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Abstract: The COVID-19 pandemic has made significant impacts on public health, including human
exposure to airborne pathogens. In healthcare facilities, the locations of return air vents in ventilation
systems may have important effects on lowering airborne SARS-CoV-2 transmission. This study
conducted experiments to examine the influence of different return air vents’ heights (0.7 m, 1.2 m,
and 1.6 m) on the particle removal effects in a simulated patient ward. Three different ventilation
systems were examined: top celling air supply-side wall return (TAS), underfloor air supply-side
wall return (UFAS) and side wall air supply-side wall return (SAS). CFD simulation was applied to
further study the effects of return air inlets’ heights (0.3 m, 0.7 m, 1.2 m, 1.6 m, and 2.0 m) and air
exchange rates. The technique for order of preference by similarity to ideal solution (TOPSIS) analysis
was used to calculate the comprehensive scores of 60 scenarios using a multi-criterion method to
obtain the optimal return air inlets’ heights. Results showed that for each additional 0.5 m distance in
most working conditions, the inhalation fraction index of medical staff could be reduced by about
5–20%. However, under certain working conditions, even though the distances between the patients
and medical personnel were different, the optimal heights of return air vents were constant. For TAS
and UFAS, the optimal return air inlets’ height was 1.2 m, while for SAS, the best working condition
was 1.6 m air supply and 0.7 m air return. At the optimum return air heights, the particle decay rate
per hour of SAS was 75% higher than that of TAS, and the rate of particle decay per hour of SAS
was 21% higher than that of UFAS. The location of return air inlets could further affect the operating
cost-effectiveness of ventilation systems: the highest operating cost-effectiveness was 8 times higher
than the lowest one.

Keywords: return air height; TOPSIS evaluation method; operating cost-effectiveness; exposure risk

1. Introduction

Since December 2019, the severe respiratory syndrome coronavirus 2 (SARS-CoV-2)
has spread widely, causing the coronavirus disease (COVID-19) [1,2]. Concerns about
potential exposures to SARS-CoV-2 for healthcare workers that treat COVID-19 patients
have heightened [3–6]. The exposure risks to airborne pathogens for medical staff may
greatly increase when they are in patient wards, compared to the risks when they are
in the hallway, office, and nursing station, etc. [7]. There are numerous studies on the
investigations of ventilation systems on reducing the airborne transmission risk of SARS-
CoV-2, such as a systematic review of literature suggesting that ventilation systems may
have significant impacts on viral aerosol transmissions [8–10].

Furthermore, reduced levels of airborne SARS-CoV-2 can be dependent on the char-
acteristics of ventilation systems (e.g., location, type, flow rate, etc.) [11,12]. In recent
years, based on experimental and simulation methods, many studies have analyzed the
impacts of ventilation and filtration systems on indoor air quality. Tian et al. studied the
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performance of three types of ventilation systems on the pollutant removal in an office:
Mixed ventilation, Displacement ventilation (DV) and Stratum ventilation (SV) [13]. SV
was shown to obtain the optimal performance in removing pollutants emitted from several
tested locations, and, thus, improving the inhaled air quality, compared to mixed ventila-
tion and DV [13]. In another study, Lin et al. conducted a numerical simulation to analyze
the particle dynamics in a classroom which was ventilated by DV or SV, and occupants
were monitored in multiple locations in the classroom [14]. The results also suggested that
the air flow in different ventilation types has meaningful impacts on the fate and transport
of particles. The concentrations of particulate matter in the breathing zone of SV were
significantly lower than those of DV [14]. In addition, compared with other ventilation
types, SV can optimize the levels of thermal comfort and pollutant concentration in the
breathing zone [15].

However, previous studies have mainly focused on the influence of the locations of
the supply air vent. Return air vents are less well studied. It has been recently reported
that the return air inlets may have important impacts on certain ventilation and filtration
systems. Lin et al. found that the location of return air vents could affect the air diffusion
in the tiered ventilation and the cooling load of the air handling unit [16,17]. Subsequently,
Lin et al. studied the influence of several return air vent positions on thermal comfort
indoors, and the results showed that the comfort level was optimal when the return air
vents were located on the same side as the supply air vents [18].

Some studies have also pointed out that placing return air vents on the side wall may
potentially save energy for the system, compared to the other locations [19]. In addition, the
heights of the return air vents could have significant impacts on the energy consumption
of the ventilation system, thermal comfort for the occupants, and indoor air quality in the
confined spaces [20]. For instance, using numerical simulation, Fan et al. investigated
the effects of the height of the return air vents in the Under Floor Air Supply (UFAS)
system [21]. The heights of return air vents in the UFAS systems in large spaces were
also examined [22,23]. Heidarinejad et al. found that the height of the return air vents of
UFAS should be above 1.3 m to optimize energy consumption, thermal comfort and indoor
air quality [20].

