of Zn in sperm physiology is its participation in spermatogen-
esis [92,105]. Moreover, Zn has been shown to stimulate sperm capacitation and acrosomal
response by activating the epidermal growth factor receptor and the G protein-coupled
receptor [106,107]. Zn-induced capacitation signal pathways are also responsible for hy-
peractive sperm motility [108]. Zn, along with other metals, such as Ca and Mg, ensures
normozoospermia, which in turn ensures better-quality embryos. Zn improves the fertiliza-
tion rate by taking part in the penetration of the sperm into the oocyte to form a mature
zygote, as well as in the post-fertilization period. Its beneficial effect on reproduction is
confirmed by the fact that as zinc sulfate, it is added to the media used in the production of
embryos in vitro [80,109–111].

Since it is essential for male fertility, it can be considered a marker in the diagnosis of
male infertility [92]. The importance of Zn in maintaining reproductive function, along with
the effects of deficiency, is summarized in Table 2. The content of the table was prepared on
the basis of data contained in published articles [76,77,80,92–111].

Zn affects both the quality and function of sperm; therefore, its absence reduces the
chances of fertilization [80,111]. Zn deficiency is associated with an increase in apoptosis
and thus a decrease in sperm count and motility [112].

Zn deficiency has been shown to cause oxidative stress (OS), an inflammatory response,
and increased pro-apoptotic signaling (Bax, caspase-3) in germ cells, while anti-apoptotic
signals are reduced (Bcl-2) [113]. Zn deficiency is associated with a decreased expression
of Zip6 and Zip10 and an altered structure of the seminal tubules with abnormal germ
epithelium, regardless of the systemic Zn and testosterone levels [100]. Zn deficiency of
Leydig cells may also indirectly contribute to spermatogenesis disorders [114]. Further
studies have also shown that Zn deficiency enhances the activation of pro-apoptotic and pro-
inflammatory pathways induced by CCl4 treatment in testicular cells [115]. The modulation
of apoptosis, inflammation, and oxidative stress (OS) can be attributed to the protective
effect of Zn against diabetes-induced testicular damage [116].

In a study by Rodríguez-Díaz et al. [73], a significant relationship was discovered
between higher Zn levels and better seminal quality. The higher Zn concentrations were ob-
served in men with normal spermiograms with higher sperm counts (95.42 ± 62.39 mg/kg),
while pathological changes and decreased concentrations were observed when the Zn con-
centration was lower (71.18± 35.082 mg/kg). The difference reached statistical significance
(p = 0.044). Other authors obtained similar results [117,118]. Macroscopically, Zn deficiency
results in a reduction in the volume and mass of the testicles, contraction of the seminiferous
tubules, hypogonadism, and inadequate development of secondary sexual characteristics
in humans [118]. Thus, Zn may play a positive role in the process of assisted reproductive
treatment [76]. Zn also improved DNA methylation, chromatin integrity, testicular struc-
ture, and an increased number of spermatogonia stem cells in a model of testicular toxicity
induced by bleomycin etoposide and cis-platinum treatment [119].
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Table 2. The role of Zn in male fertility and the effects of deficiency [76,77,80,92–111].

Organ or
System/Role Action Zn Deficiency

HPG axis/
hormone production Inhibition of 5α reductase and affinity to LH receptor Low serum T, testicular failure, changed sex steroid hormone receptor levels, damaged

LH receptors, increase in circulating LH, decrease in T synthesis in Leydig cells

Antioxidant defense system/
free-radical scavenging Inhibition of DNases and activity of Cu/Zn SOD

Oxidative damages (lipids, proteins, DNA), increase in LPO, increased MDA in the
serum and seminal plasma and reduced levels of SOD, damage to the Leydig
cells, apoptosis

cell physiology/
anti-apoptotic
agent

Inhibition of caspases,
Bcl-2/Bax ratio increase

DNA fragmentation, apoptosis, decreased population of the Leydig cells, germ cells,
cell and tissue death

Epigenetics/
gene regulation,
DNA methylation

Zn expression
Zn transport
binding proteins, testis-GC specific genes

Reduced reproductive potential, delayed sperm maturation

Testes/
testes development

participation in spermatogenesis (mitosis of spermatogonia and
spermatocyte meiosis)

Retarded genital development, reduced testes weight, changes in the structure of
Leydig cells, lower sperm concentration of the ejaculate, hyperviscosity of semen

Spermatozoa physiology/
cell metabolism

lipid and protein metabolism, oxygen consumption, nucleic acid
synthesis, epithelial membrane integrity,
chromatin condensation

Abnormal morphology, count, viability, motility of sperm, head–tail attachment
problem, inhibition of spermatid differentiation, dysfunction of the zinc finger motif
Cys2/His2 of P2 protamines

Fertilization/
embryonic formation

capacitation,
the acrosome
reaction

Change in pH, proteasomal activities, transfer of the amino peptidase from
prostasomes, lower sperm membrane fluidity, improper fertilization

Abbreviations: deoxyribonucleases (DNases).
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In 2016, Zhao et al. [95] conducted a systematic analysis of literature data on the sub-
ject in PubMed, EMBASE, Science Direct/Elsevier, CNKI, and Cochrane Library. A meta-
analysis of 1320 unduplicated studies showed that Zn concentrations in semen in infertile
men were significantly lower than in healthy men, and Zn supplementation significantly
increased semen volume, sperm motility, and the percentage of normal sperm morphol-
ogy [95], which was also described in other reports [120–122].

Many dietary supplements are used to improve male fertility; however, their effective-
ness is debatable. Nevertheless, the effectiveness of Zn supplementation on the increase of
semen volume, sperm motility, and morphology was confirmed in a study [123]. Moreover,
Zn, in combination with D-aspartic acid and coenzyme Q10, decreased lipid peroxidation
in semen [124]. A meta-analysis from 1966 to 2016 of Medline, Scopus, Google Scholar, and
Persian databases (SID, Iran medex, Magiran, Medlib, Iran doc) showed that folate plus
Zn supplementation has a positive effect on sperm characteristic parameters in subfertile
men [125]. The assessment of the composition and effectiveness of supplements used in
the Italian market was presented in a report by Garolla et al. [126]. Zn was found to be the
most common ingredient in most supplements, along with Se, arginine, coenzyme Q, and
folic acid [126].

However, not all studies support a link between Zn in semen plasma and male fertility.
Adverse effects of excess Zn on male fertility have rarely been reported. Few reports suggest,
though, that an excess of Zn may have a negative effect on sperm quality [92,127]. The
relationship between excess Zn in the diet and prostate cancer has also been confirmed in
other studies [128]. Studies on 733 incidents and 1228 control cases showed that higher
dietary Zn intake might increase the risk of low-grade and localized tumors [128]. Men
with a higher genetic susceptibility may also have a higher risk of prostate cancer when
taking this nutrient. In a study by Turgut et al. in 2003 [129], the team investigated the
effects of excessive Zn consumption on testes and sperm quality in mice. After 3 weeks of
supplementation, a statistically significant negative correlation was found between the dose
of Zn and the number and motility of sperm. Zn administered in a dose of 2.5 g/100 mL
caused decreased sperm motility, degeneration of the seminiferous tubules, and fibrosis in
the interstitial tissue. Zn, in the form of complexes, acts as apoptosis inducers in testicular
germ cells of Capra hircus [130] due to its activation of caspase-3, disruption of mitochondrial
membrane potential, DNA fragmentation, and other degenerative changes.

2.2. Cobalt

Co is an essential element for mammals that is not accumulated in the body. Data from
the literature show that chronic exposure of experimental animals to Co exerts negative
effects on the body, including male reproductive organs and fertility. The first such research
was completed in 1988 [131], where chronic and acute exposure of male mice to cobalt
chloride was studied.

Acute exposure showed no significant changes in reproductive potential. The 7-week
observation showed there were no significant changes in epididymal sperm concentration
or testicular weight. After a slight decrease, sperm mobility returned to normal one week
post-administration.

In contrast, time- and dose-dependent reductions in the above parameters were ob-
served after chronic exposure. Moreover, elevated serum testosterone levels were noted,
while FSH and LH levels remained normal. Pedigo et al. [131] hypothesized that Co disrupts
the local mechanisms regulating testosterone synthesis and spermatogenesis.

Exposure to exposure during pregnancy and lactation resulted in a reduction in male
offspring of reproductive organs, i.e., testicular and epididymal weight, which demon-
strates the possibility of Co transfer across the placental barrier and into breast milk [132].

Although there is little research into the effects of Co on male reproductive health, it
can be considered a potential risk factor.
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2.3. Copper

Cu is a trace element that is essential to human health. However, high concentrations
of Cu cause serious health problems. It has been reported that massive exposure to Cu may
lead to a flu-like condition known as metal fever [133].

