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Abstract: Spinal maladies are among the most common causes of pain and disability worldwide.
Imaging represents an important diagnostic procedure in spinal care. Imaging investigations can
provide information and insights that are not visible through ordinary visual inspection. Multiscale
in vivo interrogation has the potential to improve the assessment and monitoring of pathologies
thanks to the convergence of imaging, artificial intelligence (AI), and radiomic techniques. AI is
revolutionizing computer vision, autonomous driving, natural language processing, and speech
recognition. These revolutionary technologies are already impacting radiology, diagnostics, and
other fields, where automated solutions can increase precision and reproducibility. In the first section
of this narrative review, we provide a brief explanation of the many approaches currently being
developed, with a particular emphasis on those employed in spinal imaging studies. The previously
documented uses of AI for challenges involving spinal imaging, including imaging appropriateness
and protocoling, image acquisition and reconstruction, image presentation, image interpretation, and
quantitative image analysis, are then detailed. Finally, the future applications of AI to imaging of the
spine are discussed. AI has the potential to significantly affect every step in spinal imaging. AI can
make images of the spine more useful to patients and doctors by improving image quality, imaging
efficiency, and diagnostic accuracy.

Keywords: artificial intelligence; image presentation; deep learning; image interpretation; machine
learning; spinal imaging

1. Introduction

Imaging is still used to evaluate patients with spinal disorders, and its utility has con-
tributed to a rise in the use of popular spinal imaging modalities [1]. Increased utilization
has created multiple challenges for a radiology department or private practice, including a
greater demand for operational efficiency while maintaining good accuracy and imaging
report quality [2]. As seen by the dramatic rise in the number of published articles over
the past few years, AI is increasingly being utilized to explore spine-related issues [3–5],
particularly in radiological imaging but also in other disciplines such as treatment outcome
prediction. In a number of applications, the reported findings are either promising or
have already surpassed the prior state of the art; for instance, AI approaches now enable
an exact and fully reproducible grading of intervertebral disc degeneration on magnetic
resonance imaging (MRI) scans [6]. Indeed, the current rate of technological advancement
is anticipated to yield additional benefits in the near future. Radiologists can use AI as an
innovative tool to meet these demands. AI has the potential to have a substantial impact
on each step of the imaging value chain. At this early stage of the integration of AI into
radiology, some studies using spinal imaging have previously investigated and shown the
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potential utility of AI [7,8]. The purpose of this article is to introduce artificial intelligence
(AI) to spinal radiologists through a review of recent research that emphasizes AI’s use at
various phases of spinal image production and utilization. We anticipate that, in the future,
spinal imaging will be performed using AI.

With this narrative literature review, we seek to elucidate AI’s existing successes
and potential spine-related applications for scientists in the field as well as readers from
other domains who are unfamiliar with the technical elements of such technologies. To
achieve this objective, the paper begins with a brief summary of AI’s practical or potential
impact on spinal research. Image capture and reconstruction, image presentation, image
interpretation, and quantitative image analysis, as well as determining the appropriate-
ness of imaging orders and predicting patients at risk for fracture, are described in the
following sections.

2. Technical Aspects

Despite the fact that the phrases “AI”, “machine learning” (ML), and “deep learning”
(DL) are sometimes used interchangeably, there are major distinctions in what each of
these related terms means. The term “AI” refers to any method that can teach computers
to behave like intelligent humans [9]. ML is a highly specialized branch of AI that uses
a variety of tools derived from statistics, mathematics, and computer science to enable
machines to improve their performance in jobs as they gain more experience. DL is a subset
of ML that explores the application of a specific category of computer models known as
deep neural networks to big datasets. This subfield is even more specialized than traditional
ML. DL [10] has resulted in a number of ground-breaking advancements in a variety of
fields, including image classification [11] and semantic labeling [12]. This is primarily
attributable to the rapid development of neural networks, which are mathematical or
computer models that mimic the structure and function of biological neural networks (the
central nervous system of animals, especially the brain) [13]. Neural networks consist of
a large number of artificial neurons made using a variety of connection techniques. The
Convolutional Neural Network (CNN) is one of them, along with Generative Adversarial
Networks (GANs), Recurrent Neural Networks (RNNs), etc. Neural networks can have
the same simple decision-making ability and simple judgmental ability, and can produce
superior results in image and speech recognition [14,15].