Although these aforementioned studies investigated the height of the return air
vents [24], most of them primarily focused on the UFAS, and other air supply types,
such as the Top Air Supply (TAS) or Side Air Supply (SAS), have been less reported on.
As far as the authors know, very few studies have conducted research on the influence of
the filtration effects and energy consumptions, and most have analyzed the influence of
the height of return air vents on the indoor air quality. In fact, determining the optimal air
return height is a multi-attribute decision-making problem. There are many evaluation
indicators, and many studies have analyzed these through simple charts [20–22]. There
is no well-established theoretical method to determine the optimal air return height. In
order to solve the multi-dimensional evaluation index decision-making problem, some
studies proposed to use the technique for order of preference by similarity to ideal solution
(TOPSIS) method to select the optimal settings for heating, ventilation and air conditioning
applications [25]. TOPSIS is a multi-criteria decision analysis method, which identifies the
“positive ideal solution” and “negative ideal solution” based on the geometric distance be-
tween the positive ideal alternative and the tested alternative. The weights of each criterion
are calculated in the TOPSIS method. To determine the attribute weights in the TOPSIS
method, the entropy weight method is usually used, and the determination of the weight
and decision result does not involve any subjective preference. In addition, some studies
have used the TOPSIS method to evaluate the optimal blade angle of supply air vents
under multi-index evaluation [26] and the optimal height of return air of the impingement
jet system was determined by the TOPSIS method, which included multiple performance
indicators in the analysis in [27]. In this study, there were 60 simulated scenarios tested to
obtain data, and two criteria were analyzed to identify the optimal height of return air vents
using various ventilation systems: indoor air quality (e.g., particulate matter attenuation
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rate, inhalation fraction index, pollutant removal efficiency) and energy consumption (e.g.,
air conditioning energy consumption).

The main objective of this study was to identify the optimal height of return air in
different ventilation types, using experiments and multi-criterion analysis (i.e., the filtration
effect and energy consumption). To achieve the goal, firstly, the impacts of return air
heights on indoor air quality were examined in a laboratory to simulate a hospital ward
using the following different factors: (1) air exchange rates; (2) supply air types; (3) and
distances between the modeled medical staff and modeled patient. In addition, the energy
consumption was calculated in each scenario, and the optimal working condition was
identified by the TOPSIS method to establish a single ward environment that met the
requirements of both air quality and energy saving.

2. Materials and Methods
2.1. Experimental Method
2.1.1. Experimental Setup

In this study, the experimental single patient room shown in Figure 1A,B was assumed
to be the intensive care unit (ICU), according to the requirements of National Standard
Infectious Disease Hospital Building Design Code and Code for Design of General Hospital
(G.B. Chinese. 2014a; G.B. Chinese. 2014b) [28,29]. The dimension of the experimental cabin
was 4.94 m (length) × 4.86 m (width) × 2.20 m (height). The walls, floors, and ceilings of
the experimental chamber were well insulated to obtain an appropriate thermal insulation
performance. The temperature was maintained at 24 ± 1 ◦C and was continuously moni-
tored by a T-type thermocouple (with an accuracy of ±0.1 ◦C in the range of −200 ◦C to
260 ◦C). A hospital bed with the size of 2.10 m (length) × 0.90 m (width) × 0.53 m (height)
was placed near the wall, as shown in Figure 1. Particles were released from the mouth
of the tested patient, who was lying on the back on the bed (height of 0.70 m). Particle
concentrations were measured at two points: the breathing zone of the tested standing
medical staff (height of 1.60 m) and the center of the room (height of 1.10 m) [15]. Two
handheld airborne particle counters (TSI AEROTRAK MODEL 9306-V2, TSI, Inc., St. Paul.,
MN, USA) were used to monitor the particle concentrations. The shape and size (height
of 1.80 m) of the two dummy models were identical, neither of them heated, to simplify
the experiment. There were two square vents with a size of 0.5 m × 0.5 m on the top near
the ceiling, six circular diffusers with a diameter of 0.9 m underfloor, and two rows on the
side wall with a size of 0.2 m × 0.2 m square vents. The locations of the vents are shown in
Figure 1B. The row near the ceiling was assigned as R1, the row near the underfloor was
R2. The R1 vents could be moved. The distances from the center point of all air vents in
R1 to the underfloor of the room could be adjusted from 1.2 m to 1.6 m (approximately
to the breathing zone of medical staff). The distance from the center point of the square
air vent in R2 to the underfloor of the room was 0.7 m (approximately to the breathing
zone of the patient). To investigate the effects of the distance between medical staff and
patient on the inhalation dose of particulate matter by medical staff, three distances were
tested [30], which were 0.5 m, 1.0 m, and 1.5 m, respectively. It should be noted that in this
study the medical staff were assumed to stand at the side of the bed. In fact, the locations
of medical staff may also be different in addition to the distance. For example, medical staff
usually stand at the foot of the patient’s bed during patient rounds. The effect of location
of medical staff on their exposure risk will be discussed in further studies.
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Figure 1. Schematic diagram of experimental chamber. (A) The layout of the central measurement
point, medical staff measurement point, pollution source release point and return air inlets in the
laboratory; (B) Dimensions of the experimental chamber.

2.1.2. Experimental Method

According to the setup of the experimental chamber, three air supply forms were
examined: TAS, UFAS, and SAS. On the basis of a pervious study [15], wherein Kong et al.
found better performance of particle removal when the return air vents were on the side
wall, compared to the removal levels using other air return modes, the return air vents of
TAS, UFAS, and SAS systems were all located on the side wall in this study. As shown
in Figure 2, there were three types of side air return heights for TAS and UFAS, which
were 0.7 m, 1.2 m, and 1.6 m. The heights of the return air inlets of SAS were consistent
at 0.7 m; the supply air outlets’ heights were set as 1.2 m and 1.6 m in two scenarios. The
characteristics of the experimental parameters are listed in Table 1. The air exchange rate
per hour (ACH) was tested at 6 and 12 in all scenarios [31]. According to the previous
study [15], the draft sensation could be ignored under these air exchange rates for the three
different ventilation systems.
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(CH) [32]. The particles are spherical in shape. The density of the particles released when 
the incense burned was 900 kg/m3, and the mass concentration was 2 × 107 μg/m3 [15]. The 
main aerodynamic diameters of the particles produced by the combustion of coil incense 
were between 0.3 and 10.0 μm [15] to simulate aerosol transmission. The combustion of 
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to simulate indoor particulate matter. At the same time, the fan and particle counter both 
started to operate. During the experiment, the particle concentration between 0.3 and 10.0 
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Figure 2. Schematic diagram of three air supply methods, in which the upper two return air outlets
can be moved ((a) Top supply side return; (b) Underfloor air supply side return; (c) Side supply side
return, 1.2 m air supply and 0.7 m air return; (d) Side supply side return, 1.6 m air supply and 0.7 m
air return), the orange arrow represents supply air, and the red arrow represents return air.