In 1956, research began on the influence of Cu on the male reproductive system. The
results of the studies were inconclusive, as was the importance of Cu in fertility. However,
it has been hypothesized that Cu is involved in sperm motility and may also act on pituitary
receptors that control LH release. Cu2+ can act as a competitive inhibitor of LH, FSH, and
testosterone receptors, inhibiting spermatogenesis [134].

A low level of Cu in seminal fluid occurs in azoospermia and an increase in oligo- and
asthenozoospermia. In a study conducted on 95 men recruited from polluted areas, [135]
there was a negative correlation of Cu values in seminal plasma with the normal sperm
morphology rate. An investigation designed by Mohammed et al. [136] concerned the effect
of copper sulfate on the fertility of male white albino rats. Rats were treated orally via
stomach tube with 1/10 and 1/5 LD50 of CuSO4. Results showed a decrease in testes and
epididymis weight and a significant increase in sperm abnormalities. Long-term, high-
dose Cu2+ exposure was found to be negatively correlated with sperm motility, viability
and vitality, acrosome intactness, and hyperactivation in a study performed on the vervet
monkey (Chlorocebus aethiops), the chacma baboon (Papio ursinus), and the rhesus monkey
(Macaca mulatta) used as models for reproductive studies [137].

However, some researchers do not confirm the existence of a negative correlation
between the seminal copper level and the number or motility of gametes [138]. These
discrepancies may be due to the fact that the Cu concentration in the ejaculate varies over
time and is even different in distinct fractions of the same ejaculate. Cu abolishes sperm
motility by inhibiting oxidative processes and glucose consumption. This property has
been used for contraception in the form of an intrauterine device (IUD) or implantation at
various sites in the male system, such as the lumen of the deferens, epididymis, seminal
vesicle, and scrotum [139,140].

2.4. Manganese

Mn is an essential component of enzymes involved in redox processes, i.e., SOD,
pseudo-CAT [141]. Mn presents antioxidant properties, hence the ability to scavenge free
peroxide radicals [142] and inhibit LPO [143]. The studies of Cheem et al. [144] in 2009
confirmed the usefulness of (Mn2+) for protecting bovine sperm during cryopreservation
against lipid peroxidation (LPO) caused by ROS attack. The addition of Mn to the semen
showed a protective effect and improved the quality of the semen, i.e., the percentage of
motility, the percentage of hypoosmotic edema (HOS), and a decrease in the production of
malondialdehyde (MDA) and protein leakage, with the addition of 150 µM and 200 µM
Mn2+ to the frozen sperm. This fact can be used to improve sperm quality/fertility in
in vitro fertilization IVF and artificial insemination.

Mn deficiency is dangerous for health. Some studies have suggested that Mn deficiency
causes reproductive impairment [145]. The use of Mn to inhibit damage caused by oxidative
stress (OS) is described in a report by Tajaddini et al. [146]. Their studies were carried out on
adult mice treated with formaldehyde. Manganese chloride injected intraperitoneally with
5 mg kg−1 improved testicular structure and sperm parameters. It should be emphasized,
however, that the beneficial effect of Mn on fertility is at low concentrations, while at higher
concentrations, it is toxic.

Chronic excessive exposure to Mn causes intoxication, leading to cirrhosis, dystonia,
polycythemia, and hypermagnesemia [147]. Mn poisoning can give rise to a clinical picture
called manganism, which is associated primarily with syndromes of neurological origin
similar to idiopathic Parkinson’s disease [148]. Mn, as a cofactor of mevalonate kinase and
farnesyl pyrophosphate synthase, is involved in the synthesis of cholesterol, which is a
precursor of sex hormones, and in this sense, can regulate fertility [149].
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The reproductive toxicity of Mn has been mainly studied in animals [150]. Environmental
exposure to Mn has been shown to be related to the levels of male reproductive hormones. Mn
has the ability to upstream genes regulating hypothalamic gonadotropin-releasing hormone
(GnRH), which could stimulate prepubertal GnRH release from the hypothalamus [151,152]
and the secretion of prepubertal GnRH/LH secretion, accelerating puberty.

Regarding semen quality, it was found that high serum Mn levels were associated with
an increased risk of poor sperm quality [153]. Tests were performed on 200 patients who
attended an infertility clinic. It was confirmed that high Mn levels were associated with an
increased risk of low sperm motility (odds ratio = 5.4; 95% confidence interval = 1.6–17.6)
and low sperm concentration (2.4; 1.2–4, 9). The effect of serum Mn levels on fertility was
also confirmed by another 2012 study. In the study, semen samples were collected from
over 1000 Chinese men. The median serum Mn concentration was 8.2 µg L−1. Serum Mn
levels were shown to have deleterious effects on sperm morphology and motility [154].
Serum Mn levels greater than 19.40 µg L−1 had the most negative effect [154,155]. Mn
can induce sperm apoptosis, which is confirmed by the percentage of Annexin V +/PI−
spermatozoa as the concentration of Mn increases. Impotence and decreased libido are
symptoms of the reproductive system [156]. Another study was conducted on a group of
84 male workers occupationally exposed to Mn compared to a control group (92) [157].
GnRH and LH levels were found to be higher and testosterone levels were lower in the
Mn-exposed group. Sperm motility decreased in the Mn-exposed group.

Studies on rabbits have shown that even a single dose of 160 mg MnO2/kg admin-
istered by inhalation causes degenerative changes in the testes and infertility [158]. For
chronic exposure, the dose and duration of exposure are important. While chronic exposure
of rats to a dose of about 1000 ppm had no effect on male fertility, a three-fold higher
dose caused changes in the form of decreased testicular weight, sperm count, and serum
hormone levels (FSH, testosterone) [159]. A 2003 study reported a significant decrease in
sperm count and motility in mice orally exposed to manganese acetate for 43 days at a dose
of 15.0 and 30.0 mg/kg/day [160].

2.5. Selenium

Se is an essential trace element, taking part in many physiological processes as an antiox-
idant and a component of metabolic changes, e.g., the metabolism of thyroid hormones [161].
Se is recognized as an element that protects against the effects of cadmium (Cd) poisoning.
Selenium (Se), as for male reproductive function, can act negatively or be beneficial.

The potential benefits are mainly due to the fact that Se is a cofactor of the antioxi-
dant enzyme (GPx) and a component of two selenoproteins (phospholipid hydroperoxide
glutathione peroxidase (PHGPx/GPx4) and selenoprotein P), which are involved in sper-
matogenesis. Selenium (Se) is a component of selenoproteins, including GPx1, GPx3,
mGPx4, cGPx4, and GPx5, which protect against oxidative damage to sperm during the
maturation process, while selenoproteins, such as mGPx4 and snGPx4, act as structural
components of mature sperm. Se deficiency leads to serious abnormalities in testicular
development, spermatogenesis, and sperm quality in the form of loss of motility and
morphological abnormalities [162].

The Se-dependent GPx enzyme enables the protection of cell membranes and organelles
against peroxidative damage. Se, in combination with vitamin E, has been shown to be
effective in improving sperm parameters and pregnancy rates in approximately 700 infertile
men with idiopathic asthenoteratospermia [163]. Supplementation with Se (200 µg) in combi-
nation with vitamin E (400 units) improved sperm motility, morphology, and induction of
spontaneous pregnancy in over 50% of cases after 14 weeks of combined therapy.

This was also confirmed by another study in which a group of 12 infertile men were
administered Se in 50 µg (1 capsule) once a day for 3 months [164]. After the therapy, there
was a significant increase in sperm count, mobility, viability, normal sperm morphology, and
ejaculate volume. The levels of serum Mg, serum FSH, serum LH, serum testosterone, and
serum glutathione were significantly increased, and serum MDA was significantly decreased.
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This study was repeated a few years later on a group of 50 asthenoteratozoospermic
men. Semen samples were incubated with selenium 2 µg mL−1 at 37 ◦C for 2, 4, and 6 h.
Parameters such as mobility, viability, and mitochondrial membrane potential improved,
and the levels of MDA and DNA fragmentation were significantly lower. Therefore, it was
confirmed that Se is effective in protecting the collected sperm (in vitro) against ROS [165].

On the other hand, Se is known to exert toxic effects on various tissues and organs,
especially the testes. Studies on rats have shown that chronic exposure to Se is caused
by sperm degeneration; intertubular edema; oligospermia; inhibition in activities of tes-
ticular steroidogenic enzymes; and a reduction in tubular diameters, tubular areas, and
tubular perimeters [166].

The role of Se in male fertility has been described in excellent review articles [167–170].
It should be emphasized that health benefits relate to a narrow concentration range, which
confirms the relationship between biological effects and concentration [171]. Selenosis
from overexposure can be acute as well as chronic. The toxic effect of Se is related to
the substitution of sulfur in sulfur amino acids and the formation of selenomethionine
and selenocysteine, which inactivate succinate dehydrogenase and δ-aminolevulinic acid
dehydratase. It has been shown that, in addition to disturbing other physiological func-
tions, it results in decreased fertility [172]. The toxic effect of Se, especially the Se2− and
SeH− forms, has also been associated with the mechanism of oxidative stress [173] or
the inhibition of selenium methylation by the deactivation of methionine adenosyltrans-
ferase [174]. Overexposure to Se induces endoplasmic reticulum (ER) stress through the
phosphorylation of JNK and eIF2 proteins [175].

