Heterogeneous Effects of Skill Training on Rural Livelihoods around Four Biosphere Reserves in China
Abstract
:1. Introduction
2. Literature Review and Conceptual Framework
3. Materials and Method
3.1. Study Sites and Sampling
3.2. Data Collection
3.3. Model Specification
4. Results
4.1. Descriptive Results
4.2. Empirical Results
4.2.1. The Impact of Skill Training on Per Capita Income
4.2.2. The Mechanism of the Impact of Skill Training on Income
The Impact of Skill Training on Agricultural and Off-Farm Income
The Heterogeneity of the Impact of Skill Training on Household Income within and outside PAs
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Millennium Ecosystem Assessment. Ecosystems and Human Well-Being; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Dudley, N. Guidelines for Applying Protected Area Management Categories; IUCN: Gland, Switzerland, 2008. [Google Scholar]
- Shah, P.; Baylis, K.; Busch, J.; Engelmann, J. What determines the effectiveness of national Protected Area networks? Environ. Res. Lett. 2021, 16, 74017. [Google Scholar] [CrossRef]
- Laurance, W.F.; Carolina Useche, D.; Rendeiro, J.; Kalka, M.; Bradshaw, C.J.A.; Sloan, S.P.; Laurance, S.G.; Campbell, M.; Abernethy, K.; Scott McGraw, W.; et al. Averting biodiversity collapse in tropical forest Protected Areas. Nature 2012, 489, 290–294. [Google Scholar] [CrossRef] [PubMed]
- Meyer, S.R.; Cronan, C.S.; Lilieholm, R.J.; Johnson, M.L.; Foster, D.R. Land conservation in northern New England: Historic trends and alternative conservation futures. Biol. Conserv. 2014, 174, 152–160. [Google Scholar] [CrossRef]
- Rodrigues, A.S.; Andelman, S.J.; Bakarr, M.I.; Boitani, L.; Brooks, T.M.; Cowling, R.M.; Fishpool, L.D.C.; da Fonseca, G.A.B.; Gaston, K.J.; Yan, X.; et al. Effectiveness of the global Protected Area network in representing species diversity. Nature 2004, 428, 640–643. [Google Scholar] [CrossRef]
- Jones, K.R.; Venter, O.; Fuller, R.A.; Allan, J.R.; Maxwell, S.L.; Negret, P.J.; Watson, J.E.M. One-third of global protected land is under intense human pressure. Science 2018, 360, 788–791. [Google Scholar] [CrossRef]
- Ward, C.; Stringer, L.C.; Holmes, G. Protected Area co-management and perceived livelihood impacts. J. Environ. Manag. 2018, 228, 1–12. [Google Scholar] [CrossRef]
- Shova, T.; Hubacek, K. Drivers of illegal resource extraction: An analysis of Bardia National Park, Nepal. J. Environ. Manag. 2011, 92, 156–164. [Google Scholar] [CrossRef]
- Angelsen, A.; Jagger, P.; Babigumira, R.; Belcher, B.; Hogarth, N.J.; Bauch, S.; Börner, J.; Smith-Hall, C.; Wunder, S. Environmental Income and Rural Livelihoods: A Global-Comparative Analysis. World Dev. 2014, 64, S12–S28. [Google Scholar] [CrossRef]
- Wu, J.; Wu, G.; Kong, X.; Luo, Y.; Zhang, X. Why should landowners in Protected Areas be compensated? A theoretical framework based on value capture. Land Use Policy 2020, 95, 104640. [Google Scholar] [CrossRef]
- Shackleton, C.M.; Shackleton, S.E.; Buiten, E.; Bird, N. The importance of dry woodlands and forests in rural livelihoods and poverty alleviation in South Africa. For. Policy Econ. 2007, 9, 558–577. [Google Scholar] [CrossRef]
- Cacho, O.J.; Milne, S.; Gonzalez, R.; Tacconi, L. Benefits and costs of deforestation by smallholders: Implications for forest conservation and climate policy. Ecol. Econ. 2014, 107, 321–332. [Google Scholar] [CrossRef]