Table 1. Experimental air organization form and the height of the supply air outlets and return
air inlets.

Air Supply Type Return Air Inlets’ Height (m)

Underfloor air supply 0.7
Underfloor air supply 1.2
Underfloor air supply 1.6

Top air supply 0.7
Top air supply 1.2
Top air supply 1.6
Side air supply 1.2 supply and 0.7 return
Side air supply 1.6 supply and 0.7 return

Coil incense combustion mainly produces particulate matter, in addition to volatile
organic compounds (VOC), carbon oxides (CO), nitrogen oxides (NO) and hydrocarbons
(CH) [32]. The particles are spherical in shape. The density of the particles released when the
incense burned was 900 kg/m3, and the mass concentration was 2 × 107 µg/m3 [15]. The
main aerodynamic diameters of the particles produced by the combustion of coil incense
were between 0.3 and 10.0 µm [15] to simulate aerosol transmission. The combustion of
the incense was maintained at the mouth of the patient to release a certain amount of
dust to simulate indoor particulate matter. At the same time, the fan and particle counter
both started to operate. During the experiment, the particle concentration between 0.3 and
10.0 µm in the mouth of the medical staff and the indoor center point were monitored and
continuously recorded under different scenarios. Strict QA/QCs were conducted to ensure
that the same amounts of particulate matter were produced [33].
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2.2. Simulation Method
2.2.1. Model Development

Considering the limitations of the experimental conditions, a Computational Fluid
Dynamics (CFD) numerical simulation was carried out to further study the influence of
different parameter settings on the control effect. Referring to a previous article [27], the
heights of the return air vents were calculated at 0.3 m, 0.7 m, 1.2 m, 1.6 m and 2.0 m. In
addition, the air exchange rates ranged from the original 6 ACH and 12 ACH to 6 ACH,
9 ACH, and 12 ACH [31]. A distance between the medical staff and the patient of 0.5 m
was selected as representative for CFD simulation. Supplementary Table S1 summarizes all
the simulated scenarios.

As shown in Figure 3, an Ansys Design Modeler was used to establish a geometric
model that simulated the air and pollutant distribution in a single ward. The size and
location of the air vents in the room were identical to those of the experimental chamber. In
the model shown in Figure 3, the two blue air inlets on the ceiling were TAS outlets; the six
light blue circular air vents on the floor were UFAS outlets; the red air vents on the side
wall were SAS supply air outlets and return air inlets. Particles were released from the red
area of the patient’s mouth.
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2.2.2. Research on Grid Division and Grid Independence

The room was divided into multiple areas, and most of the computational domain
was in structured grids. The modeled human body was surrounded by unstructured grids.
To simulate the ventilation system around complex geometric shapes, unstructured grids
may be used for processing, but more computational capacity and significantly longer
calculation time were usually needed, compared to structured grids. Considering the
accuracy of the simulation calculation of aerosols around the inlet and outlet and the wall
boundary, the grid was densified at the wall boundary and the vents, and the grid was
completed by mesh software (as shown in Figure 3).

The grid independence of eight measuring points (the distance from the measuring
point to the side wall near the patient’s head was 0.68 m, and the heights were 0.7 m and
1.2 m, respectively) was studied, and the number of grid nodes were 300,000, 700,000,
1.3 million, and 2.62 million, respectively. The grid quality was evaluated by selecting the
skewness. The skewness value range was 0–1. The smaller the skewness value, the higher
the grid quality. Maximum skewness values of the above four grids were all below 0.9,
and the average skewness value was around 0.2. Generally, the quality of the four grids
was acceptable. The ANSYS Fluent software was used for CFD simulation. The simulated
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velocity in the eight points was compared to the experimental velocity obtained in the
previous study [15] under the SAS condition (1.2 m supply air and 0.7 m return air), and
plotted in Figure 4. Except for point 2, the simulated air velocity in other points were within
the allowable error range of the experiment. The 700,000 grids could not only ensure the
simulation accuracy, but also saved calculation time and computer memory. Therefore,
700,000 grids were identified for the calculations.
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2.2.3. Model Verification

The detailed modeling methods were as follows: a three-dimensional ventilation
system field, based on the RNG k-ε model; standard wall functions; SIMPLE algorithm
to couple the pressure field and velocity field. In this analysis, the convergence criteria
were set as 10−5 for the energy equation and 10−4 for other equations. In this study, the
Lagrangian method [34] was used to simulate the behavior of particulate matter in the
indoor space, and a DPM model was established. The patient’s mouth was set as the
injection surface, and the particles were released transiently. Since the diameter of particles
measured in the experiment was mostly distributed in the range of 0.3 µm–0.5 µm, the
particle size was set as 0.4 µm in the simulation. The patient’s breathing rate was set
as 0.8 m/s [35]. The number of particle flows was 2000. The random walk model was
examined. The exit boundary was set to escape, and the remaining walls were trapped.
The indoor temperature was at a constant temperature of 24 ◦C, and the inlet wind speed
was calculated based on the air exchange rate.

