The Impact of Rail Transit on Accessibility and Spatial Equity of Public Transit: A Case Study of Guangzhou, China
Abstract
:1. Introduction
2. Literature Review
3. Methodology
3.1. Study Area
3.2. Data and Accessibility Calculation
3.3. Equity Analysis
4. Results and Analysis
4.1. The Impacts of Rail Transit on Accessibility
4.1.1. CBD Accessibility Differences
4.1.2. Spatial Distribution of Time-Based Accessibility
4.1.3. Spatial Distribution of Fare-Based Accessibility
4.2. The Impacts of Rail Transit on Spatial Equity
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Delmelle, E.C.; Casas, I. Evaluating the spatial equity of bus rapid transit-based accessibility patterns in a developing country: The case of Cali, Colombia. Transp. Policy 2012, 20, 36–46. [Google Scholar] [CrossRef]
- Ermagun, A.; Tilahun, N. Equity of transit accessibility across Chicago. Transport. Res. D. 2020, 86, 102461. [Google Scholar] [CrossRef]
- Dong, H. Rail-transit-induced gentrification and the affordability paradox of TOD. J. Transp. Geogr. 2017, 63, 1–10. [Google Scholar] [CrossRef]
- Pucher, J.; Renne, J.L. Socioeconomics of urban travel: Evidence from the 2001NHTS. Transp. Q. 2003, 5, 49–77. [Google Scholar]
- Benenson, I.; Martens, K.; Rofe, Y.; Kwartler, A. Public transport versus private car GIS-based estimation of accessibility applied to the Tel Aviv rail transitpolitan area. Ann. Regional Sci. 2011, 47, 499–515. [Google Scholar] [CrossRef]
- Yang, W.; Chen, H.L.; Wang, W.L. The path and time efficiency of residents’ trips of different purposes with different travel modes: An empirical study in Guangzhou, China. J. Transp. Geogr. 2020, 88, 102829. [Google Scholar] [CrossRef]
- Cheng, Y.; Loo, B.P.Y.; Vickerman, R. High-speed rail networks, economic integration and regional specialization in China and Europe. Travel Behav. Soc. 2015, 2, 1–14. [Google Scholar] [CrossRef]
- Monzón, A.; Ortega, E.; López, E. Efficiency and spatial equity impacts of high-speed rail extensions in urban areas. Cities 2013, 30, 18–30. [Google Scholar] [CrossRef]
- Kim, H.; Sultana, S. The impacts of high-speed rail extensions on accessibility and spatial equity changes in South Korea from 2004 to 2018. J. Transp. Geogr. 2015, 45, 48–61. [Google Scholar] [CrossRef]
- Jin, F.; Jiao, J.; Qi, Y.; Yang, Y. Evolution and geographic effects of high-speed rail in East Asia: An accessibility approach. J. Geogr. Sci. 2017, 27, 515–532. [Google Scholar] [CrossRef]
- Andersson, D.E.; Shyr, O.F.; Fu, J. Does high-speed rail accessibility influence residential property prices? Hedonic estimates from southern Taiwan. J. Transp. Geogr. 2010, 18, 166–174. [Google Scholar] [CrossRef]
- Litman, T. Evaluating Transportation Equity: Guidance for Incorporating Distributional Impacts in Transportation Planning; Victoria Transport Policy Institute: Victoria, Australia, 2007. [Google Scholar]
- Chen, C.S.; Tu, C.H.; Chen, S.J.; Chen, S.J.; Chen, C.C. Simulation of Groundwater Contaminant Transport at a Decommissioned Landfill Site—A Case Study, Tainan City, Taiwan. Int. J. Env. Res. Pub. He. 2016, 13, 467. [Google Scholar] [CrossRef]
- Yen, B.T.H.; Mulley, C.; Zhang, M. Equity in financing public transport infrastructure: Evaluating funding options. Transp. Policy 2020, 95, 68–77. [Google Scholar] [CrossRef]