- Gutiérrez-Zamora, V.; Hernández Estrada, M. Responsibilization and state territorialization: Governing socio-territorial conflicts in community forestry in Mexico. For. Policy Econ. 2020, 116, 102188. [Google Scholar] [CrossRef]
- Jones, N.; Clark, J.R.A.; Panteli, M.; Proikaki, M.; Dimitrakopoulos, P.G. Local social capital and the acceptance of Protected Area policies: An empirical study of two Ramsar river delta ecosystems in northern Greece. J. Environ. Manag. 2012, 96, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Canavire-Bacarreza, G.; Hanauer, M.M. Estimating the Impacts of Bolivia’s Protected Areas on Poverty. World Dev. 2013, 41, 265–285. [Google Scholar] [CrossRef]
- Nilsson, D.; Baxter, G.; Butler, J.R.A.; McAlpine, C.A. How do community-based conservation programs in developing countries change human behaviour? A realist synthesis. Biol. Conserv. 2016, 200, 93–103. [Google Scholar] [CrossRef]
- De Pourcq, K.; Thomas, E.; Arts, B.; Vranckx, A.; Léon-Sicard, T.; Van Damme, P. Understanding and Resolving Conflict Between Local Communities and Conservation Authorities in Colombia. World Dev. 2017, 93, 125–135. [Google Scholar] [CrossRef]
- Nchanji, Y.K.; Ramcilovic-Suominen, S.; Kotilainen, J. Power imbalances, social inequalities and gender roles as barriers to true participation in national park management: The case of Korup National Park, Cameroon. For. Policy Econ. 2021, 130, 102527. [Google Scholar] [CrossRef]
- Spiteri, A.; Nepal, S.K. Evaluating Local Benefits from Conservation in Nepal’s Annapurna Conservation Area. Environ. Manag. 2008, 42, 391–401. [Google Scholar] [CrossRef]
- Bown, N.K.; Gray, T.S.; Stead, S.M. Co-management and adaptive co-management: Two modes of governance in a Honduran marine protected area. Mar. Policy 2013, 39, 128–134. [Google Scholar] [CrossRef]
- Karanth, K.K.; Nepal, S.K. Local Residents Perception of Benefits and Losses From Protected Areas in India and Nepal. Environ. Manag. 2012, 49, 372–386. [Google Scholar] [CrossRef]
- Sladonja, B.; Brščić, K.; Poljuha, D.; Fanuko, N.; Grgurev, M. Introduction of Participatory Conservation in Croatia, Residents’ Perceptions: A Case Study from the Istrian Peninsula. Environ. Manag. 2012, 49, 1115–1129. [Google Scholar] [CrossRef] [PubMed]
- Thondhlana, G.; Muchapondwa, E. Dependence on environmental resources and implications for household welfare: Evidence from the Kalahari drylands, South Africa. Ecol. Econ. 2014, 108, 59–67. [Google Scholar] [CrossRef]
- Duan, W.; Wen, Y. Impacts of Protected Areas on local livelihoods: Evidence of giant panda biosphere reserves in Sichuan Province, China. Land Use Policy 2017, 68, 168–178. [Google Scholar] [CrossRef]
- Dash, M.; Behera, B. Biodiversity conservation, relocation and socio-economic consequences: A case study of Similipal Tiger Reserve, India. Land Use Policy 2018, 78, 327–337. [Google Scholar] [CrossRef]
- Ferraro, P.J.; Hanauer, M.M. Quantifying causal mechanisms to determine how Protected Areas affect poverty through changes in ecosystem services and infrastructure. Proc. Natl. Acad. Sci. USA 2014, 111, 4332–4337. [Google Scholar] [CrossRef]
- Rastogi, A.; Hickey, G.M.; Anand, A.; Badola, R.; Hussain, S.A. Wildlife-tourism, local communities and tiger conservation: A village-level study in Corbett Tiger Reserve, India. For. Policy Econ. 2015, 61, 11–19. [Google Scholar] [CrossRef]
- Jansen, H.G.P.; Pender, J.; Damon, A.; Wielemaker, W.; Schipper, R. Policies for sustainable development in the hillside areas of Honduras: A quantitative livelihoods approach. Agric. Econ. 2006, 34, 141–153. [Google Scholar] [CrossRef]