The CFD models were verified using the experimental results in this study. To explain
the model verification process, an example of the SAS system was described as below. The
supply air vents and return air vents were at 1.2 m and 0.7 m from the floor, respectively.
The room was ventilated at 12 ACH. The distance between the medical staff and the patient
was 0.5 m. The concentrations of the particulate matter at the mouth of the medical staff
were monitored and applied to calculate the particle concentration decay rate k. As shown
in Figure 5a, the experimental value of the particle concentration decay rate k in the left
picture was 11.94 and the simulated value in the right picture was 10.82; the error was
within 20%. The validation of the model of this aforementioned particular scenario was
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acceptable. Similarly, the validation results of other experimental conditions are shown in
Figure 5b. The distance between medical staff and patients in all experimental conditions
was consistently 0.5 m. For most scenarios, the modeled decay rate was within 20% of the
experimental error, suggesting that the model validation was acceptable.
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Figure 5. Model verification results. (a) Comparison of decay rate between experiment and simulation
for one example case (SAS-1.2 m supply-0.7 m return-12 ACH); (b) Comparison of experimental and
simulation results for 16 conditions.

2.2.4. TOPSIS Evaluation Method

This study used the TOPSIS evaluation method which is based on the entropy weight
method to comprehensively evaluate pros and cons of the simulated operating condi-
tions. The TOPSIS model is essentially a ranking method, belonging to the multi-objective
decision-making method. Its basic principle is to find out the optimal scheme and the worst
scheme (expressed by positive ideal solution and negative ideal solution) in the limited
scheme in the original matrix based on normalization, and then calculate the distance
between the evaluation object and the optimal scheme and the worst scheme, respectively,
so as to obtain the relative proximity (closeness) between the evaluation object and the
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optimal scheme, which is used as the basis for evaluating the pros and cons. The entropy
weight method is used to calculate the actual data of samples (60 working conditions),
which can eliminate the influence of human factors and obtain more objective results [36].
The combination of the entropy weight method and the TOPSIS model is widely used in all
kinds of evaluation research [37,38].

There were four criteria included in the analysis: particle decay rate, inhalation score
index, pollutant removal efficiency, and air conditioning energy consumption. These
criteria are further discussed in the following section. Based on the results, the optimal
heights of return air vents using various ventilation systems were identified. The value of
the evaluation index closeness obtained from the final result was in the interval of [0, 1],
and the closer its value was to 1, the better the evaluation object was. The specific steps of
the TOPSIS method [27] are summarized and shown in Figure 6.
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2.2.5. Evaluation Index

To evaluate the performance of different ventilation systems more comprehensively,
different evaluation indices were used in this study. The particle decay rate K was used to
evaluate the removal of pollutants in the whole room. The inhalation fraction IF represented
the distribution of particles near the mouth of medical staff, and was used to evaluate the
distribution of local pollutants. The pollutant removal efficiency ε represented the ability of
supply air to remove indoor pollutants and was used to determine the removal of indoor
pollutants by supply air. Some other indices were also used in this study to compare the
energy consumption of ventilation systems.
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Particle Concentration Decay Rate k

The following equations were used to calculate the particle decay rate k [39]:

c = c0 × exp(−kt) (1)

k = ke − kn (2)

where, c is the real-time concentration of fine particles, µg/m3; c0 is the initial concentration
of particles, µg/m3; t is the decay time, h; k is the decay rate, h−1; ke and kn represents the
total decay rate constant of the number of particles and the natural decay rate constant, h−1.

Inhalation Fraction Index IF

The inhalation fraction index is defined as the ratio of the mass concentration of a
certain pollutant inhaled by an individual to the mass concentration released into the
environment within a certain period of time [15]. The mouth of the medical staff was
monitored for the mass concentration of particulate matter released into the environment
and medical staff inhaled the mass concentration of particulate matter when turning on
the fan.

IF =

∫
Qb,inhcinhdt∫
Qb,exhcexhdt

(3)

where, Qb,inh and Qb,exh are the respiratory rate of medical staff and patients (particle
release point), respectively, L/min; cinh is the average particle concentration inhaled by
medical staff in the airway (here the average pollutant concentration in the mouth of
medical staff when the fan is working), µg/m3; cexh is the average mass concentration of
particle released into the environment (here is the average pollutant concentration in the
mouth of medical staff without a fan), µg/m3.

Particle Removal Efficiency ε

Particle removal efficiency [40] is a measure of the steady-state ventilation performance,
which represents the ability of the system to remove pollutants. It can be calculated by the
following equation:

ε =
ce − cs

c−cs
(4)

where, ce is the particle concentration at the return air inlet, µg/m3; cs is the particle
concentration at the supply air outlet, µg/m3; c is the average particle concentration in
the room, µg/m3.