It is also believed that excess Se oxidizes the sulfhydryl groups of proteins and enzymes
in mitochondria, blocking energy metabolism in cells [176]. Furthermore, Se influences
the Ca2+ signaling pathway. Consequences of this disruption could be serious—for in-
stance, DNA breakage in the host cell chromatin, cytoplasmic protein cross-linking, or
cytoskeleton destruction.

2.6. Iron

Fe is a non-enzymatic antioxidant. It is a CAT cofactor. Elevated levels of this enzyme
act as a pro-oxidant and damage sperm due to the formation of hydroxyl radicals and in-
creased lipid peroxidation in plasma membranes [33,177]. Fe detected at a concentration of
5 ppm in seminal fluid decreases sperm motility. Elevated Fe levels were detected in sperm
homogenate and seminal plasma of asthenozoospermic and azoospermic men [178]. Ele-
vated Fe levels (0.61 mg/kg) were detected in seminal fluid in pathological spermiograms.
However, low iron levels below 0.33 mg/kg also show signs of sperm pathology [73].

2.7. Molibden

A 2002 study showed that the oral administration of sodium molybdate to rats at a
dose of 10, 30, and 50 mg/kg body weight for 60 days resulted in the accumulation of
molybdenum in the testes, epididymides, and seminal vesicles. Exposure to molybdenum
(Mo) resulted in a decrease in the weight of reproductive organs and the quality and
function of sperm, histopathological changes in the testes, and changes in the level of
enzymes such as sorbitol dehydrogenase, LDH, and gamma-glutamyl transpeptidase [179].

3. Male Reproductive Toxicity Due to Metallic Nanoparticles

The use of nanotechnology in various fields of industry, medicine, and a variety of
consumer applications has caused the widespread use of products made of NMs. The attrac-
tiveness of these materials results from their unique properties such as plasma resonance
effect, ultra-small size, large surface area to mass ratio, catalytic activity, absorption abilities,
and high reactivity [180]. In addition, bringing the matter to the nano scale (1–100 nm)
introduces additional benefits in the form of reducing the consumption of materials for
production and reducing the amount of waste generated. There are many physical and
chemical procedures useful for the synthesis of NPs and biocompatible hybrid materials
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with different morphology (shape, size) and properties. Currently, however, methods are
being sought to obtain NPs useful for specific applications, e.g., in medicine or catalysis.
Examples include specially synthesized nanomaterials used in medicine for personal-
ized anti-cancer therapies; drug-delivery systems, such as quantum dots (QD); and early
diagnosis [181]. The enthusiasm for the use of NMs diminishes due to reports of their
toxicity, including neurotoxicity; immunotoxicity; hepatotoxicity; reproductive toxicity;
and nanoparticle-induced damage to the lungs, kidneys, and other organs [182–184]. Nan-
otoxicology is a new field that only began to develop intensively after 2012, although the
first reports of nanotoxicity date back to the beginning of the 21st century [185].

There is no doubt that people today are exposed to nanostructures. Consumer prod-
ucts based on nanotechnology are common. They are found in food packaging, fabrics,
home appliances, electronics, medicines, cosmetics, building materials, etc. The anthro-
pogenic environment is polluted as a result of industrial production, which releases more
than 300,000 tons of NMs per year, in addition to the use of NMs for protection and treat-
ment, e.g., the remediation of contaminated soil and water [186]. Thus, there are different
routes of exposure to nanostructures, i.e., intravenous, dermal, subcutaneous, inhalation,
intraperitoneal, and oral [187]. Inhaled NPs travel to various organs and are detected in
the lungs, liver, heart, spleen, and brain [188]. It has been shown that the mean half-life of
NPs in the lungs is approx. 700 days [189]. Following intravenous injection, NPs have been
detected in the colon, lung, bone marrow, liver, spleen, and lymphatic system [188]. When
injected intraperitoneally, they pass through the placenta or through the peritoneal cavity
into the uterus [190]. After oral administration, they are partially excreted in the feces, and
partially, after crossing the gastrointestinal barrier, they enter the general circulation and
accumulate in the kidneys, liver, spleen, lungs, and brain [188]. The excretion of NPs takes
place via macrophage-mediated phagocytosis. The removal of NPs from the systemic circu-
lation takes place in the liver and spleen [191], and from the lungs—after opsonization—in
the alveolar area [191,192].

Due to the increased risk of human exposure to NPs, recent studies have focused on the
safety issue of manufactured NMs, i.e., nanotoxicology, which studies the interactions of NPs
with biological systems [193,194]. There are reports in the literature that describe how NPs are
translocated and how they can destabilize various physiological systems. Researchers suggest
that exposure to NPs may stimulate the secretion of cytokines or enzymes that affect the entire
body and are not limited to the implant site or a single organ [195–197].

Reports on the toxicity of NPs used in medicine are particularly worrying [198]. An
example is nanosilver (nano-Ag), which is used in the production of wound dressings and
surgical sutures to protect against infection. Unfortunately, studies have confirmed the
cytotoxicity of these materials against keratinocytes [199–205] and mammalian germline
stem cells [206]. Therefore, exposure to nano-Ag in cosmetic or disinfecting products may
cause fertility problems.

Similar results have been obtained in other in vitro studies in rat liver cell BRL 3A [180],
a neuroendocrine cell line (PC-12 cells) [207]. It seems that the cytotoxicity of nano-Ag
is related to the deterioration of mitochondrial function by generating oxidative stress
(increase in ROS). Interactions of Ag-NPs with the thiol groups of glutathione, thioredoxin,
SOD, and thioredoxin peroxidase are probably responsible for the deactivation of the
antioxidant defense of the cell at the molecular level [208].

Toxicity has been found to be strongly correlated with particle size, surface area, and
aggregation processes, possibly due to a change in surface properties [209]. In addition,
smaller NPs (1–50 nm) penetrate biological barriers more easily and bioaccumulate com-
pared to those of larger sizes (51–300 nm) [210]. Chen et al. [211] demonstrated the toxicity
of nano-Cu, and other researchers have demonstrated the appearance of pulmonary toxicity
by nano-TiO2 [212–216] or nano-vanadium oxide (nano-V2O3) [217], which are harmless at
the microscale.

The fate of NPs in the body, i.e., absorption, distribution, metabolism, and elimination
from the body (ADME), is determined, apart from the size or shape, by the presence of
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functional groups on their surface [218,219]. An important role in nanotoxicity is played
by protein-NP interaction, which is formed as a result of contact with the body. Although
the composition of “the protein crown” depends on the type of NPs, it turns out that most
NPs have the ability to bind with apolipoproteins [220]. The resulting complex is able to
easily penetrate into the cell and even move to the brain, e.g., with the participation of
apolipoprotein E [221]. The final reproductive toxicity is the result of the physico-chemical
characteristics of NPs, as well as the exposure time and the route of exposure.

The effects of nanotoxicity have been included in review articles [222–224]. A Web of
Science database bibliometric analysis of reproductive toxicity reported in 2006–2016 was
prepared by Wang et al. [184]. Valuable data linking reproductive disorders to exposure
to NMs was also included in a report prepared by the European Chemicals Agency in
2020 [182]. The report collected 111 publications covering 19 NMs. However, most of the
studies performed were on specific NPs, and toxicity studies were conducted with mam-
malian models (in vivo and in vitro assay methods) such as mice and rats, which exhibit
genetic similarities to humans. Such data are contained in a review by Brohi et al. [222]; a re-
view by Makato Ema et al. in 2017 [225] on nano-Ag, and earlier in 2010 on the toxicity of
manufactured NMs [204]; and a review by Dantas et al. [226] only covering rodent models.

3.1. Nanotoxicity and Male Fertility

The barriers in the reproductive system, such as the blood–testes barrier (BTB), play a
key role in protecting the testicles from all toxic xenobiotics. Meanwhile, it turns out that
NPs reach the reproductive system by exceeding BTB, causing anomalies in the reproductive
system. Upon exposure, NPs may accumulate in the testes and epididymides, disrupting
the spermatogenesis process [227,228]. Spermatogenesis is a process involving germ cell
proliferation and differentiation, leading to the production and release of spermatozoa
from the testes. The hormonal and nutritive components necessary for the development
and viability of germ cells are provided by Sertoli cells. Sertoli cells not only promote
spermatogenesis inside the seminiferous tubules but are also a protective barrier preventing
toxins from entering the germ cells [229]. The accumulation of NPs in the testes of males was
found after exposure to NPs by various routes, by ingestion, through the skin, inhalation,
and injection. Falchi et al. in 2018 [230] drew attention to the influence of NPs on male
fertility. While the negative effects of Au-NPs, Ag-NPs, TiO2-NPs, etc., on steroidogenesis,
spermatogenesis, and fertility in laboratory animals are known, data on male fertility of
reproductive age are limited. In order to explain the harmful effects of NPs on reproduction,
reproductive indicators and sperm parameters are examined: sperm count, motility and
morphology, histopathology of the seminiferous tubules, and testosterone levels.