- Islam, K.; Nath, T.K.; Jashimuddin, M.; Rahman, M.F. Forest dependency, co-management and improvement of peoples’ livelihood capital: Evidence from Chunati Wildlife Sanctuary, Bangladesh. Environ. Dev. 2019, 32, 100456. [Google Scholar] [CrossRef]
- Jiao, X.; Walelign, S.Z.; Nielsen, M.R.; Smith-Hall, C. Protected Areas, household environmental incomes and well-being in the Greater Serengeti-Mara Ecosystem. For. Policy Econ. 2019, 106, 101948. [Google Scholar] [CrossRef]
- Mbanze, A.A.; Viera Da Silva, C.; Ribeiro, N.S.; Silva, J.F.; Santos, J.L. A Livelihood and Farming System approach for effective conservation policies in Protected Areas of Developing Countries: The case study of the Niassa National Reserve in Mozambique. Land Use Policy 2020, 99, 105056. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, L.; Luo, R.; Li, Q. Does Education Still Pay Off in Rural China: Revisit the Impact of Education on Off-farm Employment and Wages. China World Econ. 2008, 16, 50–65. [Google Scholar] [CrossRef]
- Lee, D.S. Training, wages, and sample selection: Estimating sharp bounds on treatment effects. Rev. Econ. Stud. 2009, 76, 1071–1102. [Google Scholar] [CrossRef]
- Riphahn, R.T.; Zibrowius, M. Apprenticeship, vocational training, and early labor market outcomes—Evidence from East and West Germany. Educ. Econ. 2014, 24, 33–57. [Google Scholar] [CrossRef]
- Hirshleifer, S.; McKenzie, D.; Almeida, R.; Ridao-Cano, C. The Impact of Vocational Training for the Unemployed: Experimental Evidence from Turkey. Econ. J. 2016, 126, 2115–2146. [Google Scholar] [CrossRef]
- Attanasio, O.; GuarÍn, A.; Medina, C.; Meghir, C. Vocational Training for Disadvantaged Youth in Colombia: A Long-Term Follow-Up. Am. Econ. J. Appl. Econ. 2017, 9, 131–143. [Google Scholar] [CrossRef]
- Wang, Q.; Ren, T.; Liu, T. Training, skill-upgrading and settlement intention of migrants: Evidence from China. Urban Stud. 2018, 56, 2779–2801. [Google Scholar] [CrossRef]
- Feder, G.; Murgai, R.; Quizon, J.B. The Acquisition and Diffusion of Knowledge: The Case of Pest Management Training in Farmer Field Schools, Indonesia. J. Agr. Econ. 2004, 55, 221–243. [Google Scholar] [CrossRef]
- Horgan, F.G.; Kudavidanage, E.P. Farming on the edge: Farmer training to mitigate human-wildlife conflict at an agricultural frontier in south Sri Lanka. Crop Prot. 2020, 127, 104981. [Google Scholar] [CrossRef]
- Schreinemachers, P.; Wu, M.; Uddin, M.N.; Ahmad, S.; Hanson, P. Farmer training in off-season vegetables: Effects on income and pesticide use in Bangladesh. Food Policy 2016, 61, 132–140. [Google Scholar] [CrossRef]
- DFID. Sustainable Livelihoods Guidance Sheets; Department for International Development: London, UK, 1999.
- Chambers, R.; Conway, G.R. Sustainable Rural Livelihoods: Practical Concepts for the 21st Century; Institute of Development Studies: Brighton, UK, 1992. [Google Scholar]
- Chen, H.; Shivakoti, G.; Zhu, T.; Maddox, D. Livelihood Sustainability and Community Based Co-Management of Forest Resources in China: Changes and Improvement. Environ. Manag. 2012, 49, 219–228. [Google Scholar] [CrossRef]
- Van den Berg, M. Household income strategies and natural disasters: Dynamic livelihoods in rural Nicaragua. Ecol. Econ. 2010, 69, 592–602. [Google Scholar] [CrossRef]
- Fang, Y.; Fan, J.; Shen, M.; Song, M. Sensitivity of livelihood strategy to livelihood capital in mountain areas: Empirical analysis based on different settlements in the upper reaches of the Minjiang River, China. Ecol. Indic. 2014, 38, 225–235. [Google Scholar] [CrossRef]