In this study, a HEPA filter was used in the air handling unit. Therefore, it can be
assumed that the supply air was free of particles, and Equation (4) can be simplified as:

ε =
ce

c
(5)

In order to facilitate the evaluation of the particulate removal performance under
different ventilation systems, the effectiveness of personal exposure εp [41] was calculated
as follows:

εp =
ci,0 − ci

ci,0 − cpv
(6)

where, c(i,0) is the particle concentration in the air when a fan is off, µg/m3; ci is the particle
concentration inhaled by medical staff, µg/m3; cpv is the particle concentration at the
supply air outlet, µg/m3. In this study, it was assumed that the supply air was free of
particles, and Equation (6) could be simplified as follows:

εp =
ci,0 − ci

ci,0
(7)
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Energy Consumption of Ventilation System

The main energy consumption of ventilation systems consists of two variables: fan
energy consumption and air handling energy consumption. The air handling energy
consumption is the energy consumed by the air handling unit to process the air in order
to eliminate the indoor residual heat and ensure the required indoor temperature and
humidity. With a reference to the website [42], it was assumed that in summer, the outdoor
temperature was 26 ◦C, relative humidity (RH) was 70%, and the enthalpy was 63.87 kJ/kg
in Tianjin, China. In winter, the outdoor temperature was −2 ◦C, the RH was 50%, and
the enthalpy value was 1.97 kJ/kg. According to the General Hospital Building Design
Code [29], the indoor environmental conditions were suggested at 25 ◦C in summer were
55%RH, and enthalpy value 52.88 kJ/kg and at 22 ◦C in winter were, 55% RH, and enthalpy
value 45.16 kJ/kg.

The fan energy consumption [43] was determined by:

Wfan =
v4 P

ηfanηmotor
(8)

where, Wfan is the energy consumption of the fan, W; v is the ventilation speed, m/s; ∆P is
the average filtration pressure drop, Pa; ηfan is the fan efficiency, which can be assumed as
70% [43]; ηmotor is the engine efficiency, which can be assumed as 65% [43]. A MERV 7 filter
was used in this experiment, the formula ∆P = 735.1v1.545 was used to calculate the average
pressure drop of the filter [43].

The air handling energy consumption was:

Wair = Qρair|i0 − iN| (9)

where, Wair is air handling energy consumption, W; Q is the flow rate of supply air, m3/h;
ρair is the density of the air, 1.29 kg/m3; i0 and iN are the air enthalpy values of the inlet
and outlet, kJ/kg, the relevant data is listed above.

Operation Cost-Effectiveness of Ventilation Filter System

In this study, operating cost-effectiveness [44] was defined as the ratio of CADR to the
energy consumption of the ventilation filter system, m3/kW·h; CADR = V × k, where V
was the room volume, which was 52.8 m3 in this study, and k was the particle concentration
decay rate, h−1.

3. Results and Discussion
3.1. Experimental Results
3.1.1. Influence of the Distance between Medical Staff and Patients on Evaluation
Indicators

Figure 7 shows the particle concentration decay rate k in the case of 6 ACH and
12 ACH when the distance between the medical staff and the patient was 0.5 m, 1.0 m, and
1.5 m, respectively. It can be seen from the figure that the decay rate of 12 ACH was larger
than that of 6 ACH, indicating that the filtering effect of 12 ACH was better than that of
6 ACH. This finding agreed well with Lv et al. [45] and other studies [46] that showed that
higher values of air exchange rate increased the removal rates of indoor pollutants.
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When the distance between the medical staff and the patient was 0.5 m, TAS with
return air vent height of 1.2 m was found to have better performance. At 6 ACH and
12 ACH, the particle decay rates K at this height were 13.44 h−1 and 13.48 h−1, respectively.
UFAS with return air vent height of 1.6 m also performed well, at 6 ACH and 12 ACH,
the particle decay rates K at this height were 11.50 h−1 and 13.73 h−1, respectively. SAS of
1.6 m air supply 0.7 m air return also performed well, at 6 ACH and 12 ACH, the particle
decay rates K at this height were 11.64 h−1 and 11.12 h−1, respectively. When the distance
between the medical staff and the patient was 1.0 m, the overall results were similar. TAS
of 1.6 m return air had better performance, at 6 ACH and 12 ACH, the particle decay rates
K at this height were 7.57 h−1 and 13.21 h−1, respectively. SAS of 1.6 m air supply 0.7 m
air return also had better performance, at 6 ACH and 12 ACH, the particle decay rates K
at this height were 8.85 h−1 and 12.01 h−1, respectively. When the distance between the
medical staff and the patient was 1.5 m, SAS of 1.6 m air supply 0.7 m air return was better,
at 6 ACH and 12 ACH, the particle decay rates K at this height were 9.72 h−1 and 13.76 h−1,
respectively. To sum up, the distance between the medical staff and the patient had little
effect on the decay rate under all scenarios. The performance of SAS of 1.6 m air supply
0.7 m air return was good at every distance. Some possible reasons may be: (1) the supply
air height was identical with the height of the breathing zone of the medical staff in this
scenario; (2) the filtration path under this ventilation system was reduced and, therefore,
was beneficial for particle filtration.

Figure 8 shows the inhalation fraction index IF and personal exposure effectiveness εp
of medical staff. The experimental conditions were: ventilation rates of 6 ACH and 12 ACH;
distances between medical staff and patient of 0.5 m, 1.0 m and 1.5 m.
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A lower value of the inhalation fraction index IF and a higher personal exposure
effectiveness εp represented a lower exposure risk for healthcare workers. It can be seen
from Figure 8 that the final results were almost the same under different distances. For TAS,
the optimal height of return air vents was 1.2 m. For example, when the distance between
the medical staff and the patient was 1.5 m, at 6 ACH and 12 ACH, the IF values of this
working condition were 80.06% and 24.83%, respectively, and the εp values were 19.57%
and 74.11%, respectively. For UFAS, the optimal height of return air vents was 0.7 m. For
example, when the distance between the medical staff and the patient was 0.7 m, at 6 ACH
and 12 ACH, the IF values of this working condition were 36.89% and 20.21%, respectively,
and the εp values were 62.08% and 78.63%, respectively. The reasons may be the following.
First, the dynamics of the particles released by the patient into the air may be impacted by
SAS, which enhanced the accumulation of particles in the breathing zone of the medical
staff. Second, TAS blows fresh air to the breathing zone of the medical staff, and quickly
removes the particles exhaled by the patient through side return air method. Third, the
side return air height of UFAS condition was 0.7 m, which was identical to the height of the
patient’s breathing zone. Thus, the concentration of indoor particulate matter was lowered
and the inhaled concentration of medical staff reduced.