- Hansen, W.G. How accessibility shapes land use. J. Am. Inst. Plan. 1959, 25, 73–76. [Google Scholar] [CrossRef]
- Gao, A.; Zhu, F. Study on Influence of High-speed Railways on Accessibility and Economic Ties in Southwest Area. Railw. Transp. Econ. 2014, 36, 1–5. [Google Scholar]
- Ben-Elia, E.; Benenson, I. A spatially-explicit method for analyzing the equity of transit commuters’ accessibility. Transport. Res. A 2019, 120, 31–42. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, J.; Wen, Y. Impact of high-speed railway on spatial pattern of Chinese cities’ accessibility. Sci. Geogr. Sin. 2015, 35, 387–395. [Google Scholar]
- Gleason, J.M. A set covering approach to bus stop location. Omega 1975, 3, 605–608. [Google Scholar] [CrossRef]
- Gutiérrez, J.; García-Palomares, J.C. Distance-measure impacts on the calculation of transport service areas using GIS. Environ. Plan. B 2008, 35, 480–503. [Google Scholar] [CrossRef]
- Mavoa, S.; Witten, K.; McCreanor, T.; O’sullivan, D. GIS based destination accessibility via public transit and walking in Auckland, New Zealand. J. Transp. Geogr. 2012, 20, 15–22. [Google Scholar] [CrossRef]
- Fransen, K.; Neutens, T.; Farber, S.; De Maeyer, P.; Deruyter, G.; Witlox, F. Identifying public transport gaps using time-dependent accessibility levels. J. Transp. Geogr. 2015, 48, 176–187. [Google Scholar] [CrossRef]
- Lei, T.L.; Church, R.L. Mapping transit-based access: Integrating GIS, routes and schedules. Int. J. Geogr. Inf. Sci. 2010, 24, 283–304. [Google Scholar] [CrossRef]
- Farber, S.; Morang, M.Z.; Widener, M.J. Temporal variability in transit-based accessibility to supermarkets. Appl. Geogr. 2014, 53, 149–159. [Google Scholar] [CrossRef]
- Owen, A.; Levinson, D.M. Modeling the commute mode share of transit using continuous accessibility to jobs. Transport. Res. A 2015, 74, 110–122. [Google Scholar] [CrossRef]
- Bills, T.S.; Twumasi-Boakye, R.; Broaddus, A.; Fishelson, J. Towards transit equity in Detroit: An assessment of microtransit and its impact on employment accessibility. Transport. Res. D. 2022, 109, 103341. [Google Scholar] [CrossRef]
- Claire, P.; Dupont-Kieffer, A.; Palmier, P. Potential accessibility to the workplace by public transit and its social distribution in Lille, France: A scenario-based equity appraisal. Transp. Policy 2022, 125, 256–266. [Google Scholar] [CrossRef]
- Jiao, J.; Wang, F. Shared mobility and transit-dependent population: A new equity opportunity or issue? Int. J. Sustain. Transp. 2021, 15, 294–305. [Google Scholar] [CrossRef]
- Boisjoly, G.; El-Geneidy, A. daily fluctuations in transit and job availability: A comparative assessment of time-sensitive accessibility measures. J. Transp. Geogr. 2016, 52, 73–81. [Google Scholar] [CrossRef]
- Páez, A.; Scott, D.; Potoglou, D.; Kanaroglou, P.; Newbold, K.B. Elderly mobility: Demographic and spatial analysis of trip making in the Hamilton CMA, Canada. Urban Stud. 2007, 44, 123–146. [Google Scholar] [CrossRef]
- Ford, A.C.; Barr, S.L.; Dawson, R.J.; James, P. Transport accessibility analysis using GIS: Assessing sustainable transport in London. ISPRS Int. J. Geoinf. 2015, 4, 124–149. [Google Scholar] [CrossRef]