- Bhandari, P.B. Rural livelihood change? Household capital, community resources and livelihood transition. J. Rural Stud. 2013, 32, 126–136. [Google Scholar] [CrossRef]
- Huffman, W.E. Allocative Efficiency: The Role of Human Capital. Q. J. Econ. 1977, 91, 59–79. [Google Scholar] [CrossRef]
- Tao Yang, D. Education and allocative efficiency: Household income growth during rural reforms in China. J. Dev. Econ. 2004, 74, 137–162. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, X. Measures of human capital and the mechanics of economic growth. China Econ. Rev. 2021, 68, 101641. [Google Scholar] [CrossRef]
- Soltani, A.; Angelsen, A.; Eid, T.; Naieni, M.S.N.; Shamekhi, T. Poverty, sustainability, and household livelihood strategies in Zagros, Iran. Ecol. Econ. 2012, 79, 60–70. [Google Scholar] [CrossRef]
- Nuthall, P.L. Determining the important management skill competencies: The case of family farm business in New Zealand. Agric. Syst. 2006, 88, 429–450. [Google Scholar] [CrossRef]
- Arulampalam, W.N.; Booth, A.L. Learning and Earning: Do Multiple Training Events Pay? A Decade of Evidence from a Cohort of Young British Men. Economica 2001, 68, 379–400. [Google Scholar] [CrossRef]
- Chesterman, N.S.; Entwistle, J.; Chambers, M.C.; Liu, H.; Agrawal, A.; Brown, D.G. The effects of trainings in soil and water conservation on farming practices, livelihoods, and land-use intensity in the Ethiopian highlands. Land Use Policy 2019, 87, 104051. [Google Scholar] [CrossRef]
- Stoll-Kleemann, S.; O’Riordan, T. Biosphere Reserves in the Anthropocene. In The Encyclopedia of the Anthropocene; Dominick, A.D., Michael, I.G., Eds.; Elsevier: Oxford, UK, 2018; Volume 3, pp. 347–353. [Google Scholar]
- Xishuangbanna National Nature Reserve Management and Conservation Bureau, China. Introduction to Xishuangbanna National Nature Reserve. 2019. Available online: https://www.xsbn.gov.cn/zrbhq/112818.news.detail.dhtml?news_id=1855867 (accessed on 15 February 2022).
- Huangshan Scenic Area Management Committee, China. Overview of Mount Huangshan. 2021. Available online: https://hsgwh.huangshan.gov.cn/zjhs/hsjs/hsgk/index.htm (accessed on 15 February 2022).
- Wuyishan National Park Administration, China. Introduction to Wuyishan National Park in Fujian Province. 2017. Available online: http://wysgjgy.fujian.gov.cn/gygk/gyjj/201708/t20170821_5511563.htm (accessed on 15 February 2022).
- Wudalianchi Scenic Spot and Nature Reserve Management Committee, China. Introduction to Wudalianchi Scenic Spot. 2022. Available online: https://chinawdlc.org.cn/pages/5aa23129f6e9fa18c8c87141 (accessed on 15 February 2022).
- Farkas, J.Z.; Kovács, A.D. Nature conservation versus agriculture in the light of socio-economic changes over the last half-century–Case study from a Hungarian national park. Land Use Policy 2021, 101, 105131. [Google Scholar] [CrossRef]
- National Bureau of Statistics, China. Income and Consumption Expenditure of Residents in 2018. 2019. Available online: http://www.stats.gov.cn/tjsj/zxfb/201901/t20190121_1645791.html (accessed on 12 January 2022).
- Jiang, K.; Liu, S. Income Structure, Income Inequality and Rural Family Poverty. Chin. Rural. Econ. 2017, 8, 75–90. Available online: https://kns.cnki.net/kcms/detail/detail.aspx?FileName=ZNJJ201708006&DbName=CJFQ2017 (accessed on 15 February 2022). (In Chinese).