When the distance between the medical staff and the patient was 0.5 m, the IF values
were 53.36–90.48% and 25.92–76.68%, respectively and when the distance between the
medical staff and the patient was 1.0 m, at 6 ACH and 12 ACH, the IF values were 64–92.8%
and 28.57–78.65%, respectively. However, when the distance between the medical staff
and the patient was 1.5 m, at 6 ACH and 12 ACH, the IF values were 36.89–80.06% and
20.21–55.34%, respectively. Figure 8a–c also show that the IF value of the 1.5 m distance
was generally smaller than that of other distances. It shows that the distance between
medical staff and patients influenced the IF and εp results. Longer distances may lower
the infection risk of medical staff. In addition, for each additional 0.5 m distance in many
working conditions, the inhalation fraction index of medical staff could be reduced by
about 5–20% for most working conditions of 6 ACH. Zhou et al. [47] and Kang et al. [48]
found a similar conclusion that the further distances were between people seated indoors,
the better the pollutant removal effects and the lower the observed infection risks. Both the
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ventilation system and the location of indoor personnel impacted on the distribution of the
pollutant field.

3.1.2. Influence of Return Air Inlets’ Height on Evaluation Indicators

The particle decay rate was tested as dimensionless to obtain K/Kmax. The larger
K/Kmax and εp and the smaller IF value indicated the better ventilation filtering effect.
Higher values of 1-IF indicated better performance of ventilation systems. Figure 9a–c
show that under identical conditions, a ventilation rate at 12 ACH could better improve the
indoor air quality than at 6 ACH.
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When the distance between the medical staff and the patient was 0.5 m (as shown in
Figure 9a), the best return air height of TAS was 1.2 m, followed by 1.6 m. The best return
air height of UFAS was 0.7 m, followed by 1.6 m. Due to the limited conditions of the
experimental chamber, in SAS, the height of return air was only tested at 0.7 m, and the
supply air heights were tested at both 1.2 m and 1.6 m. The results of 6 ACH and 12 ACH
at the two different air supply heights were not much different. Whether it was 6 ACH or
12 ACH, the difference between εp and IF was smaller than 8% under the corresponding
air change rates, and the difference between K value was smaller than 2.68 h−1. When
the distance between the medical staff and the patient was 1.0 m (as shown in Figure 9b),
the results of the three air return heights of TAS were similar. For UFAS, the return air
height of 0.7 m had significant improvement. For SAS, 1.6 m air supply and 0.7 m air return
condition was better. When the distance between the medical staff and the patient was
1.5 m (as shown in Figure 9c), the results of the three air return heights of TAS and UFAS
were similar, while for SAS, 1.6 m air supply 0.7 m air return was better.

In summary, the comprehensive evaluation index results for different distances were
similar. Based on the evaluation results of the three distances using TAS, the optimal
return air height was at 1.2 m considering the exhaled particles of the patient, under the
combined action of the thermal plume and the return ventilation system. For UFAS, the
optimal return air height was 0.7 m, which was the same height as the patient’s breathing
zone. For SAS, the supply air vents at 1.6 m and return air vents at 0.7 m showed the best
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performance. When the height of the supply air was identical to the height of the breathing
zone of medical staff, and this was combined with a situation where the height of return air
was identical to the height of the patient’s breathing zone, the performance was better than
when the air was sent at a height of 1.2 m. The experimental results have implications for
investigating the return air height to implement indoor air quality under different types of
supply air.

Cheng et al. [49] suggested that the return air vents in a small space could be located
in a lower area to save the energy of the cooling coil. Heidarinejad et al. [20] studied the
effects of the heights of the side wall return air inlet and other parameters on the energy
consumption, thermal comfort conditions and indoor air quality in UFAS, and found that
reducing the height of return air inlet was more energy efficient. When the height of the
return air inlet was 0.3 m, the energy consumption was the lowest. Due to the limited
conditions of the experimental cabin, there were only three types of air return heights, and
the minimum air opening of the experimental cabin was 0.7 m. Therefore, 60 scenarios were
taken into further consideration by CFD simulation. The calculated evaluation indicators,
as well as energy consumption, were used for TOPSIS evaluation.

3.2. Simulation Results

The evaluations were calculated for the energy consumption of ventilation and filtra-
tion systems [11,50–52] and the operating cost-effectiveness of the ventilation and filtration
systems. The optimal return air heights for different types of supply air were subsequently
identified, and, thus, the results can not only meet the air quality requirements, but also
save energy. It can be seen from the experimental results that the comprehensive eval-
uation index results of different distances had little differences. Therefore, the distance
between the medical staff and the patient of 0.5 m was selected as a representative for CFD
simulation. Supplementary Table S1 shows all the simulated scenarios and the three air
change rates included in each scenario. Based on the results of the simulation, the particle
concentration decay rate k, the inhalation fraction index IF, and the pollutant removal
efficiency ε were calculated for the analysis. All the calculated parameters are listed in the
Supplementary Table S2.