- Currie, G. Gap analysis of public transport needs: Measuring spatial distribution of public transport needs and identifying gaps in the quality of public transport provision. Transp. Res. Rec. 2004, 1895, 137–146. [Google Scholar] [CrossRef]
- El-Geneidy, A.; Levinson, D.; Diab, E.; Boisjoly, G.; Verbich, D.; Loong, C. The cost of equity: Assessing transit accessibility and social disparity using total travel cost. Transport. Res. A. 2016, 91, 302–316. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, P.; Ni, S. Assessment of the Impacts of urban rail transit on rail transitpolitan regions using system dynamics model. Transp. Res. Procedia 2014, 4, 521–534. [Google Scholar] [CrossRef] [Green Version]
- Jiang, H.; Zhang, W.; Qi, Y.; Wu, L. The land accessibility influenced by China’s high-speed rail network and travel cost. Geogr. Res. 2015, 34, 1015–1028. [Google Scholar]
- Chien, S.; Schonfeld, P. Joint optimization of a rail transit line and its feeder bus system. J. Adv. Transport. 1998, 32, 253–284. [Google Scholar] [CrossRef]
- Kuan, S.N.; Ong, H.L.; Ng, K.M. Solving the feeder bus network design problem by genetic algorithms and ant colony optimization. Adv. Eng. Softw. 2006, 37, 351–359. [Google Scholar] [CrossRef]
- Catherine, S. Travel behavior change in older travelers: Understanding critical reactions to incidents encountered in public transport. Int. J. Environ. Res. Public Health 2015, 12, 14741–14763. [Google Scholar]
- Kong, Q.J.; Zhao, Q.; Wei, C.; Liu, Y. Efficient traffic state estimation for large-scale urban road networks. IEEE Trans. Intell. Transp. Syst. 2013, 14, 398–407. [Google Scholar] [CrossRef]
- Chen, B.Y.; Yuan, H.; Li, Q.; Lam, W.H.; Shaw, S.L.; Yan, K. Map-matching algorithm for large-scale low-frequency floating car data. Int. J. Geogr. Inf. Sci. 2014, 28, 22–38. [Google Scholar] [CrossRef]
- Yang, W.; Chen, B.Y.; Cao, X.; Li, T.; Li, P. The spatial characteristics and influencing factors of modal accessibility gaps: A case study for Guangzhou, China. J. Transp. Geogr. 2017, 60, 21–32. [Google Scholar] [CrossRef]
Travel Mode | Average Travel Speed (km/h) | Average Transit Fare (RMB) |
---|---|---|
Bus only | 18.25 | 5.51 |
Integrated bus transit and rail transit | 27.95 | 12.12 |
Time Periods in the Bus-Only Scenario (Min) | Time Periods in the Bus and Rail Transit Scenario (Min) | |||||
---|---|---|---|---|---|---|
0–30 | 30–60 | 60–120 | 0–30 | 30–60 | 60–120 | |
Reachable population | 78.94 | 307.27 | 510.94 | 258.93 | 691.49 | 2641.57 |
Spatial coverage area (km2) | 41.32 | 224.32 | 1292.26 | 99.55 | 481.93 | 430.58 |
Number of Communities | Bus-Only Scenario | Bus and Rail Transit Scenario | Rate of Change | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Standard Deviation | Mean Value | Coefficient of Variation | Standard Deviation | Mean Value | Coefficient of Variation | Mean Value | Coefficient of Variation | |||
Time-based accessibility | All communities | 2658 | 74.26 | 172.26 | 0.43 | 53.61 | 107.35 | 0.49 | 38.28% | 0.28 |
Inner Guangzhou | 902 | 13.48 | 116.73 | 0.12 | 10.57 | 67.35 | 0.16 | 42.16% | 0.17 | |
Middle Guangzhou | 802 | 28.88 | 156.01 | 0.19 | 23.24 | 95.57 | 0.24 | 38.61% | 0.25 | |
Outer Guangzhou | 954 | 83.51 | 238.44 | 0.35 | 59.49 | 155.08 | 0.38 | 34.33% | 0.38 | |