With improved research and application potential, AI technology has gradually be-
come more standardized and disciplined. As a multidisciplinary science, artificial intelli-
gence technology focuses on machine anthropomorphic recognition, learning, and thinking,
so its technical content is expanding in the development process, including knowledge
graphs, intelligent optimization algorithms, expert systems, machine logic, and other re-
search content [16,17]. A knowledge graph is a collection of graphs that depict the evolution
of knowledge and its structural relationships. It describes knowledge resources and their
carriers using visualization technology, and mines, analyzes, constructs, draws, and dis-
plays knowledge and its relationships [18]. Intelligent optimization algorithms include
genetic algorithms, ant colony algorithms, tabu search algorithms, simulated annealing
algorithms, particle swarm algorithms, and others. Intelligent optimization algorithms are
typically built for specific situations with few theoretical prerequisites and a high level of
sophistication. Usually, intelligent algorithms are compared with optimization algorithms.
Intelligent algorithms, on the other hand, are rapid and have a wide range of applica-
tions [19]. An expert system is a computer program system that has a substantial quantity
of knowledge and expertise at the expert level on a specific topic. It can use artificial intelli-
gence and computer technology to reason and judge based on the system’s knowledge and
experience, emulating human experts. An expert system is a computer program system
that simulates human experts to solve domain problems in order to address complicated
problems that human experts need to manage [20]. Currently, it is also utilized extensively
in big data and IoT systems [21,22].
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At present, the data-driven ML process has been derived into a fully automated
program that can process large amounts of data without manual intervention. DL is a new
method of ML that breaks through the bottleneck of traditional ML methods. Compared
to conventional ML, DL deep networks scale better with more data, require no feature
engineering, and are easily transformable [23]. In many fields, including voice, natural
language, vision, and game playing, deep neural networks have surpassed classic ML
techniques in terms of accuracy. In many situations, classical ML cannot even compete
with DL [24]. Through multi-layer processing, the initial low-level feature representation
is gradually transformed into a high-level feature representation, and features can be
automatically identified to complete complex classification and other learning tasks. Fully
automatic data analysis has become a reality, which has accelerated the growth of ML.
Research shows that DL can provide more personalized and precise treatment plans [25,26].
The most basic method of ML is to use algorithms to parse data, learn from that data,
and then make decisions and predictions about events in the real world. Compared with
traditional ML methods that are manually designed with features, the DL method based
on big data drives the learning of image features from the image itself, rather than from
experience, so one can learn the features of the image more comprehensively. In the face of
high-dimensional nonlinear data, DL methods can adaptively learn appropriate features
and finally classify images with high accuracy. Therefore, in recent years, they have received
extensive attention from academia and industry.

The CNN is one of the most essential architectural types when processing image
data [27]. Each node in a CNN is only connected to a small number of nearby nodes. This
structure is highly effective in extracting local image features (each node is only connected
to a small number of nearby nodes). This structure is particularly effective in extracting
local image features (each node is only connected to a small number of nearby nodes).
A CNN is a typical model used in DL applications to extract image features. It is an
end-to-end network model type. It only takes the input of the image with category labels,
and the network can automatically execute hierarchical learning of image characteristics
and learn deeper image features by appropriately increasing the number of network layers.
This structure is particularly effective in extracting local image characteristics Inception-
v4 was introduced by Szegedy et al. [28]. The residual structure is integrated into the
Inception network to improve training efficiency, and two network structures, Inception-
ResNet-v1 and Inception-ResNet-v2, are proposed to further promote the application of a
CNN. Based on the existing CNN structure, Ronnenberge et al. [29] constructed a more
elegant architecture, the so-called “fully convolutional network.” Modifying and extending
this architecture so that it can work on few training images and produce more accurate
segmentations has also advanced the use of CNNs on medical images.

3. Imaging Appropriateness and Protocoling

Making the best imaging examination choice for a patient can be challenging for a
doctor. Although there are resources that can help with this issue, such as decision sup-
port software, virtual consult platforms, and imaging ordering recommendations, ML can
offer a more thorough, evidence-based resource [30,31]. In addition, a significant corpus
of research is also starting to exploit multimodal, multiscale data fusion for biomedical
imaging and ML applications [32]. In order to recommend an appropriate patient-specific
imaging examination tailored to the clinical question that must be answered, ML algorithms
can incorporate multiple sources of information from a patient’s medical records, such
as symptoms, laboratory values, physical examination findings, and previous imaging
results [33]. After the requisite examination has been ordered, it is the radiologist’s obli-
gation to guarantee that it is properly protocoled and executed. Inadequately protocoled
investigations can result in inferior patient treatment and outcomes, repeat examinations
that may require more radiation exposure, significant aggravation and difficulty for both
patients and referring physicians, and an increase in the radiology practice’s expenses.
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Recently, there have been two studies that have investigated the application of DL
for natural language classification as well as its possible utility in automatically establish-
ing spine-related protocols and the necessity of IV contrast media [34,35]. The research
conducted by Lee [34] demonstrated that it is possible to use deep CNNs to differentiate
between spinal MRI examinations that follow routine protocols and those that follow tu-
mor protocols. The researchers used word combinations such as “referring department”,
“region”, “contrast media”, “gender”, and “age” in their investigation [33]. Based on
the free-text clinical indication, Trivedi et al. [35] employed a DL-based natural language
classification system (Watson, IBM) to assess whether or not an IV contrast medium was
required for spinal MRI tests. Even though both studies found promising results for poten-
tial applications in clinical decision making and protocoling support, there is no doubt that
future research will investigate increasingly complex classifiers in order to more accurately
reflect the variety of spinal imaging protocols that are currently available. For instance, ML
could use the information on the examination order as a starting point, but it could also
potentially mine electronic medical records, prior examination protocols and examination
reports, Computed Tomography (CT) or Magnetic Resonance Imaging (MRI) scanner data,
contrast injection system and contrast agent data, cumulative or annual radiation dose
information, and other quantitative data [36]. This would allow ML to determine which
protocol would be the most appropriate.