A bibliometric report prepared in 2021 showed that China is the undisputed leader in
research on male reproductive nanotoxicity [185]. In vivo studies are mainly performed
with rats (50%) and mice (48%) for an acute duration (1–14 weeks), depending on the test
species. NPs are administrated orally (42%) and, less commonly, intraperitoneally and
intravenously. In vitro models use testicular cells, mostly sperm cells (38%), Sertoli cells
(24%), and Leydig cells (15%), with a 24 h exposure period. The vast majority of studies
conducted until 2021 concern the nanotoxicity of Ag.

The schematic representations of studies on the adverse effects of NPs on the male
reproduction system in vivo and in vitro are summarized in Figure 2 and Table 3 [228–230].
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Figure 2. The effect of NPs on the fertility of in vivo and in vitro male models. 

Table 3. Influence of NPs on the male reproduction system. Based on Refs. [228–230]. 
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Figure 2. The effect of NPs on the fertility of in vivo and in vitro male models.

3.1.1. The Sperm

The influence of NPs on sperm quality has only been studied since the beginning of
the 21st century. The in vitro toxicity of NPs was achieved by the direct addition of NPs
to semen. The physical characteristics of the semen were investigated, and they played a
key role in the transfer of genetic material [231]. Sperm DNA integrity and cell membrane
integrity were compared before and after NPs exposure. The research results obtained by
various authors are inconsistent and depend primarily on the type of nanoparticles used. It
should be emphasized that there is little research completed on human material.

The first study on magnetite NPs was carried out by Ben-David Makhluf et al. [232].
In this study, the transfer of Fe3O4-NPs coated with polyvinyl alcohol (PVA) into cattle
sperm, namely, the mitochondria in the tail and acrosomes in the head, was confirmed.
However, the authors did not find an effect of the Fe3O4-PVA colloidal solution on the
mobility or the ability to fertilize the egg, i.e., the efficiency of the acrosome reaction.

Three years later, in 2009, Wiwanitkit et al. [233] proved the spermatotoxicity of Au-
NPs while suggesting that other NPs should also be thoroughly tested for spermatotoxicity.
As a result of mixing a suspension of Au-NPs (9 nm) at a concentration of 44 µg mL−1 with
male semen, a loss of motility in 25% of the sperm was observed. The authors also described
the fragmentation of sperm and the penetration of Au-NPs into the sperm head and tails.
This study explained the reported infertility and epididymitis in men exposed to Au-
NPs [234]. The high toxicity of nano-Au may be due to an increase in activity when NPs are
deposited on matrices such as metal oxides or activated carbon. This phenomenon is used
in the case of chemical reactions, such as CO oxidation and propylene epoxidation [235].
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Table 3. Influence of NPs on the male reproduction system. Based on Refs. [228–230].
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abnormalities, motility, mitochondrial activity, and acrosome integrity); histopathological changes (intracellular
vacuolations; degeneration, atrophy, and necrosis of germ cells, Sertoli cells, and Leydig cells; irregularities in plasma
membrane; nuclear chromatin loss; mitochondria swelling and cristae disappearance; dilated endoplasmic reticulum; and
increase in lysosomes), morphometric alterations of germinal epithelium; decline in the number of spermatogonia,
spermatids, Sertoli and Leydig cells; impairments in spermatogenesis (reductions in germ cell content, reductions in daily
sperm production and sperm count in testes and epididymis); changes in the expression of apoptosis-related proteins;
changes in testosterone levels (plasma/serum, intratesticular testosterone)
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is Hormonal imbalance (GnRH, LH, FSH, prolactin, inhibin, DHT, estrogen, testosterone); changes of the transcript expression
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ep
id

id
ym

is

Histopathological changes (hyperplasia of epithelial cells, the lining of the duct of epididymis, cell pyknosis, necrosis and
abscission, vacuolar cytoplasm in the cauda of principal cells, increased fibrotic tissues, infiltration of connective tissues and
inflammatory cells, and interstitial congestion with ducts presenting empty lumen lacking spermatozoa)
Decrease in the mitochondrial activity of epididymal sperm (reduction in the number of sperm in the lumen of epididymal
duct, change in epididymis weight) and changes in the epididymal sperm (reduced sperm concentration in the cauda,
motility, and acrosome integrity, and increases in DNA damage)

Abbreviations: gonadotropin-releasing hormone (GnRH), luteinizing hormone (LH), follicle-stimulating hormone (FSH), dihydrotestosterone (DHT); hypothalamus–pituitary–gonad
axis (HPG axis); lipid peroxidation (LPO); mitochondrial DNA (mtDNA); blood–testes barrier (BTB).
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In vitro studies on the effect of nanotoxicity on male reproduction are performed on
spermatogonial stem cell lines isolated from mouse and cattle sperm. One of the reports
concerns diesel exhaust particles (DEP), soot (CB), and TiO2-NPs, which were tested on
mouse Leydig TM3 cell lines, or testosterone-producing testosterone cells [236]. The re-
search was performed by an advanced analytical technique using Transmission Electron
Microscopy (TEM) and Scanning Electron Microscopy/Energy-Dispersive X-ray Spec-
troscopy (FE-SEM/EDS). The TiO2-NPs turned out to be the most cytotoxic. It should be
emphasized, however, that all tested nanoparticles were captured by Leydig cells and
influenced the viability, proliferation, and expression of genes, i.e., heme oxygenase-1
(HO-1), which is a marker of oxidative stress, and the gene for steroidogenic acute regula-
tor protein (StAR), that is, the factor controlling the mitochondrial transfer of cholesterol.
Another study was performed by Braydich-Stolle et al., in 2005 [206], on the C18-4 cell
line, which was previously established from type A spermatogonia isolated from 6-day-
old mouse testes, examining the toxicity of Ag-NPs (15 nm), MoO3-NPs (30 nm), and
Al-NPs (30 nm). The results clearly showed the influence of NPs concentration on tox-
icity. The authors proved that Ag-NPs were the most toxic, while MoO3-NPs were the
least harmful. To rank NPs for toxicity with respect to mitochondrial function and plasma
membrane integrity MTS [[3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-
sulfophenyl))-2H-tetrazolium] reduction assay, a lactase dehydrogenase (LDH) leakage
assay and the activation of apoptotic pathways were used. It turned out that Ag-NPs
decreased mitochondrial function and cell viability. The EC50 value calculated for Ag-NPs
was the lowest and was 8.75 µg mL−1, while the EC50 value for MoO3-NPs was 90 µg mL−1.
The authors emphasized the fact that Ag-NPs interfere with cellular metabolism and may
promote cell apoptosis. A significant increase in LDH leakage was observed for Al-NPs, for
which the EC50 was 4.7 µg mL−1, and for MoO3-NPs, with the EC50 value of 5 µg mL−1.

Another study assessing the effect of NPs on the proliferation of mouse seminal stem cells
(SSCs), which are the source of adult testes germline, is the work of Braydich-Stolle et al. in 2010 [237].
At concentrations above 10 µg mL−1, Ag-NP induced a significant decrease in SSC pro-
liferation through specific interaction downstream of the Ret Fyn kinase. Undoubtedly,
most NPs have harmful or toxic effects on spermatogenesis. Exposure to Au-NPs [233],
silica [50], TiO2-NPs [238], and many other manufactured NMs have been shown to be
toxic to sperm.

However, some NPs show a beneficial or nontoxic effect on spermatogenesis. Several
reports prove the beneficial effect of NPs on sperm parameters (number, motility, viability,
and percentage of live sperm). Kobyliak et al. [239] reported that cerium dioxide (CeO2)
NPs lowered the level of oxidative stress in rat sperm, as evidenced by improved sperm
parameters and decreased serum lipid peroxidation product levels, as well as increased CAT
and SOD activity. The above observation was confirmed by a study [240] that described
the beneficial effect of CeO2-NPs on kinetic and morphological parameters of ram semen,
such as membrane mobility and integrity, as well as the absence of genotoxicity. CeO2-NPs
seem to have a future in medicine due to their ability to store oxygen and the activity of
scavengers against ROS comparable to antioxidant enzymes in biological systems [241].
Numerous reports describe a reduction in ROS levels in tissues or cells after exposure
to CeO2-NPs [242,243]. In contrast, some authors have observed a pro-oxidative [244] or
DNA-damaging effect in liver cells and leukocytes [245]. It is likely that CeO2-NPs may
show different activity in the reproductive system depending on the physico-chemical
properties, concentration, or duration of exposure, which would explain the observed
discrepancies. This does not change the fact that CeO2-NPs are still controversial. In mice,
exposure to CeO2-NPs led to a reduction in fertilization and accumulation in granule cells
and sperm plasma membranes [246]. In turn, sheep gametes tolerated well the coincubation
with CeO2-NPs. Granular cells are likely to internalize this compound by endocytosis,
possibly in this case [247].