Some studies [20] have reported the influence of the side wall return air inlet height
and other parameters on energy consumption, thermal comfort conditions and indoor air
quality in UFAS. It was found that reducing the height of the return air inlet can potentially
be more energy efficient. When the height of the return air inlet was 0.3 m, the energy
consumption was the lowest. Cheng et al. [49] also had a similar conclusion. Due to the
limitation of the experimental chamber conditions, the minimum return air inlet height
was 0.7 m. In CFD, the heights of return air vents were calculated at 0.3 m, 0.7 m, 1.2 m,
1.6 m and 2.0 m, to make up for the lack of experiments.

3.2.1. Energy Consumption of Ventilation Systems

The air volume was calculated for various air change rates, and then these values were
obtained for the energy consumption of fans and ventilation systems by means of Equations
(8) and (9). Since the experiments were carried out in autumn and the indoor temperature
and humidity should meet the requirements, calculating the fan energy consumption was
only required for this analysis. The operating cost-effectiveness results and the TOPSIS
method evaluation results in summer and winter are summarized in Figures S1–S4. It can
be seen from Table 2 that as the air change rates enhanced, the energy consumption of the
fan increased. At 6 ACH, the fan energy consumption was lowest at 102.3 W.
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Table 2. Energy consumption under different working conditions.

Air Exchange Rate (h−1) Air Volume (m3/s) Fan Energy Consumption (W)

6 0.088 102.3
9 0.132 287.1

12 0.176 569.9

In hospitals, the ventilation systems are operated to filter particulate matter throughout
the year. In spring and autumn, fan energy consumptions were solely considered for
calculations, while in winter and summer, the sum of the energy consumption of the fan
and the ventilation systems were included. As shown in Table 3, higher air change rates
usually resulted in increased energy consumption. To maintain the air change rates in all
seasons, the energy consumption in winter was much larger than that in summer. The
lowest energy consumption was in spring and autumn, when the energy was 102.3 W and
the ventilation system was operated at 6 ACH, while the highest energy consumption was
10.4 kW, when the room was ventilated at 12 ACH in winter.

Table 3. Energy consumption of ventilation filter system with different air changes in different
seasons.

Air Exchange Rate (h−1)
Energy Consumption (kW)

Spring Summer Autumn Winter

6 0.10 1.35 0.10 5.00
9 0.29 2.16 0.29 7.98
12 0.60 3.09 0.60 10.40

The operational cost-effectiveness of ventilation filter systems was calculated accord-
ing to Section of “Operation Cost-Effectiveness of Ventilation Filter System”. A sum of
operating cost-effectiveness in 60 simulated operating conditions are shown in Figure 10.
Compared with 9 ACH and 12 ACH, the operating conditions of 6 ACH showed better
performance in energy saving. For TAS and UFAS, the cost-effectiveness of operation
exceeded the others when the return air height was 1.2 m. Among the 60 operating con-
ditions, the highest operating cost-effectiveness operating condition was SAS under the
condition of 2.0 m air supply and 0.3 m air return with 6 ACH, the value being 3.93. The
lowest operating cost-effective operating condition was SAS under the condition of 0.7 m
air supply and 0.3 m air return with 12 ACH, the value being 0.53. The highest operating
cost-effectiveness was about eight times higher than the lowest one.

Int. J. Environ. Res. Public Health 2022, 19, x FOR PEER REVIEW 17 of 21 

 

 

 
Figure 10. Operating cost-effectiveness of 60 simulated conditions. 

3.2.2. TOPSIS Evaluation Results 
By calculating the four evaluation indicators (i.e., particle decay rate k, inhalation 

fraction index IF, sewage efficiency ε, and operating cost-effectiveness), and using the 
TOPSIS evaluation method, the results of the 60 working conditions were obtained. The 
higher comprehensive scores suggested the better performance of the modeled scenarios. 
The weights of k, IF, ε, and the operating cost-effectiveness were 86.4%, 0.8%, 5.3% and 
7.5%, respectively. (The specific calculation method is shown in Figure 6 where aj is the 
weight of the index j, and the larger the weight is, the more important the evaluation index 
is compared with other indices). Obviously, the weight of k was the highest amongst these 
indicators. Similar findings were also found in previous studies [53,54]. The evaluation 
results are shown in Supplementary S3. Since the evaluation results at 12 ACH were the 
highest amongst the ACHs, the results at 12 ACH are demonstrated in Figure 11. The 
return air heights at 0.7 m, 1.2 m, and 2.0 m had similar positive results in TAS, and the 
return air inlet’s height of 1.2 m was the best. For UFAS, 1.2 m was also the best height for 
return air inlet vents. For SAS, the best score was achieved by 1.6 m air supply and  0.7 m 
air return condition. The scores of the optimal scenarios under different types of supply 
air were significantly higher than that of other scenarios (especially for SAS), indicating 
that the optimal return air height of each supply air type obtained by the TOPSIS method 
had a reasonable reference value. Most of the scenarios with SAS and TAS had acceptable 
scores (higher than 0.998), while the scores with UFAS were relatively low. According to 
the results, the air quality at 12 ACH was better than that of 6 ACH, but the energy 
consumption was also higher. The results of air quality and energy consumption were 
negatively correlated, and, therefore, the determination of the best return air height 
should consider the comprehensive situations of indoor air quality and the energy 
consumption of the specific ventilation filter system. 