4. Image Acquisition and Reconstruction
4.1. Increase the Speed of Medical Imaging

Imaging speed has always been one of the important factors that have attracted much
attention in the process of clinical medical imaging scanning. Excessive scanning time
will reduce the daily average circulation of imaging departments and cause discomfort
to patients. In terms of rapid imaging, relevant international research mainly focuses on
the acceleration of magnetic resonance imaging. Mardani et al. [37] proposed a magnetic
resonance (MR) compression based on a GAN compressed sensing (CS) rapid imaging
method, which uses a GAN to model the low-dimensional manifold of high-quality MR
images. The GAN was introduced to the research community by Dr. Goodfellow [38].
A GAN is composed of a generator and a discriminator. The function of the generator is to
map low-quality MR images onto a manifold of high-quality images. In order to ensure
that the generated images are true and reliable, the author introduces the k-space data
fidelity item into the network. Experimental results show that this method can achieve at
least 5 times the scanning acceleration, and the imaging results are significantly superior to
those of traditional compressed sensing algorithms.

Schlemper et al. [39] proposed a fast MR imaging method based on a cascaded DNN.
The cascaded deep neural network is formed by the cascade of several network units. Each
network unit contains two parts: a CNN and a data fidelity item. A CNN is a residual net-
work (residual network, Res-Net) from construction. The experimental results show that the
reconstructed image quality of the cascaded deep neural network is significantly improved
compared to the traditional compressed sensing method and the image reconstruction
method based on dictionary learning. At the same time, it takes only 23 ms to reconstruct
a two-dimensional image of the spine, which basically achieves a quasi-real-time effect.
The quasi-real-time effect means that the processing can be completed in a very short time.
This time can be ignored, so it can be understood as a real-time effect. In order to further
improve the quality of the reconstructed image, Chen et al. [40] proposed a multiecho
image joint reconstruction method, which uses U-Net [41] to achieve image reconstruction.
Taking the 6-echo image as different input channels makes it possible to make full use of
the structural similarity between different echo images in the convolution process, thereby
adding more constraints to the training of the network and making the training process
more stable. Experimental results show that this method can achieve 4.2 times faster MR
imaging, and the reconstructed image is better than the single contrast reconstruction
method in terms of the root mean square error (RMSE) and the structural similarity index
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(SSIM). Due to the spatial local characteristics of CNN convolution operations, most of the
fast-imaging methods based on DL currently process in the image domain. However, some
image artifacts caused by the incompleteness of k-space data are difficult to solve perfectly
in the image domain. In order to solve this problem, Taejoon et al. [42] proposed a fast MR
imaging method based on dual-domain DL. Corresponding deep CNNs were designed
in both the image domain and the frequency domain, and they attempted to perform the
imaging in two different spaces. The uncollected data is restored, and the image domain
and the frequency domain are correlated through data fidelity items, thereby ensuring the
reliability of the reconstructed image. The experimental results show that the roles of the
image domain CNN and frequency domain CNN in the image reconstruction process are
different. Compared with the imaging method that only uses the image domain CNN, the
combination of the two can obtain higher quality image reconstruction results.