Another example is the use of Zn-NPs as an antioxidant in Holstein bulls’ semen
extender [248]. The authors of the study assumed that because Zn is important for testic-
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ular development and spermatogenesis, it can be expected that Zn-NPs will not only be
toxic but may be effective in preserving sperm quality during storage. The study indeed
demonstrated the effectiveness of Zn-NPs in defending sperm from lipid peroxidation,
which results in DNA damage, decreased sperm parameters, gene expression, and de-
fective membrane integrity. It has been reported that also nano-Se diet supplementation
produced positive effects on sperm quality in male goats [249,250]. Similarly, DMSA-coated
maghemite NPs [251] showed no adverse effects on germ cell kinetics, sperm structure,
and function.

3.1.2. NPs Accumulation in Testes

Accumulation of NPs in the testes of males was found after exposure to NPs by
various routes: oral [252], intragastric [253], intraperitoneal, or intravenous [254]. However,
the intramuscular administration of silica–gold NPs [255] or TiO2-NPs for 4 weeks at
concentrations ranging from 0.1 to 10 mg/kg BW did not result in an accumulation of NPs
in the testes of mice [256].

The main factors influencing toxicity are the lipophilicity of the xenobiotic and the
related possibility of penetration through tissue barriers. NPs can penetrate tissue barriers
and accumulate in the testes, as confirmed in animal models, but are not always accompa-
nied by a visible toxic effect, as in the case of silica-coated magnetic NPs administered at a
dose of 10, 25, 50, or 100 mg/kg to male mice [257] or silica–gold NPs by intramuscular
injection into mice [258].

The most common, however, is the occurrence of toxic effects following the accumula-
tion of NPs in the testes and the resulting male infertility. Examples include exposure to
Ag-NPs [259] or to TiO2-NPs [260], which leads to altered testicular histology and reproduc-
tive toxicity in animal models. Modification of the surface of nanoparticles, e.g.,ω-Methoxy
andω-aminoethyl poly (ethylene glycol)-modified (PEG-NH2 @ AuNP), showed that NPs
could accumulate in mouse testes and enter germ cells; however, there was an increase in
plasma T levels and no effect on male fertility, fetal survival, or fetal development [261].

3.1.3. Spermatogenesis

Spermatogenesis begins in the testicles’ seminiferous tubules. Exposure to NPs has
been shown to influence this process, contributing to a reduction in sperm count [253,262].
The influence of NPs takes place at the molecular level and concerns the change in the
overall expression of genes involved in spermatogenesis [263]. Such studies were conducted
by Hong et al. [264], who confirmed alterations of testes-specific gene expression in male
mice following nano-TiO2 exposure. In their further studies [260,265], they confirmed
decreases in spermatogenesis via biochemical dysfunctions in the testes and the apoptosis
of primary cultured Sertoli cells exposed to TiO2-NPs.

NPs such as TiO2-NPs are dangerous to male offspring in utero [266]. It turns out that
the subcutaneous injection of 400 µg TiO2-NPs in pregnant mice harms the development of
the male reproductive system. Fetal depletion of Sertoli cells, the rupture of the seminif-
erous tubules, altered testicular morphology, and decreased daily sperm production and
epididymal motility were observed in the fetus. TiO2-NPs could be found in Leydig cells,
Sertoli cells, and sperm in the testes of male offspring as early as 6 weeks postpartum.

In a study by Yuan et al. [267], the expression levels of 44 imprinted genes were
analyzed by quantitative real-time PCR in TM-4 Sertoli cells after a low dose of (10 nM) Au-
nanorods treatment for 24 h. The authors reported, among others, diminished expression
of Kcnq1, Ntm, Peg10, Slc22a2, Pwcr1, Gtl2, Nap1l5, Peg3, and Slc22a2, while Plagl1
was significantly overexpressed. As demonstrated by the example of Ag-NPs [268], the
internalization of NPs into spermatozoa may alter sperm physiology, leading to poor
fertilization and embryonic development. More recently, perspectives of NPs in male
infertility have been described in some review papers [223,269–271].

In contrast to most reports presenting reproduction nanotoxicty, a study by
Eman T. Hamam et al. in 2022 [272] described the use of ZnO-NPs with the aim of restoring
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male rats’ reproductive capacity after the induction of Cisplatin (Cis) by promoting sper-
matogenesis. The study raised hopes for tackling the impaired initiation of spermatogenesis
by Cis used in cancer treatment. ZnO-NPs are used in many products and are considered
safe despite inconsistent reports of toxicity and unfavorable health effects. A meta-analysis
performed in 2022, based on a systematic review of 76 publications, revealed several at-
tributes responsible for cytotoxicity after exposure to ZnO-NPs. Based on the results of
in vitro studies, it was established that nanotoxicity strictly depends on the dose and size
of NPs, exposure time, and the type of cell line [273]. Examples of NPs and their effects on
reproductive function in males are collected in Table 4.

Table 4. The impacts of selected NPs on reproductive function in males.

Model Expose Doses Findings Ref.

Copper oxide nanoparticles (CuO-NPs)

Male albino
mice BALB/c Oral intake 25, 35 mg/kg

BW

Reduced proliferative activity and differentiation
in the potential of epithelial cells; reduction in the
number of Leydig cells, the incidence of necrosis,
damage in organs (testes, epididymis, and
seminal vesicles); spermatogenesis: low number
of sperm, distorted sperm leading to the
formation of embryos with some abnormalities;
MDA and caspase-3 increased; Ki67 protein
decreased; CD68 protein increased; reduction in
the seminal vesicle, increased prostate size

[274]

Zinc oxide nanoparticles (ZnO-NPs)

New Zealand
rabbit spermatozoa Incubation 6–391 mg/mL per 0,

1, 2, 3 h

Spermatozoa membrane integrity decrease,
negative dose-dependent effect on spermatozoa
motility and viability

[275]

Male mice Oral administration 50, 150, 450 mg/kg
for 14 days

Detachment, atrophy, and vacuolization of germ
cells; vacuolization of Sertoli and Leydig cells;
decrease in the number of sperm in the
epididymis; decrease in the concentration of T in
serum; up-regulated IRE1α, XBP1s, BIP, and
CHOP genes; increase in the expression of
caspase-3; reduced body weight; increased
relative testicular weight and relative epididymis
weight in a dose-dependent manner

[276]

Adult albino rats Oral subacute 422 mg/kg/day
for 4 weeks

Congestion in blood vessels; detached germinal
epithelium from the basement membrane;
absence of spermatozoa in seminiferous tubules;
fragmentation of DNA in testicular and prostatic
tissue; increase in the mean area percentage of
iNOs immunoreactions; testicular and prostatic
tissue inflammatory cytokines; elevation in serum
level of MDA; reduction in GSH, CAT, and
SOD activities

[277]

Albino rats Orally
100 and
400 mg/kg/day
for 12 weeks

Disorganization, vacuolation, and detachment of
germ cells in testicular tissue; decrease in sperm
cell count, sperm motility, live percentage of
sperm and normal sperm; decrease in serum
testosterone level and antioxidant enzymes
activity (SOD and CAT) and the GSH-Px level;
increase in LPO in the affected testes; decrease in
3β-HSD, 17β-HSD, and Nr5A1 transcripts;
quercetin—beneficial for preventing or
ameliorating ZnO-NP reproductive toxicities

[227]
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Table 4. Cont.

Model Expose Doses Findings Ref.

Male NMRI mice Orally
5, 50, 300
mg/kg/day
for 35 days

Spermatogenetic factors: change in the number
and motility of sperm, decrease in the diameter
and height of the seminiferous tubules, blocking
of the maturity of sperm cell lines, epithelial
vacuolization, increase in sloughing of germ cells
and their detachment, formation of
multinucleated giant cells in germinal epithelium

[278]

Semen from
healthy persons Incubation

10–1000 µg/mL
(37 ◦C) for
45–180 min.