- Duan, W.; Hogarth, N.J.; Shen, J. Impacts of Protected Areas on Income Inequality: Evidence from the Giant Panda Biosphere Reserves in Sichuan Province, China. J. For. Econ. 2021, 36, 27–51. [Google Scholar] [CrossRef]
- Ng, Y.C. Training determinants and productivity impact of training in China: A case of Shanghai. Econ. Educ. Rev. 2005, 24, 275–295. [Google Scholar] [CrossRef]
- Man, N.; Sadiya, S.I. Off-Farm Employment Participation among Paddy Farmers in the Muda Agricultural Development Authority and Kemasin Semerak Granary Areas of Malaysia. Asia-Pac. Dev. J. 2009, 16, 141–153. [Google Scholar] [CrossRef]
- Liao, L.; Long, H.; Gao, X.; Ma, E. Effects of land use transitions and rural aging on agricultural production in China’s farming area: A perspective from changing labor employing quantity in the planting industry. Land Use Policy 2019, 88, 104152. [Google Scholar] [CrossRef]
- Cheng, M.; Liu, Y.; Huang, T. An empirical test of the relationship between agricultural labor outflow, agricultural factor investment and food security. Stat. Decis. 2016, 18, 114–116. (In Chinese) [Google Scholar] [CrossRef]
- Takada, S.; Morikawa, S.; Idei, R.; Kato, H. Impacts of improvements in rural roads on household income through the enhancement of market accessibility in rural areas of Cambodia. Transportation 2021, 48, 2857–2881. [Google Scholar] [CrossRef]
- Mbanze, A.A.; Vieira Da Silva, C.; Ribeiro, N.S.; Santos, J.L. Participation in illegal harvesting of natural resources and the perceived costs and benefits of living within a protected area. Ecol. Econ. 2021, 179, 106825. [Google Scholar] [CrossRef]
- Estifanos, T.K.; Polyakov, M.; Pandit, R.; Hailu, A.; Burton, M. The impact of protected areas on the rural households’ incomes in Ethiopia. Land Use Policy 2020, 91, 104349. [Google Scholar] [CrossRef]
- Xu, D.; Deng, X.; Guo, S.; Liu, S. Labor migration and farmland abandonment in rural China: Empirical results and policy implications. J. Environ. Manag. 2019, 232, 738–750. [Google Scholar] [CrossRef] [PubMed]
- Kumeh, E.M.; Kyereh, B.; Birkenberg, A.; Birner, R. Customary power, farmer strategies and the dynamics of access to protected forestlands for farming: Implications for Ghana’s forest bioeconomy. For. Policy Econ. 2021, 133, 102597. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, B.; Xie, Y. Can Protected Area Have Positive Effects on Community Livelihood?–Evidence from Wuyi Mountain National Nature Reserve, China. J. For. Econ. 2021, 36, 53–77. [Google Scholar] [CrossRef]
- Wei, H.; Huang, B.; Li, G.; Sun, T.; Han, L. Analysis and Forecast on China’s Rural Economy (2017–2018); Social Sciences Academic Press: Beijing, China, 2019. (In Chinese) [Google Scholar]
- Li, X.; Li, R.; Luo, B. The impact of agricultural technical training and non-agricultural vocational training on the income of rural residents. J. Appl. Stat. Manag. 2015, 34, 867–877. (In Chinese) [Google Scholar] [CrossRef]
- Gazi, M.A.; Kazi, E.H.; Md. Taher, B.K.; Saedah, B.S.; Muhammad, F.B.A.G. The role of agriculture education and training on agriculture economics and national development of Bangladesh. Afr. J. Agric. Res. 2009, 4, 1334–1350. [Google Scholar]
- Wang, C. What has China’s nature reserves given to surrounding communities—Based on the survey data of farmers in Shaanxi, Sichuan and Gansu provinces from 1998 to 2014. Manag. World 2017, 3, 63–75. (In Chinese) [Google Scholar] [CrossRef]