4.2. Decreasing CT Radiation Doses

Diagnostic imaging patients are exposed to a significant amount of radiation. In this
study, ionizing radiation, not heat or electromagnetic radiation, is the focus. However,
there have been ongoing efforts [43,44] to reduce this dose. The use of AI offers a promising
new method for lowering the radiation dose required for CT scans. The current AI-based
techniques for radiation reduction function in a manner that is comparable to that of
techniques used to increase the speed of MRI acquisition. More specifically, the goal of
these techniques is to reconstruct high-quality images using fewer raw data points or raw
data points of lower quality. Wolsterink et al. [45] published a study in 2017 in which they
used a GAN to predict conventional-dose CT images from low-dose CT images. As a result,
the noise in the low-dose CT images was reduced. More than 90% of readers in a recent
study [46] by Cross et al. found that the quality of low-radiation-dose CT images, which
were produced in part with the use of an artificial neural network (ANN), was equal to or
greater than that of CT images obtained using standard radiation doses. This conclusion
was reached based on the findings of the study that was conducted by Cross et al.

5. Image Presentation
5.1. The Intelligent Workflow of Spinal Imaging

Radiologists are under ever-increasing pressure to boost productivity, as they are asked
to interpret greater daily quantities of more difficult cases than in the past [47]. If the Picture
Archiving & Communication System (PACS) automatically shows each series in the correct
chosen position, orientation, and magnification, as well as the correct preferred window and
level, syncing, and cross-referencing settings, radiologists can work more efficiently. Such
hanging protocols should be uniform and based precisely on modality, body part, laterality,
and time (in the case of prior available imaging). By employing smarter technologies
that process a range of data, AI has the potential to transform the way a PACS displays
information to a radiologist. One PACS provider employs ML algorithms to discover how
radiologists prefer to watch examinations, collect contextual data, present layouts for future
similar studies, and modify the following corrections [48]. These intelligent solutions can
assist radiologists in achieving improved productivity by resolving challenges associated
with fluctuating or missing data that might cause traditional hanging methods to fail.

In recent years, the rapid development of AI technology has gradually enabled an
intelligent spinal imaging scanning workflow. This intelligent scanning workflow covers
functions such as patient identity intelligent authentication, intelligent voice interaction,
intelligent patient positioning, and intelligent scanning parameter setting throughout the
entire image scanning process, and its purpose is to significantly reduce the repetitive
work of scanning physicians and improve the circulation of patients in the hospital, which
improves the medical experience of patients and, at the same time, increases the consistency
of the image data collected by different physicians.

At present, there is little research work in the field of intelligent workflow in academia.
Existing work mainly focuses on intelligent scanning and positioning. Among them,
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the fast and accurate automatic positioning of human anatomy is the core of its function.
Kelm et al. [49] proposed an automatic positioning method for human anatomical structures
called marginal space learning (MSL), which modeled the anatomical structure positioning
as a search process for specific anatomical structures in medical images. The search space
(including dimensions such as position, size, and angle) is considerable, making the time
consumption of exhaustive search methods unacceptable. The principle of MSL is to
prune the impossible situations in advance during the search process, thereby avoiding
a large number of useless searches. The effective search space is only a small part of
the complete search space, so it is called edge space learning. MSL has a wide range of
applications and can realize the rapid positioning of different human anatomical structures.
This reference introduces the experiment of using MSL to automatically locate the spine
in MR images. The results show that the CPU version of the MSL algorithm can detect all
lumbar intervertebral discs within an average of 11.5 s, with a sensitivity of 98.64% and a
false positive rate of only 0.0731, which has high clinical application value.

In addition to the automatic positioning of tissues and organs, the automatic position-
ing of key points (landmarks) is also important in the intelligent scanning workflow. Most
of the existing methods first learn a feature model of structure and texture and then search
for the key points of interest in the image based on this model. Usually, these feature models
are calculated based on the local information of the image, which makes it easy to fall into
the local extremum. In order to solve the above-mentioned problems, Ghesu et al. [50]
proposed a novel key point location method, which treats the key point feature modeling
process and search process as a unified process. Specifically, this method uses DL meth-
ods to achieve multi-level image feature extraction and uses reinforcement learning (RL)
methods to achieve efficient spatial search, and the deep neural network is used to combine
the two together to perform the end-to-end learning process and effectively improve the
overall detection effect of the algorithm. This reference has conducted algorithm tests on
two-dimensional MR images, two-dimensional ultrasound images, and three-dimensional
CT images. The experimental results show that the algorithm is far superior to the existing
key point detection algorithms in accuracy and speed, with an average error of 1~2 pixels.
When the key point does not exist, the algorithm can automatically give corresponding
prompts, which has a wide range of applications and good practical value. Aiming at
3D CT and MR images, Zhang et al. [51] proposed a fine-grained automatic recognition
method of human body regions. Compared with the computer vision field, the labeled data
in the medical imaging field is relatively small. Transfer learning can usually be used in
order to solve the problem of network training over-fitting. However, there is a substantial
difference between natural images and medical images, so transfer learning based on
natural images cannot achieve optimal results in many cases. The innovation of the method
proposed in this reference is that a self-supervised network transfer learning method is
designed, such that CT or MR images themselves can be used for self-learning, thereby
avoiding images in different fields of problems caused by large differences. The experimen-
tal results in their study show that, compared to the cross-domain transfer learning from
natural images to medical images, the label-free self-supervised transfer learning in the
domain proposed in this reference can obtain significantly better recognition results [51].