Dose- and time-dependent cytotoxicity;
maximum cell death percentage—20.8%, 21.2%,
and 33.2% after 45, 90, and 180 min, respectively
Highest concentration (1000 µg/mL) resulted in
highest toxicity

[279]

Sertoli (TM-4) and
spermatocyte
(GC2-spd) cell lines
(in vitro models)

- 8 µg/mL
(sublethal dose)

Induced oxidative stress in both cells lines
(decreased glutathione level and increased
MDA level)
Down-regulated expression of BTB proteins in
Sertoli cells, increased TNF-α secretion, DNA
damage in germ cells and GC2-spd cells, S phase
arrest, lower expressions of BTB proteins (ZO-1,
occludin, claudin-5, and connexin-43)

[280]

Male rats Intraperitoneal
i.p. injected

5 mg/kg once a
week for 8 weeks

Group treated with Cis and ZnO-NPs: decrease
in ROS BTB proteins restoration, enhanced
architecture of the testes, and increased sperm
DNA integrity

[272]

Nickel nanoparticles (Ni-NPs)

Male Sprague
Dawley rats Orally

5, 15,
45 mg/kg/day for
10 weeks

Increased FSH and LH, lowered estradiol (E2),
serum levels
decreased, the ratio of epididymis weight over
body weight increased, motility of the sperm
changed, diminished shedding of epithelial cells
of the raw seminiferous tubules, disordered
arrangement of cells in the tubes, cell apoptosis

[281]

BALB/c mice
(in vivo),GC-1
cells(in vitro)

Orally/incubation 5, 15, and
45 mg/kg/day

In vivo: serum T, FSH, LH, and sperm count
decreased; sperm abnormality; expression of
Drp1, Pink1, and Parkin proteins increased;
seminiferous tubules of the testes changed
In vitro: MMP, ATP, and cell viability decreased;
apoptosis; accumulation of ROS; expression of
Drp1, Pink1, Parkin, Bax, caspase-9, and
caspase-3 proteins; expression of Bcl-2; Bax/Bcl-2
ratio increased

[282]

BALB/c mice Intratracheal
instillation

0.1 mL/10 g once a
week for 28 days

Changes in sperm deformity and serum
reproductive hormones, apoptotic cells number
increased; testicular spermatogenic cells damage;
expressions of proteins (Drp1, Pink1, Parkin)
increased

[283]

Silver nanoparticles (Ag-NPs)

Wistar rats Oral exposure 15 and
50 µg/kg BW

Weight not changed, growth less diminished,
sperm reserves in the epididymis and diminished
sperm transit time, a reduction in sperm
production, impairment in spermatogenesis, and
lower sperm count

[284]
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Table 4. Cont.

Model Expose Doses Findings Ref.

Wistar rats Intravenous
administration 5 and 10 mg/kg BW

Decrease in epididymal sperm count; increased
level of DNA damage in germ cells; change in the
testes’ seminiferous tubules morphometry, adipose
tissue distribution, and the frequency of abnormal
spermatozoa; no alteration in body and organ
weight, 20 nm AgNP—more toxic than 200 nm ones

[285]

Male rats Sub-dermal 50 mg/kg BW for
28 or 7 days

Reduction in BW, decrease in the relative weight of the
testes and epididymis with the same dose exposure
for 7 days, Ag-NP triggered hormonal imbalance and
induced oxidative stress in the testes and epididymis,
negatively affecting sperm parameters

[286]

Wistar albino rats Intraperitoneal
injection

100 mg/kg/day for
7 days 1000
mg/kg/day for 7 or
28 days

Congestion of blood vessels, detachment of the
germinal epithelium and distortion in
seminiferous tubules, reduction in the germinal
epithelium, absence of spermatozoa in shrunk
seminiferous tubules, tissue damage increased
with increased dose and duration of exposure

[287]

Male rats Intraperitoneally
injected 2 or 4 mg/kg BW

Damaging changes of the seminiferous tubules,
vacuolation in the seminiferous tubules with a
reduced number of spermatogenic cell lines (at a
low NPs dose),
increased reduction in spermatogenic cell lines
with vacuolation in germinal epithelial cells and
basement membrane damage, detachment from
the surrounding tubules, severe congestion in
blood vessels, and few Leydig cells in the
interstitial tissue (at high NPs doses),
protective role of camel milk for the testes
damaged by AgNPs

[288]

Male mice Intraperitoneally
injection

0.2 mL once a week
at a dose of
40 mg/kg of BW

Sexual behavior, oxidative defense parameters,
sperm count, and motility of the sperm, the
apoptotic cells in testicular cross-sections, and
TBARS level increased;
YO-NPs with protective effects, lowering of
Ag-NPs toxicity, no difference in RW

[289]

Spermatozoa
(BDF1) mice Addition

0.1, 1, 10, or
50µg/mL
incubated at 37 ◦C
for 3 h

Sperm viability and the acrosome reaction
inhibition in a dose-dependent manner, increased
sperm mitochondrial copy numbers,
morphological abnormalities, mortality
decreased, decrease in the rate of oocyte
fertilization and blastocyst formation, lower
expression of trophectoderm-associated and
pluripotent marker genes in blastocysts

[268]

Iron oxide nanoparticles (Fe2O3-NPs)

Male mice Intraperitoneal
exposure

25 and 50 mg/kg
once a week
for 4 weeks

Sloughing and detachment of germ cells and
vacuolization in seminiferous tubules of the
testicular tissues; accumulation of NPs; increased
ROS species, LPO, protein carbonyl content, GPx
activity, and NO levels; decrease in SOD, CAT,
glutathione, and vitamin C levels; increased
serum T levels, expression of Bax,
cleaved-caspase-3, and cleaved-PARP; cell
apoptosis; damage to the seminiferous tubules;
decrease in the number of spermatogonia,
primary spermatocytes, spermatids

[290]
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Table 4. Cont.

Model Expose Doses Findings Ref.

Titanium dioxide nanoparticles (TiO2-NPs)

Male albino rats Intraperitoneal
injection

300 mg/kg
for 14 days

Increases in the thickness of interstitial space,
congestion of blood vessels, and detachment of
the germinal epithelium from the basement
membrane in the seminiferous tubules, beneficial
effects of beta carotene administration

[291]

Sertoli cell culture Incubation 5, 15, or 30 lg/mL
for 24 h

Reduction in cell viability, lactate dehydrogenase
release, and induction of apoptosis or death of
Sertoli cells;
elevation in ROS species; reductions in SOD, CAT,
and GSH-Px activities; decreases in DWm, release
of cytochrome c into the cytosol; upregulation of
cytochrome c, Bax, caspase-3, glucose-regulated
protein 78, and C/EBP homologous protein and
caspase-12 protein expression; and
downregulation of bcl-2 protein expression

[260]

Aluminum oxide nanoparticles (Al2O3-NPs)

Male rats Oral 70 mg/kg BW

Distortion in seminiferous tubules; wide spaces
among interstitial cells (Al2O3-NPs); irregularity
in the seminiferous tubules’ shape, empty lumina;
and reduced thickness of the epithelium lining
(ZnO-NPs; 100 mg/kg BW); co-administration of
Al2O3-NPs, ZnO-NPs caused severe damage to
the seminiferous tubules and
basement membrane

[292]

Gold nanoparticles (Au-NPs)

Male mice BABL/c
(in vivo), TM3 cells
(in vitro)

Intravenously
injected

0.17 or 0.50
mg/kg/day 0 for
14 days

Accumulation of NPs in the testes; reduced
plasma T; increased rate of epididymal sperm
malformation; induced autophagosome
formation; enhanced ROS production; disrupted
cell cycle, DNA damage, and cytotoxicity in TM3
Leydig cells; inhibition of the synthesis of T in
TM3 cells; reduced expression of
17α-hydroxylase

[293]

Male bulb-c mice Intraperitoneal
injection

40 and 200
µg/kg/day for 7
and 35 days

Sperm motility and morphology decrease,
increase in abnormal spermatozoa (TB, AB,
and CMA3),
increase in instability of chromatin and the rate of
sperm DNA damage

[294]

TM-4 Sertoli cells Addition of
gold nanorods

0 and 10 nM
for 24 h

Decreased glycine synthesis, membrane
permeability, mitochondrial membrane potential,
and disruption of BTB factors in TM-4 Sertoli
cells; aberrant expression of imprinted genes in
TM-4 Sertoli cells.

[267]

Zinc nanoparticles (Zn-NPs)

Holstein bull semen
(in vitro, in vivo) Incubation 10−6–10−2 M

Plasma membrane integrity improved in
the semen,
proportions of live spermatozoa with active
mitochondria increased, level of MDA lowered,
Sperm—total and progressive motility, sperm
viability increased
DNA fragmentation, pregnancy rate—not
changed, blastocyst rate increased, embryo
development rate (in vitro)—no change

[248]



Int. J. Environ. Res. Public Health 2022, 19, 11066 24 of 36

Table 4. Cont.

Model Expose Doses Findings Ref.