Biosphere Reserves | Number of Villages | Number of Households | Number of Households within PA | Number of Households outside PA |
---|---|---|---|---|
Xishuangbanna National Nature Reserve | 5 | 99 | 40 | 59 |
Wuyishan National Park | 5 | 95 | 43 | 52 |
Mount Huangshan Scenic Area | 5 | 95 | 20 | 75 |
Wudalianchi Scenic Area and Nature Reserve | 5 | 92 | 55 | 37 |
Total | 20 | 381 | 158 | 223 |
Variable | Definition | Mean | Std. Dev. | Min | Max |
---|---|---|---|---|---|
Training | |||||
Agritech | Participation in agricultural skill training | 0.13 | 0.34 | 0 | 1 |
Offfarmtech | Participation in off-farm skill training | 0.07 | 0.25 | 0 | 1 |
Income | |||||
Totalincome | Household income (CNY) | 85,341.97 | 84,997.14 | 2921 | 673,000 |
Perincome | Per capita household income (CNY) | 21,117.42 | 21,566.08 | 1033.33 | 240,000 |
Peroffincome | Per capita off-farm income of the household (CNY) | 11,313.05 | 16,970.54 | 0.1 | 150,000.1 |
Perfarmincome | Per capita agricultural income of the household (CNY) | 7114.54 | 12,178.73 | 0.01 | 138,600 |
lnperincome | Log of per capita household income | 9.61 | 0.85 | 6.94 | 12.39 |
lnperoffincome | Log of per capita off-farm income of the household | 5.87 | 5.24 | −2.30 | 11.92 |
lnperfarmincome | Log of per capita agricultural income of the household | 7.26 | 3.04 | −5.30 | 11.84 |
Human capital | |||||
Age | Age of the household head | 54.35 | 11.79 | 23 | 84 |
Gender | Gender of the household head (1 = male; 0 = female) | 0.92 | 0.28 | 0 | 1 |
Education | Whether the education level of the household head is above junior middle school (1 = yes; 0 = no) | 0.11 | 0.31 | 0 | 1 |
Perfeed1 | Household dependency ratio (%) | 31.59 | 30.31 | 0 | 100 |
Social capital | |||||
Party | Whether there are Chinese Communist Party members in the household (1 = yes; 0 = no) | 0.22 | 0.42 | 0 | 1 |
Cadre | Whether there are village cadres in the household (1 = yes; 0 = no) | 0.10 | 0.30 | 0 | 1 |
Physical capital | |||||
lnHouseValue | Log of house value | 2.70 | 1.54 | −4.61 | 6.21 |
Road | Whether there is an asphalt/cement road passing through the village (1 = yes; 0 = no) | 0.90 | 0.30 | 0 | 1 |
Natural capital | |||||
Forestland | Forest land area (mu) | 24.75 | 35.65 | 0 | 300 |
Farmland | Farmland area (mu) | 13.25 | 24.15 | 0 | 213.6 |
Biosphere Reserves a | |||||
Mount Huangshan | Whether the household is located in this PA (1 = yes; 0 = no) | 0.25 | 0.43 | 0 | 1 |
Wuyishan National Park | Whether the household is located in this PA (1 = yes; 0 = no) | 0.25 | 0.43 | 0 | 1 |
Wudalianchi Scenic Spot and Nature Reserve | Whether the household is located in this PA (1 = yes; 0 = no) | 0.24 | 0.43 | 0 | 1 |
Variables | Dependent Variable: Log of per Capital Household Income | ||
---|---|---|---|
Model 1 | Model 2 | Model 3 | |
Training | |||
Agritech | −0.022 | −0.115 | −0.100 |
(−0.149) | (−1.016) | (−0.854) | |
Offfarmtech | 0.329 * | 0.274 * | 0.197 |
(1.698) | (1.937) | (1.520) | |
Human capital | |||
Age | 0.006 * | 0.001 | |
(1.920) | (0.410) | ||
Gender | 0.023 | −0.036 | |
(0.146) | (−0.227) | ||
Education | −0.100 | −0.145 | |
(−0.914) | (−1.250) | ||
Perfeed1 | −0.007 *** | −0.007 *** | |
(−5.556) | (−5.493) | ||
Social capital | |||
Party | 0.186 * | 0.148 | |
(1.923) | (1.544) | ||
Cadre | 0.201 | 0.221 * | |
(1.642) | (1.864) | ||
Physical capital | |||
lnHouseValue | 0.176 *** | 0.155 *** | |
(6.281) | (5.225) | ||