In the industry, work related to an intelligent scanning workflow has been reported.
Germany’s Siemens AG has developed a fully assisting scanner technology (FAST) system,
which uses high-precision 3D cameras to achieve accurate patient positioning. In partic-
ular, the 3D camera can obtain a three-dimensional contour of the patient’s body using
infrared light technology, calculating the patient’s body shape and other useful information
based on this information, and performing other functions such as automatic isocenter
positioning and automatic scanning range as a result. The consistency of picture scanning
is improve, and unwanted radiation exposure is lowered. Generally speaking, the research
and development in the field of medical imaging intelligent scanning workflow is still in
its infancy, and breakthroughs and innovations have been sporadic. The entire imaging
scanning chain has not yet been fully opened, and many innovative researches with clinical
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value need to be continued in the future, so as to improve the patient’s diagnosis and
treatment effect and medical experience and reduce the heavy and repetitive workload of
the scanning physician.

5.2. The Quality Enhancement of Medical Images
5.2.1. CT Image Quality Enhancement

Based on Section 4.2, the enhancement research on CT image quality mainly focuses on
how to use AI technology to manage the noise caused by the reduction of radiation doses
and the streak artifact caused by the reduction of the number of projections. In terms of
low-dose image denoising, Chen et al. [52] proposed a CT image denoising method based
on a residual autoencoder, which uses a deep neural network to construct an autoencoder.
Compared with traditional image denoising methods, Li et al. [53] designed a GAN-based
CT image denoising method. The GAN is used to learn the mapping from low-dose images
to normal-dose images, and the discriminating network is used to determine whether the
generated denoised images are in the manifold where the normal dose image is located, i.e.,
whether it is visually similar to the real normal-dose image. The experimental results show
that the GAN-based image denoising method proposed by Wolterink et al. can effectively
remove the noise in low-dose CT images and, at the same time, well preserve the details of
the image, increasing the visual credibility of the denoised image. In addition, there are
related studies on the suppression of streak artifacts in CT images by deep neural networks.
The noise in low-dose images is usually local, but the streak artifacts caused by sparse
projection sampling are global, so a larger receptive field is needed when constructing
the network. Han et al. [54] proposed an algorithm for removing streak artifacts based
on U-Net, which is different from other algorithms used for removing artifacts. The Net
method is inadequate for handling streak artifacts; specific improvement strategies were
presented, and the dual-frame U-Net and tight-frame U-Net were proposed by the authors.
The experimental results show that the artifact suppression effect of the two improved
networks is significantly stronger than the classic U-Net network, and the details of the
anatomical structure are more complete. In some cases, due to physical and mechanical
constraints, only CT projection data within a certain angle range can be obtained. When
traditional analytical reconstruction methods and iterative reconstruction methods are used
for this type of data incompleteness problem, the reconstructed image usually contains
serious artifacts and blur. To solve this problem, Anirudh et al. [55] proposed a limited-
angle CT image de-artifacting algorithm (CT-Net) based on DL. The basic idea is to directly
learn the mapping from an incomplete sinogram to a CT image in the training process of
CT-Net. In order to ensure that the enhanced image has a greater signal-to-noise ratio and
rich detailed information, the loss function integrates the image domain L2 norm and the
GAN. In the application process, CT-Net is first used to obtain the enhanced CT image,
the image is then used to fill the missing chord diagram, and the analytical or iterative
reconstruction method is finally used to reconstruct the final image using the completed
chord diagram. In the experiment, the author obtained only 90◦ chord diagram data;
nonetheless, utilizing CT-Net, high-quality images could be reconstructed, and traditional
analytical or iterative reconstruction methods cannot produce such unambiguous findings.

5.2.2. PET Image Quality Enhancement

Due to the fact that PET imaging involves the injection of radioactive tracers (such
as 18F-FDG) into the patient’s body in advance to minimize the radiation dose received
by the patient, there is a significant clinical demand for low-dose PET imaging; yet, the
reduction in doses will generate image noise. Increasing and decreasing, in contrast, have
an impact on the clinical diagnosis of illnesses. In response to this issue, Xu et al. [56]
suggested a residual encoder–decoder-based PET image enhancing approach. Compared
to classic non-local means (NLM) and block-matching and 3D filtering (BM3D) methods,
the method described by the authors can achieve high quality at a normal dose of 0.5%. At
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the same time, the processing time for a 2D PET image is only 19 ms, which is far less than
the processing time required by traditional methods.