Manganese Dioxide nanoparticles (MnO2-NPs)

Albino Wistar rats Sub-chronic injection 100 mg/kg/day for
4 weeks

Decrease in the number of sperm, spermatogonia,
spermatocytes, the diameter of seminiferous
tubules, motility of the sperm;
no difference in the weight of prostate,
epididymis, left testicle, estradiol, and T levels

[295]

Selenium nanoparticles (Se-NPs)

Taihang black goats Oral 0.3 mg/kg
Increase in final BW, total blood, serum and tissue
Se concentration, serum GSH-Px, SOD,
CAT, MDA

[249]

Male Boer goats Oral 0.3 mg/kg for
12 weeks

Testicular Se level, semen GPx, and ATPase
activity increased; semen volume, density,
motility, and pH—not affected; membrane
system integrity improved; positive effects of
nano-Se diet supplementation on sperm
abnormality, abnormal spermatozoal
mitochondria, membrane system integrity

[250]

Cerium oxide nanoparticles (CeO2 NPs)

The ejaculates of
Sarda rams Incubation 0.44 and

220 µg/mL

A beneficial effect on motility parameters, the
velocity of sperm cells enhanced, beneficial
effects on the integrity of plasma membranes of
spermatozoa, no change in production of ROS
after 96 h of incubation—at 4 ◦C, the integrity of
DNA was constant

[240]

Abbreviations: body weight (BW); relative weight (RW); glutathione peroxidase (GSH-Px); superoxide dismu-
tase (SOD); catalase (CAT); malondialdehyde (MDA); aniline blue (AB); toluidine blue (TB); chromomycin A3
(CMA3); blood–testes barrier (BTB); cisplatin (Cis); reactive oxygen species (ROS); follicle-stimulating hormone
(FSH); luteinizing hormone (LH); testosterone (T); lipid peroxidation (LPO); thiobarbituric acid reactive sub-
stances (TBARS); endoplasmic reticulum stress (ER stress); yttrium oxide nanoparticles (YO-NPs); mitochondrial
membrane potential (MMP); adenozyno-5′-trifosforan (ATP); mitochondrial membrane potential (DWm).

4. Conclusions and Future Perspectives

Nowadays, the reproductive health of the human species is at considerable risk. Most
cases of male infertility are caused by poor sperm quality of unknown etiology. One of
the causes of suboptimal sperm quality is oxidative stress, which damages sperm DNA. In
the late twentieth and early twenty-first centuries, research on infertility focused on the
role of environmental factors. Many reports demonstrated the toxicity of heavy metals
and described the mechanisms of their action on the reproductive system. Potentially
harmless factors were given little attention. The current review collected data on the effects
of metallic NPs that dominate in modern industry and essential metals, which in excess
also cause changes in organ weight, abnormalities in sperm and seminiferous tubules,
and abnormalities in spermatogenesis and hormones/gens/enzyme involved in sperm
production. Several observations emerged from the collected material that may inspire
future research:

(i) Despite the existence of extensive data on exposure to single metals or metallic NPs,
there is a gap in the safety assessment of multimetals, both on the pituitary–nucleus
axis and sperm. There is a scarcity of such multi-element studies. An example is [296],
which studied male Wistar rats’ exposure to Zn, Al, and Cu. To our knowledge, there
are no studies that have assessed the effects of Multi NPs on the reproductive system.

(ii) Most in vivo studies use the oral route of administration via the gastrointestinal
system, while other routes of exposure are less frequently used. An example is a
transdermal exposition, which is important in studying the absorption of NPs from
cosmetics that are absorbed slowly through the skin into the body.
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(iii) NPs are able to cross biological membrane barriers, including the blood–testis barrier.
The harmfulness of most NPs to male fertility (spermatogenesis) suggests extreme
caution regarding the use of NPs in medicine (e.g., Nano-Ag).

(iv) The cell membrane, as a negatively charged phospholipid bilayer, is generally not
an obstacle for cationic nanoparticles. The functionalization of nanoparticles with
appropriate ligands may improve or hinder their entry into cells.

(v) The nanotoxicity of NPs depends on properties (i.e., composition, size, shape, and
functionalization). The available reports rarely track the reproductive toxicity of func-
tionalized NPs [214,215]. According to recent reports, the NPs’ surface, due to high
reactivity, adsorbs proteins [297], plant metabolites [298], etc. Therefore, differential
responses related to NPs surface properties can be expected.

(vi) Since most studies are performed in vitro or in vivo in laboratory animals, no data are
available on the effects of long-term exposure. Similarly, there is a lack of distinction
between the adverse effects of the trace elements and nanomaterials on male fertility
as temporary or permanent.

(vii) Although significant advances have been made in the treatment of male infertility,
e.g., by using multi-element supplementation, there is still no public awareness of
the effects of an overdose of essential metals such as Se, Fe, or Zn on reproductive
hormones and sperm quality.
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31. Pieczyńska, J.; Grajeta, H. The role of selenium in human conception and pregnancy. J. Trace Elem. Med. Biol. 2015, 29, 31–38.
[CrossRef] [PubMed]

32. Rayman, M.P. Food-chain selenium and human health: Emphasis on intake. Br. J. Nutr. 2008, 100, 254–268. [CrossRef] [PubMed]
33. Nenkova, G.; Petrov, L.; Alexandrova, A. Role of Trace Elements for Oxidative Status and Quality of Human Sperm. Balk. Med. J.

2017, 34, 343–348. [CrossRef] [PubMed]
34. Ribeiro, J.C.; Braga, P.C.; Martins, A.D.; Silva, B.M.; Alves, M.G.; Oliveira, P.F. Antioxidants Present in Reproductive Tract Fluids

and Their Relevance for Fertility. Antioxidants 2022, 10, 1441. [CrossRef]
35. Jia, J.; Wang, Z.; Yue, T.; Su, G.; Teng, C.; Yan, B. Crossing Biological Barriers by Engineered Nanoparticles. Chem. Res. Toxicol.

2020, 33, 1055–1060. [CrossRef]

http://doi.org/10.1007/s10534-004-1689-7
http://www.ncbi.nlm.nih.gov/pubmed/15689116
http://doi.org/10.1080/00039896.1975.10666733
http://www.ncbi.nlm.nih.gov/pubmed/1155972
http://doi.org/10.1016/j.reprotox.2020.09.006
http://www.ncbi.nlm.nih.gov/pubmed/32976933
http://doi.org/10.3109/01480545.2012.710631
http://doi.org/10.3390/antiox10091473
http://doi.org/10.1093/humrep/dew123
http://doi.org/10.1152/physrev.00017.2015
http://doi.org/10.1016/j.ijheh.2007.09.005
http://doi.org/10.1016/j.reprotox.2019.02.012
http://doi.org/10.1007/s12011-016-0804-2
http://www.ncbi.nlm.nih.gov/pubmed/27444304
http://doi.org/10.1016/j.chemosphere.2012.01.017
http://www.ncbi.nlm.nih.gov/pubmed/22309709
http://doi.org/10.5173/ceju.2013.01.art28
http://doi.org/10.1016/S0890-6238(03)00036-4
http://doi.org/10.1111/j.1439-0272.1990.tb02041.x
http://www.ncbi.nlm.nih.gov/pubmed/2099668
http://doi.org/10.1186/1476-069X-10-6
http://doi.org/10.1016/j.reprotox.2018.02.001
http://doi.org/10.1001/jama.1996.03540240035027
http://doi.org/10.1200/JCO.2013.49.2173
http://doi.org/10.1016/j.envres.2018.10.007
http://doi.org/10.1016/j.jtemb.2014.07.003
http://www.ncbi.nlm.nih.gov/pubmed/25175508
http://doi.org/10.1017/S0007114508939830
http://www.ncbi.nlm.nih.gov/pubmed/18346308
http://doi.org/10.4274/balkanmedj.2016.0147
http://www.ncbi.nlm.nih.gov/pubmed/28443587
http://doi.org/10.3390/antiox10091441
http://doi.org/10.1021/acs.chemrestox.9b00483


Int. J. Environ. Res. Public Health 2022, 19, 11066 27 of 36

36. Morishita, Y.; Yoshioka, Y.; Satoh, H.; Nojiri, N.; Nagano, K.; Abe, Y.; Kamada, H.; Tsunoda, S.-I.; Nabeshi, H.; Yoshikawa, T.; et al.
Distribution and histologic effects of intravenously administered amorphous nanosilica particles in the testes of mice. Biochem. Bio-
phys. Res. Commun. 2012, 420, 297–301. [CrossRef]

37. Iavicoli, I.; Fontana, L.; Leso, V.; Bergamaschi, A. The Effects of Nanomaterials as Endocrine Disruptors. Int. J. Mol. Sci. 2013, 14,
16732–16801. [CrossRef]

38. Adler, S.; Basketter, D.; Creton, S.; Pelkonen, O.; Van Benthem, J.; Zuang, V.; Andersen, K.E.; Angers-Loustau, A.; Aptula, A.;
Bal-Price, A.; et al. Alternative (non-animal) methods for cosmetics testing: Current status and future prospects—2010. Arch. Toxi-
col. 2011, 85, 367–485. [CrossRef]

39. Rogers, J.M.; Kavlock, R.J. Developmental Toxicology. In Casarett & Doull’s Toxicology, 6th ed.; Klaassen, C.D., Ed.; McGraw-Hill:
New York, NY, USA, 2001.