Road | 0.353 *** | 0.144 | |
(2.625) | (1.012) | ||
Natural capital | |||
Forestland | 0.005 *** | 0.006 *** | |
(5.595) | (5.053) | ||
Farmland | 0.006 *** | 0.007 *** | |
(6.732) | (6.071) | ||
Biosphere Reserves | |||
Huangshan | 0.485 *** | ||
(4.269) | |||
Wuyishan | 0.302 *** | ||
(2.619) | |||
Wudalianchi | 0.216 * | ||
8.413 *** | (1.668) | ||
Constant | 9.588 *** | (35.600) | 8.719 *** |
(204.732) | (34.959) | ||
Observations | 381 | 381 | 381 |
R squared | 0.01 | 0.356 | 0.383 |
Variables | Dependent Variable: Log of per Capita Household Income | |
---|---|---|
Within PA | Outside PA | |
Training | ||
Agritech | −0.021 | −0.101 |
(−0.124) | (−0.575) | |
Offfarmtech | −0.078 | 0.454 ** |
(−0.554) | (2.376) | |
Human capital | ||
Age | −0.006 | 0.007 |
(−1.056) | (1.636) | |
Gender | −0.24 | 0.088 |
(−1.125) | (0.392) | |
Education | −0.033 | −0.084 |
(−0.146) | (−0.615) | |
Perfeed1 | −0.006 *** | −0.006 *** |
(−2.970) | (−3.687) | |
Social capital | ||
Party | 0.092 | 0.172 |
(0.698) | (1.315) | |
Cadre | 0.141 | 0.244 |
(0.815) | (1.566) | |
Physical capital | ||
lnHouseValue | 0.090 ** | 0.174 *** |
(2.064) | (4.150) | |
Road | 0.908 *** | −0.311 |
(3.670) | (−1.605) | |
Natural capital | ||
Forestland | 0.000 | 0.005 *** |
(0.240) | (3.430) | |
Farmland | 0.008 *** | 0.006 *** |
(4.119) | (3.789) | |
Biosphere Reserves | ||
Huangshan | 0.580 ** | 0.345 ** |
(2.540) | (2.493) | |
Wuyishan | 0.550 *** | 0.108 |
(3.141) | (0.662) | |
Wudalianchi | −0.134 | 0.209 |
(−0.580) | (1.178) | |
Constant | 8.955 *** | 8.738 *** |
(20.054) | (31.339) | |
Observations | 158 | 223 |
R squared | 0.559 | 0.344 |
Dependent Variable: Log of per Capita Off-Farm Income | Dependent Variable: Log of per Capita Agricultural Income | |||||
---|---|---|---|---|---|---|
Model 4 | Model 5 | Model 6 | Model 7 | Model 8 | Model 9 | |
Training | ||||||
Agritech | −0.829 | −1.236 | −1.107 | 1.707 *** | 0.833 *** | 0.695 ** |
(−1.018) | (−1.592) | (−1.511) | (6.650) | (3.285) | (2.531) | |
Offfarmtech | 2.398 *** | 1.608 ** | 0.757 | −0.158 | −0.413 | 0.010 |
(2.847) | (2.387) | (1.227) | (−0.264) | (−0.727) | (0.018) | |
Human capital | ||||||
Age | −0.018 | −0.063 ** | −0.028 ** | 0.006 | ||
(−0.730) | (−2.442) | (−2.159) | (0.427) | |||
Gender | 1.093 | 0.294 | 0.691 | 0.841 * | ||
(1.137) | (0.302) | (1.182) | (1.706) | |||
Education | 0.702 | 0.147 | 0.009 | 0.195 | ||
(0.995) | (0.235) | (0.023) | (0.521) | |||
Perfeed1 | −0.050 *** | −0.048 *** | −0.004 | −0.004 | ||
(−5.314) | (−5.579) | (−0.754) | (−0.841) | |||
Social capital | ||||||
Party | 1.032 * | 0.388 | 0.467 | 0.427 | ||
(1.776) | (0.712) | (1.432) | (1.362) | |||
Cadre | 0.080 | 0.256 | 0.158 | 0.021 | ||
(0.097) | (0.355) | (0.350) | (0.052) | |||
Physical capital | ||||||
lnHouseValue | 0.728 *** | 0.301 ** | −0.039 | −0.148 * | ||
(4.556) | (1.987) | (−0.471) | (−1.766) | |||
Road | 2.181 ** | 0.319 | −1.190 *** | 0.506 * | ||
(2.333) | (0.285) | (−4.578) | (1.722) | |||
Natural capital | ||||||
Forestland | −0.012 * | −0.019 ** | 0.018 *** | 0.009 ** | ||
(−1.652) | (−2.465) | (4.032) | (2.151) | |||
Farmland | 0.020 *** | 0.035 *** | 0.028 *** | 0.036 *** | ||
(2.822) | (4.276) | (5.096) | (5.279) | |||
Biosphere Reserves | ||||||
Huangshan | 5.288 *** | −2.554 *** | ||||
(6.338) | (−5.484) | |||||
Wuyishan | 4.078 *** | −1.053 *** | ||||
(4.684) | (−4.073) | |||||
Wudalianchi | 0.458 | −3.423 *** | ||||
(0.459) | (−6.935) | |||||