5.2.3. MR Image Quality Enhancement

In order to achieve imaging acceleration, data truncation and zero-filling are usu-
ally performed in k-space, which will cause Gibbs artifacts in the reconstructed image.
Traditional MR image artifact removal methods are usually based on k-space filtering,
but k-space filtering cannot distinguish between artifact signals and useful signals, so the
enhanced image often has problems such as excessive smoothness and a loss of details.
In order to solve this problem, Neusoft Medical proposed an MR image enhancement
method based on multi-task learning (MTL) [57], which is based on U-Net and ResNet
network structures, which can realize Gibbs artifact suppression. Experiments show that
the MTL-based MR image enhancement method can effectively suppress Gibbs artifacts
while protecting the image resolution.

6. Image Interpretation

Detecting patterns and interpreting images is now the most prominent field of research
in ML. ML algorithms have been applied to a variety of disorders, including lumbar
degenerative disease, scoliosis, spinal malignancies, spinal cord compression, cervical
spondylosis, and osteoporosis.

6.1. Lumbar Degenerative Disease

In 2017, Azimi et al. [58] reported the use of neural networks for decision-making
assessment of lumbar spinal stenosis, using an ANN model and an LR model to predict
and analyze 346 patients. Compared with the LR model, the ANN model shows a higher
accuracy (97.8%), improved Hosmer and Lemeshow statistics (41.1%), and has a higher area
under the curve (AUC) of 89%. In 2018, Han et al. [59] used a multi-modal and multi-task
DL model to simultaneously locate and grade multiple spinal structures (intervertebral
foramina, nerve root canal, and intervertebral disc), as well as diagnose lumbar spinal
stenosis based on automatic pathogenesis, and found the causative factors; they proposed
a multi-modal multi-task learning network, by merging semantics, expanding the multi-
modal convolutional layer to expand multiple output layers, and adding multiple task
regression loss, and finally achieved an average accuracy of 84.5% in the MRI, T1, and T2
weighted images of 200 subjects. In 2017, Kim et al. [60] proposed an ANN model that
can accurately predict incision complications, venous thromboembolism, and mortality
after lumbar posterior fusion. The study included 22,629 cases; 70% were used in the
training set, and 30% were used in the test set. The predictors included information such
as gender, age, race, diabetes, smoking, hormones, and coagulation dysfunction. The
result was an ML model in the form of an ANN, which suggests that the risk factors for
lumbar fusion surgery have higher sensitivity and accuracy than other AI models. In
2018, Staartjes et al. [61] proposed that, based on the prognosis of patients after lumbar
discectomy, a prediction model based on morbidity and logistic regression was established
for preoperative prediction. A total of 422 patients were included, and an 85% prediction
accuracy of the recurrence rate after lumbar discectomy was obtained, which leads to the
possibility of informing patients of symptom improvement before surgery.

6.2. Scoliosis

In addition to the degenerative spine, AI approaches have also been applied to the
investigation of spinal abnormalities. Evaluation of the severity of adolescent idiopathic
scoliosis using noninvasive techniques, such as surface topography, is the research field that
has been most influenced by AI. In fact, these techniques do not provide a direct image of
the spine; consequently, the extraction of clinically relevant conclusions can benefit greatly
from inference methods that can exploit subtle patterns in the data that may not be obvious
to human observers.
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Ramirez et al. [62] categorized the surface topographies of scoliotic patients into three
groups, namely, mild, moderate, and severe curves, using a support vector machine, a deci-
sion tree, and linear discriminant analysis. The authors attained an 85% accuracy with the
support vector machine (SVM), which outperformed other classifiers. Bergeron et al. [63]
utilized an SVR to extract the spinal centerline from surface topography, employing bi-
planar radiographs of 149 scoliotic individuals as ground truth data. The first attempt to
predict the curve type, a simplified version of the Lenke [64] classification system distin-
guishing three types of scoliotic curves, was performed by Seoud et al. [65], who used
an SVM trained on radiographs of 97 adolescents suffering from idiopathic scoliosis and
achieved an overall accuracy of 72.2% with respect to diagnoses based on measurements
performed on planar radiographs. Komeili et al. [66] trained a decision tree to classify
surface tomography data into mild, moderate, and severe curves, and to identify the curve
location in order to assess the risk of curve progression. The model was capable of detecting
85.7% of the progression curves and 71.6% of the non-progression curves.