40. Bergamo, P.; Volpe, M.G.; Lorenzetti, S.; Mantovani, A.; Notari, T.; Cocca, E.; Cerullo, S.; Di Stasio, M.; Cerino, P.; Montano, L.
Human semen as an early, sensitive biomarker of highly polluted living environment in healthy men: A pilot biomonitoring
study on trace elements in blood and semen and their relationship with sperm quality and RedOx status. Reprod. Toxicol. 2016, 66,
1–9. [CrossRef]

41. Lian, M.; Wang, J.; Sun, L.; Xu, Z.; Tang, J.; Yan, J.; Zeng, X. Profiles and potential health risks of heavy metals in soil and crops
from the watershed of Xi River in Northeast China. Ecotoxicol. Environ. Saf. 2019, 169, 442–448. [CrossRef]

42. Han, Q.; Wang, M.; Cao, J.; Gui, C.; Liu, Y.; He, X.; He, Y.; Liu, Y. Health risk assessment and bioaccessibilities of heavy metals for
children in soil and dust from urban parks and schools of Jiaozuo, China. Ecotoxicol. Environ. Saf. 2020, 191, 110157. [CrossRef]

43. Li, Y.; Zhou, Q.; Ren, B.; Luo, J.; Yuan, J.; Ding, X.; Bian, H.; Yao, X. Trends and Health Risks of Dissolved Heavy Metal Pollution
in Global River and Lake Water from 1970 to 2017. Rev. Environ. Contam. Toxicol. 2020, 251, 1–24. [CrossRef] [PubMed]

44. Rehman, K.; Fatima, F.; Waheed, I.; Akash, M.S.H. Prevalence of exposure of heavy metals and their impact on health consequences.
J. Cell. Biochem. 2018, 119, 157–184. [CrossRef]

45. Agency for Toxic Substances and Disease Registry (ATSDR). Public Health Statement for Cadmium, September 2008 (displayed
3 January 2012). Available online: http://www.atsdr.cdc.gov/phs/phs.asp?id=46&tid=15 (accessed on 3 January 2012).

46. Tariba, B. Metals in Wine—Impact on Wine Quality and Health Outcomes. Biol. Trace Elem. Res. 2011, 144, 143–156. [CrossRef]
[PubMed]

47. Buzea, C.; Pacheco, I.I.; Robbie, K. Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases 2007, 2, MR17. [CrossRef]
48. Brooking, J.; Davis, S.S.; Illum, L. Transport of nanoparticles across the rat nasal mucosa. J. Drug Target. 2001, 9, 267–279.

[CrossRef] [PubMed]
49. Wang, J.; Liu, Y.; Jiao, F.; Lao, F.; Li, W.; Gu, Y.; Li, Y.; Ge, C.; Zhou, G.; Li, B.; et al. Time-dependent translocation and potential

impairment on central nervous system by intranasally instilled TiO2 nanoparticles. Toxicology 2008, 254, 82–90. [CrossRef]
50. Ema, M.; Kobayashi, N.; Naya, M.; Hanai, S.; Nakanishi, J. Reproductive and developmental toxicity studies of manufactured

nanomaterials. Reprod. Toxicol. 2010, 30, 343–352. [CrossRef]
51. Keramati Khiarak, B.; Karimipour, M.; Ahmadi, A.; Farjah, G.H. Effects of oral administration of titanium dioxide particles on

sperm parameters and in vitro fertilization potential in mice: A comparison between nano- and fine-sized particles. Vet. Res.
Forum 2020, 11, 401–408. [CrossRef]

52. Moretti, E.; Terzuoli, G.; Renieri, T.; Iacoponi, F.; Castellini, C.; Giordano, C.; Collodel, G. In vitro effect of gold and silver
nanoparticles on human spermatozoa. Andrologia 2013, 45, 392–396. [CrossRef]

53. Xu, G.; Lin, G.; Lin, S.; Wu, N.; Deng, Y.; Feng, G.; Chen, Q.; Qu, J.; Chen, D.; Chen, S.; et al. The Reproductive Toxicity of
CdSe/ZnS Quantum Dots on the in vivo Ovarian Function and in vitro Fertilization. Sci. Rep. 2016, 6, 37677. [CrossRef] [PubMed]

54. Dianová, L.; Tirpák, F.; Halo, M.; Slanina, T.; Massányi, M.; Stawarz, R.; Formicki, G.; Madeddu, R.; Massányi, P. Effects of Selected
Metal Nanoparticles (Ag, ZnO, TiO2) on the Structure and Function of Reproductive Organs. Toxics 2022, 10, 459. [CrossRef]
[PubMed]

55. De Brito, J.L.M.; de Lima, V.N.; Ansa, D.O.; Moya, S.E.; Morais, P.C.; de Azevedo, R.B.; Lucci, C.M. Acute reproductive toxicology
after intratesticular injection of silver nanoparticles (AgNPs) in Wistar rats. Nanotoxicology 2020, 14, 893–907. [CrossRef]

56. Hamdi, H. Testicular dysfunction induced by aluminum oxide nanoparticle administration in albino rats and the possible
protective role of the pumpkin seed oil. J. Basic Appl. Zool. 2020, 81, 42. [CrossRef]

57. Park, M.V.; Annema, W.; Salvati, A.; Lesniak, A.; Elsaesser, A.; Barnes, C.; McKerr, G.; Howard, C.V.; Lynch, I.; Dawson, K.A.; et al.
In vitro developmental toxicity test detects inhibition of stem cell differentiation by silica nanoparticles. Toxicol. Appl. Pharmacol.
2009, 240, 108–116. [CrossRef] [PubMed]

58. Shaban, E.E.; Salama, D.M.; El-Aziz, A.; Ibrahim, K.S.; Nasr, S.M.; Desouky, H.M.; Elbakry, H.F.H. The effect of exposure to
MoO3-NP and common bean fertilized by MoO3-NPs on biochemical, hematological, and histopathological parameters in rats.
Sci. Rep. 2022, 12, 12074. [CrossRef] [PubMed]

59. Nordström, S.; Beckman, L.; Nordenson, I. Occupational and environmental risks in and around a smelter in northern Sweden. I.
Variations in birth weight. Hereditas 2009, 88, 43–46. [CrossRef]

60. Hemminki, K.; Niemi, M.L.; Koskinen, K.; Vainio, H. Spontaneous abortions among women employed in the metal industry in
Finland. Int. Arch. Occup. Environ. Health 1980, 47, 53–60. [CrossRef]

61. Bellés, M.; Albina, M.L.; Sánchez, D.J.; Corbella, J.; Domingo, J.L. Interactions in Developmental Toxicology: Effects of Concurrent
Exposure to Lead, Organic Mercury, and Arsenic in Pregnant Mice. Arch. Environ. Contam. Toxicol. 2002, 42, 93–98. [CrossRef]

http://doi.org/10.1016/j.bbrc.2012.02.153
http://doi.org/10.3390/ijms140816732
http://doi.org/10.1007/s00204-011-0693-2
http://doi.org/10.1016/j.reprotox.2016.07.018
http://doi.org/10.1016/j.ecoenv.2018.11.046
http://doi.org/10.1016/j.ecoenv.2019.110157
http://doi.org/10.1007/398_2019_27
http://www.ncbi.nlm.nih.gov/pubmed/31011831
http://doi.org/10.1002/jcb.26234
http://www.atsdr.cdc.gov/phs/phs.asp?id=46&tid=15
http://doi.org/10.1007/s12011-011-9052-7
http://www.ncbi.nlm.nih.gov/pubmed/21479541
http://doi.org/10.1116/1.2815690
http://doi.org/10.3109/10611860108997935
http://www.ncbi.nlm.nih.gov/pubmed/11697030
http://doi.org/10.1016/j.tox.2008.09.014
http://doi.org/10.1016/j.reprotox.2010.06.002
http://doi.org/10.30466/VRF.2018.89501.2163
http://doi.org/10.1111/and.12028
http://doi.org/10.1038/srep37677
http://www.ncbi.nlm.nih.gov/pubmed/27876896
http://doi.org/10.3390/toxics10080459
http://www.ncbi.nlm.nih.gov/pubmed/36006138
http://doi.org/10.1080/17435390.2020.1774812
http://doi.org/10.1186/s41936-020-00178-8
http://doi.org/10.1016/j.taap.2009.07.019
http://www.ncbi.nlm.nih.gov/pubmed/19631676
http://doi.org/10.1038/s41598-022-16022-8
http://www.ncbi.nlm.nih.gov/pubmed/35840748
http://doi.org/10.1111/j.1601-5223.1978.tb01600.x
http://doi.org/10.1007/BF00378328
http://doi.org/10.1007/s002440010296


Int. J. Environ. Res. Public Health 2022, 19, 11066 28 of 36

62. Wu, S.; Wang, M.; Deng, Y.; Qiu, J.; Zhang, X.; Tan, J. Associations of toxic and essential trace elements in serum, follicular fluid,
and seminal plasma with In vitro fertilization outcomes. Ecotoxicol. Environ. Saf. 2020, 204, 110965. [CrossRef]

63. Telisman, S. Interactions of essential and/or toxic metals and metalloid regarding interindividual differences in susceptibility to
various toxicants and chronic diseases in man. Arch. Ind. Hyg. Toxicol. 1995, 46, 459–476.
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