TAS-0.
3R

TAS-0.
7R

TAS-1.
2R

TAS-1.
6R

TAS-2.
0R

UFAS-0.
3R

UFAS-0.
7R

UFAS-1.
2R

UFAS-1.
6R

UFAS-2.
0R

SAS-0.
3R

-0.
7S

SAS-0.
3R

-1.
2S

SAS-0.
3R

-1.
6S

SAS-0.
3R

-2.
0S

SAS-0.
7R

-1.
2S

SAS-0.
7R

-1.
6S

SAS-0.
7R

-2.
0S

SAS-1.
2R

-1.
6S

SAS-1.
2R

-2.
0S

SAS-1.
6R

-2.
0S

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0 SASTAS

O
pe

ra
tio

n 
co

st
 b

en
ef

it(
m

3 /
K

W
.h
）

 

 6ACH
 9ACH
 12ACH

UFAS

Simulated working condition

Figure 10. Operating cost-effectiveness of 60 simulated conditions.
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3.2.2. TOPSIS Evaluation Results

By calculating the four evaluation indicators (i.e., particle decay rate k, inhalation
fraction index IF, sewage efficiency ε, and operating cost-effectiveness), and using the
TOPSIS evaluation method, the results of the 60 working conditions were obtained. The
higher comprehensive scores suggested the better performance of the modeled scenarios.
The weights of k, IF, ε, and the operating cost-effectiveness were 86.4%, 0.8%, 5.3% and
7.5%, respectively. (The specific calculation method is shown in Figure 6 where aj is the
weight of the index j, and the larger the weight is, the more important the evaluation index
is compared with other indices). Obviously, the weight of k was the highest amongst these
indicators. Similar findings were also found in previous studies [53,54]. The evaluation
results are shown in Supplementary Table S3. Since the evaluation results at 12 ACH were
the highest amongst the ACHs, the results at 12 ACH are demonstrated in Figure 11. The
return air heights at 0.7 m, 1.2 m, and 2.0 m had similar positive results in TAS, and the
return air inlet’s height of 1.2 m was the best. For UFAS, 1.2 m was also the best height for
return air inlet vents. For SAS, the best score was achieved by 1.6 m air supply and 0.7 m
air return condition. The scores of the optimal scenarios under different types of supply
air were significantly higher than that of other scenarios (especially for SAS), indicating
that the optimal return air height of each supply air type obtained by the TOPSIS method
had a reasonable reference value. Most of the scenarios with SAS and TAS had acceptable
scores (higher than 0.998), while the scores with UFAS were relatively low. According
to the results, the air quality at 12 ACH was better than that of 6 ACH, but the energy
consumption was also higher. The results of air quality and energy consumption were
negatively correlated, and, therefore, the determination of the best return air height should
consider the comprehensive situations of indoor air quality and the energy consumption of
the specific ventilation filter system.
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Through this study, we clarified the relationship between the position of return air
vents and the distance between the medical staff and the patient in the ward with exper-
iments and CFD simulation. A multi-dimensional analysis (i.e., the filtration effect and
energy consumption) was conducted to provide the best return air height for different
air supply types in a single hospital ward. It can provide a reference for the design of
ventilation and filtration systems, especially for infectious hospital wards.
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3.3. Limitation

There are some limitations in this research that need further study. First, the human
body model was not heated and the human body thermal plume could potentially affect
the particle dynamics in the boundary layer between the human body and the bulk air.
Second, both experiments and simulations were under static conditions, but in thereal
world, the walking of the human body may also affect the experimental and simulation
results. Third, according to the study by Kong et al. [15], the particle removal performance
of ventilation systems with return air vents on the side wall had better performance than
other return air modes. The results for ventilation systems with return air vents on other
locations in the room need further investigations. Fourth, in the real hospital ward, the
patients and medical staff may wear masks [55], which can also have effects on the IF of
different ventilation systems. Last, this study focused on the control of particulate matter
transportation in a simulated hospital ward with a ventilation method. In fact, an antivirus
method may also be an effective method to control the concentrations of bacteria, viruses,
etc. [9]. This also needs further study.

4. Conclusions

Experimental measurements and a modeling simulation analysis were conducted in
this study. To obtain the optimal return air heights, three different types of supply air
systems (i.e., TAS, UFAS, and SAS) were considered for simulation. The following findings
were observed:

(1) Under different air supply types, even though the distances between the patients
and medical personnel were different, the optimal heights of return air vents were constant.
For TAS, the best performance was achieved by conditions with the return air inlet’s height
of 1.2 m. For UFAS, the best performance was achieved by conditions with the return
air inlet’s height of 0.7 m. For SAS, the best performance was achieved by the working
condition of 1.6 m air return and 0.7 m air return.

(2) With the consideration of the effects of ventilation system on indoor air quality
and energy consumption, the TOPSIS analysis results showed that the air change rate at
12 ACH was the best amongst all scenarios. For TAS and UFAS, the optimal return air
inlet height was 1.2 m. For SAS, the best working condition was 1.6 m supply air and 0.7
m air return. The CFD simulation results also proved that after increasing the heights of
the return air outlet, the performance of ventilation system was similar to the previous
experimental results.

(3) At the optical return air height, the particle decay rate per hour of SAS was 75%
higher than that of TAS, and the rate of particle decay per hour of SAS was 21% higher than
that of UFAS. Combined with the evaluation results of the three different air supply types
by the TOPSIS method, it was suggested that SAS may be given priority, followed by TAS.
This study can provide a reference for the future design of ventilation and filtration systems
in hospital wards, so as to reduce the exposure risk of medical staff as much as possible.
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