Fare-based accessibility | All communities | 2658 | 1.61 | 5.87 | 0.27 | 3.19 | 11.27 | 0.28 | 93.05% | 0.23 |
Inner Guangzhou | 902 | 0.49 | 4.33 | 0.11 | 0.83 | 8.24 | 0.10 | 90.92% | 0.18 | |
Middle Guangzhou | 802 | 1.21 | 5.71 | 0.21 | 1.77 | 10.85 | 0.16 | 93.08% | 0.26 | |
Outer Guangzhou | 954 | 1.01 | 7.46 | 0.14 | 2.44 | 14.48 | 0.16 | 95.03% | 0.26 |
z-Value Scores | <−1.5 | −1.5–−0.5 | −0.5–0 | 0–0.5 | 0.5–1.5 | 1.5< | |
---|---|---|---|---|---|---|---|
Inner Guangzhou | Yuexiu district | 0.00% | 2.54% | 3.67% | 0.23% | 0.00% | 0.00% |
Haizhu district | 0.00% | 1.68% | 6.32% | 0.75% | 0.09% | 0.36% | |
Liwan district | 0.03% | 1.42% | 3.38% | 0.57% | 0.00% | 0.00% | |
Tianhe district | 0.03% | 2.70% | 5.35% | 0.86% | 0.48% | 0.54% | |
Middle Guangzhou | Baiyun district | 0.19% | 5.57% | 6.15% | 2.32% | 0.25% | 0.00% |
Huangpu district | 0.00% | 0.55% | 2.40% | 2.65% | 0.77% | 0.00% | |
Panyu district | 0.00% | 0.58% | 4.12% | 5.30% | 2.14% | 0.08% | |
Outer Guangzhou | Huadu district | 0.02% | 0.25% | 2.02% | 2.72% | 1.21% | 0.02% |
Conghua district | 0.00% | 0.02% | 0.01% | 0.09% | 1.20% | 1.24% | |
Zengcheng district | 0.35% | 2.50% | 3.51% | 1.27% | 0.71% | 0.02% | |
Nansha district | 0.00% | 0.07% | 1.15% | 0.53% | 0.29% | 0.00% |
z-Value Scores | <−1.5 | −1.5–−0.5 | −0.5–0 | 0–0.5 | 0.5–1.5 | 1.5< | |
---|---|---|---|---|---|---|---|
Inner Guangzhou | Yuexiu district | 0.09% | 0.97% | 1.48% | 2.36% | 4.03% | 0.01% |
Haizhu district | 0.03% | 0.47% | 1.77% | 5.02% | 4.51% | 0.36% | |
Liwan district | 0.18% | 0.70% | 1.56% | 2.42% | 2.13% | 0.04% | |
Tianhe district | 0.18% | 1.47% | 2.17% | 3.19% | 4.20% | 0.54% | |
Middle Guangzhou | Baiyun district | 1.44% | 5.40% | 3.31% | 3.83% | 3.64% | 0.20% |
Huangpu district | 0.05% | 0.86% | 0.78% | 2.35% | 2.36% | 0.30% | |
Panyu district | 0.32% | 1.20% | 2.99% | 3.92% | 4.03% | 0.31% | |
Outer Guangzhou | Huadu district | 0.37% | 1.22% | 1.32% | 2.01% | 1.60% | 0.00% |
Conghua district | 0.06% | 0.14% | 0.36% | 0.81% | 2.58% | 0.87% | |
Zengcheng district | 2.45% | 3.14% | 1.78% | 1.21% | 0.77% | 0.02% | |
Nansha district | 0.06% | 0.70% | 0.81% | 0.27% | 0.29% | 0.00% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.; Yang, W.; Li, T. The Impact of Rail Transit on Accessibility and Spatial Equity of Public Transit: A Case Study of Guangzhou, China. Int. J. Environ. Res. Public Health 2022, 19, 11428. https://doi.org/10.3390/ijerph191811428
Chen H, Yang W, Li T. The Impact of Rail Transit on Accessibility and Spatial Equity of Public Transit: A Case Study of Guangzhou, China. International Journal of Environmental Research and Public Health. 2022; 19(18):11428. https://doi.org/10.3390/ijerph191811428
Chicago/Turabian StyleChen, Huiling, Wenyue Yang, and Tao Li. 2022. "The Impact of Rail Transit on Accessibility and Spatial Equity of Public Transit: A Case Study of Guangzhou, China" International Journal of Environmental Research and Public Health 19, no. 18: 11428. https://doi.org/10.3390/ijerph191811428
APA StyleChen, H., Yang, W., & Li, T. (2022). The Impact of Rail Transit on Accessibility and Spatial Equity of Public Transit: A Case Study of Guangzhou, China. International Journal of Environmental Research and Public Health, 19(18), 11428. https://doi.org/10.3390/ijerph191811428