Constant | 5.816 *** | 3.305 * | 6.956 *** | 7.046 *** | 8.428 *** | 7.084 *** |
(19.239) | (1.892) | (3.878) | (38.611) | (11.169) | (8.931) | |
Observations | 381 | 381 | 381 | 381 | 381 | 381 |
R squared | 0.017 | 0.236 | 0.36 | 0.037 | 0.185 | 0.294 |
Variables | Dependent Variable: Log of Per Capita Off-Farm Income | Dependent Variable: Log of Per Capita Agricultural Income | ||
---|---|---|---|---|
Within PA | Outside PA | Within PA | Outside PA | |
Training | ||||
Agritech | −1.410 | −2.113 ** | 0.770 * | 1.029 *** |
(−1.226) | (−2.142) | (1.842) | (2.771) | |
Offfarmtech | −1.462 | 0.783* | 0.988 | −0.127 |
(−1.109) | (1.700) | (1.641) | (−0.145) | |
Human capital | ||||
Age | −0.155 *** | −0.043 | 0.004 | 0.016 |
(−3.821) | (−1.409) | (0.198) | (0.943) | |
Gender | −1.423 | 1.446 | 1.618 * | 0.35 |
(−1.021) | (1.197) | (1.872) | (0.598) | |
Education | 0.741 | −0.52 | 0.03 | 0.454 |
(0.508) | (−0.713) | (0.044) | (1.049) | |
Perfeed1 | −0.054 *** | −0.037 *** | −0.010 | −0.000 |
(−3.981) | (−3.408) | (−1.293) | (−0.059) | |
Social capital | ||||
Party | 0.533 | 0.678 | 0.552 | 0.525 |
(0.621) | (1.085) | (1.327) | (1.115) | |
Cadre | 1.023 | −0.056 | −0.562 | 0.473 |
(0.994) | (−0.062) | (−0.904) | (0.853) | |
Physical capital | ||||
lnHouseValue | 0.047 | 0.422 * | −0.074 | −0.273 * |
(0.255) | (1.907) | (−0.654) | (−1.935) | |
Road | −7.545 *** | 4.721 *** | 2.332 *** | −0.367 |
(−4.039) | (3.175) | (3.709) | (−0.774) | |
Natural capital | ||||
Forestland | 0.005 | −0.004 | −0.003 | 0.009 |
(0.338) | (−0.632) | (−0.408) | (1.448) | |
Farmland | 0.018 | 0.037 *** | 0.039 *** | 0.033 *** |
(1.412) | (3.581) | (3.403) | (3.398) | |
Biosphere Reserves | ||||
Huangshan | 10.234 *** | 3.324 *** | −2.062 ** | −2.762 *** |
(5.929) | (3.898) | (−2.470) | (−5.215) | |
Wuyishan | 9.000 *** | 1.807 * | −1.226 *** | −1.224 *** |
(6.292) | (1.832) | (−2.683) | (−3.058) | |
Wudalianchi | 6.163 *** | −0.575 | −4.042 *** | −3.659 *** |
(3.497) | (−0.448) | (−4.854) | (−4.658) | |
Constant | 16.733 *** | 1.677 | 5.483 *** | 7.911 *** |
(6.128) | (0.793) | (3.561) | (8.858) | |
Observations | 158 | 223 | 158 | 223 |
R squared | 0.467 | 0.392 | 0.396 | 0.298 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Q.; Bai, Y.; Fu, C.; Xu, X.; Sun, M.; Cheng, B.; Zhang, L. Heterogeneous Effects of Skill Training on Rural Livelihoods around Four Biosphere Reserves in China. Int. J. Environ. Res. Public Health 2022, 19, 11524. https://doi.org/10.3390/ijerph191811524
Sun Q, Bai Y, Fu C, Xu X, Sun M, Cheng B, Zhang L. Heterogeneous Effects of Skill Training on Rural Livelihoods around Four Biosphere Reserves in China. International Journal of Environmental Research and Public Health. 2022; 19(18):11524. https://doi.org/10.3390/ijerph191811524
Chicago/Turabian StyleSun, Qi, Yunli Bai, Chao Fu, Xiangbo Xu, Mingxing Sun, Baodong Cheng, and Linxiu Zhang. 2022. "Heterogeneous Effects of Skill Training on Rural Livelihoods around Four Biosphere Reserves in China" International Journal of Environmental Research and Public Health 19, no. 18: 11524. https://doi.org/10.3390/ijerph191811524
APA StyleSun, Q., Bai, Y., Fu, C., Xu, X., Sun, M., Cheng, B., & Zhang, L. (2022). Heterogeneous Effects of Skill Training on Rural Livelihoods around Four Biosphere Reserves in China. International Journal of Environmental Research and Public Health, 19(18), 11524. https://doi.org/10.3390/ijerph191811524