Using AI approaches, the analysis of radiographic data from patients with spinal
abnormalities has also been attempted. The difficult automated analysis of the Cobb angle
representing the severity of a scoliotic curve has been tackled in a variety of ways, ranging
from non-ML techniques such as the fuzzy Hough transform to DL techniques [67]. By
extracting 78 landmark points, Galbusera et al. [68] suggested a new DL method for X-ray
analysis of scoliosis (such as the center of the upper and lower endplates, the center of the
hip joint, and the edge of the S1 endplate). A patient’s spine underwent three-dimensional
reconstruction, and a new convolutional neural network capable of simulating various
spine configurations with an error range of 2.7–11.5◦ was developed. It was shown that this
approach can automatically identify the spine in X-rays. The scoliosis’s shape is calculated.
Zhang et al. [69] trained a deep ANN to predict the vertebral slopes on coronal radiography
images and used the slope data to estimate the Cobb angle, with absolute errors below 3◦.
Wu et al. [70] utilized the three-dimensional information available in biplanar radiographs
to conduct a more exhaustive evaluation of the abnormal curvature. Thong et al. [71]
aimed to create a novel classification scheme for teenage idiopathic scoliosis that effectively
describes the variety of the curves among the participants by employing an unsupervised
clustering technique.

6.3. Spinal Tumors

At the beginning of 2019, Bi et al. discussed the current status, prospects, and chal-
lenges of the application of AI in the field of cancer. Most of the AI used in oncology
has not been vigorously verified for repeatability and universality, but these studies still
promote the clinical use of AI and affect the future direction of cancer treatment [72]. In
2017, Wang et al. [73] applied a conjoined deep neural network to automatically identify
spinal metastases in MR images and developed a conjoined deep neural network method
that includes three identical sub-networks. It is used to analyze spinal metastases under
multi-modality; an evaluation of 26 cases shows that the accuracy of the proposed method
to correctly detect spinal metastases is 90%, which reaches clinical requirements. In 2019,
the team further reported the image identification of lung cancer spinal metastases based on
dynamic contrast enhanced magnetic resonance imaging (DCE-MRI), extracting histograms
and texture feature parameter maps from three DCEs and using them as input to train
CNNs and convolutional long short-term memory (CLSTM) networks. The final accuracy
of the CNN is 71 ± 4.3%, while the accuracy of the CLSTM network is 81 ± 3.4% [74]. In
2018, Karhade et al. [75] reported that the American College of Surgeons developed an
ML algorithm to predict the 30-day mortality rate after spinal metastasis, and selected
the algorithm with the best overall performance to apply to the opening of hospitals in
the United States. In this project, the incidence of deaths within 30 days of 1790 patients
undergoing spinal metastasis surgery was 8.49%. The best-performing ML algorithm model
developed in this project performed in terms of offset and calibration. With the continuous
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growth of tumor data, this system can significantly enhance the hospital’s prediction and
management of patients with spinal tumors.

6.4. Spinal Cord Compression

One of the important pathogenic factors of spinal diseases is the compression of the
spinal cord by the bone structure, so research on spinal cord imaging has always been
a hot field of AI. In 2017, Gros et al. [76] proposed the OptiC algorithm model, which
can automatically, quickly, and accurately segment the brain and spine regions in MRI
images and can mark the spinal cord centerline. OptiC’s recognition rate of the gold
standard centerline is 98.77%, with an average error of 1.02 mm; the recognition accuracy
of the brain region is 99%, and the distance error between the brain and spine region is
9.37 mm, which can be used for spinal cord image analysis. In 2018, Pham et al. [77]
compared the differences between ML and manual annotation in spinal cord cell count
and immunohistochemical image segmentation. They believe that it is impossible to count
stained cell nuclei in c-fos protein with traditional manual methods, but ML technologies
such as Random Forest (RF) and SVM can be completed quickly and have a high accuracy
rate. This technology also helps to strengthen the ability of immunohistochemical analysis
of the spinal cord. In 2018, Wang et al. [78] used a 14-layer deep convolutional neural
network to identify multiple sclerosis of the spinal cord. The sensitivity of the results was
(98.77 ± 0.35)%, and the specificity was (98.76 ± 0.58)%. The accuracy was (98.77 ± 0.39)%,
which outperforms traditional CNNs. In 2019, Aoe et al. [79] proposed a new type of deep
neural network, M-Net, which can identify and classify various neurological diseases such
as myelopathy through magnetoencephalography (MEG) signals. The accuracy of M-Net’s
classification of myelopathy for healthy people and patients is (70.7 ± 10.6)%, and the
classification specificity of each disease ranges from 86% to 94%.

6.5. Cervical Spondylosis

There are many changes in the structure of the cervical vertebral body, but AI research
on the cervical spine has gradually increased in recent years. In 2017, Wang et al. [80]
proposed an automated framework that combines diffusion tensor imaging (DTI) indicators
with ML algorithms to accurately classify control groups and cervical spondylotic myelopa-
thy (CSM). The SVM classifier has an accuracy of 95.73%, a sensitivity of 93.41%, and a
specificity of 98.64%. This method can detect the spinal cord lesions in CSM and provide a
surgical reference for spine surgeons. In 2018, Arif et al. [81] proposed an automatic seg-
mentation model for cervical spine X-ray images. The framework first uses a convolutional
neural network to locate the spine region in the image and then uses probabilistic space
regression to locate the center of the vertebral body. The network segments the cones in
the image. The model uses 124 X-rays for training and tests on another 172 X-rays. The
accuracy is 84%, and the actual error is 1.69 mm.

In 2015, Chang et al. [82] combined ML and finite element analysis to determine the
best internal fixation screw direction for anterior cervical discectomy fusion (ACDF), and
the most stable direction of nail insertion that they found provides a surgical reference
for spine surgeons. In 2018, Arvind et al. [83] tried to use ML to predict postoperative
complications of ACDF, using ANN, logistic regression (LR), SVM, and RF models trained
in multiple centers. A total of 20,879 patients underwent ACDF surgery. Analysis shows
that ANN and LR algorithms are more reasonable. The sensitivity of ANN is higher than
that of LR. The training of large datasets and the application of ML models are promising
for improvements in risk prediction. In 2019, Karhade et al. [84] used an ML model to
predict whether or not opioids will be used after surgery in 2737 ACDF-treated patients.
The accuracy of the model was 81%, and it was concluded that 10% of ACDF patients will
use opioids after surgery. ML algorithms can be used to analyze the risks of these patients
before surgery, and early intervention can be implemented to reduce the possibility that
this population takes opioids for an extended period of time.
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6.6. Osteoporosis

Regarding the crossover study of AI in the field of vertebral osteoporosis, in 2017,
Shioji et al. [85] constructed an algorithm model based on the two variables of mineral
density and bone loss rate to predict whether postmenopausal Japanese women would
have osteoporosis. The average bone loss rate of the lumbar spine and femoral bone density
was 69.4% and 60.9%. The statistical model of the ANN is more accurate than multiple
regression analysis and provides help for the early diagnosis and intervention of female
osteoporosis. In 2018, Muehlematter et al. [86] proposed using texture analysis and ML
on standard CT images to detect the risk of mild vertebral fractures. The researchers
collected 58 standard CT scan images of patients with spinal insufficiency, using open-
source software. The software extracts the TA features of all vertebral bodies and performs
risk prediction based on the supervised training ML model, with an accuracy rate of 97%.
In 2019, Mehta et al. [87] used (optimal in terms of hyperparameter tuning) RF and SVM
classifiers in dual energy X-ray absorptiometry (dual energy X-ray absorptiometry (DEXA)).
To detect sporadic osteoblast metastasis in DEXA, the researchers analyzed the data of
200 patients, and 80% of the data was used for training, while 20% of the data was used for
verification. The sensitivity, specificity, and accuracy of the test results were, respectively,
77.8%, 100.0%, and 98.0%. The researchers believe that ML can be used as an auxiliary
means to identify sporadic lumbar osteoblast metastasis.

7. Quantitative Image Analysis
7.1. Localization and Labeling of Spinal Structures

Kelm et al. [49] used an iterative MSL algorithm to locate the intervertebral discs in CT
and MRI images, respectively. In order to determine the search range of the intervertebral
disc, firstly, the given vertebral body is roughly positioned, the MSL algorithm is then
used to highlight the position of the intervertebral disc, and a global spine probability
model is finally used to match the marked intervertebral disc. The basis for matching is
the shape and coordinate value. The experimental data used 42 T1-weighted MR images
and 30 CT images, and the results showed that the accuracy of both MR and CT reached
98.5%. Schwarzenberg et al. [88] also came to the same conclusion Alomari et al. [89]
used a two-level probability model to realize the automatic positioning and labeling of
intervertebral discs. The model combines high and low levels of information and integrates
the appearance and shape information of intervertebral discs as well as the relative spatial
relationship between them. Using 105 MRI images of normal and deformed lumbar spines
to conduct experiments, the model was first trained, and the remaining data was then tested.
The accuracy was as high as 91%, which is relatively high. Glocker et al. [90] confronted the
difficulty of vertebrae positioning, subject to pathological thorns such as severe scoliosis
and sagittal and distorted fixation devices, and acquired an average positioning error of
8.5 mm between 6 and 12 vertebrae. The suggested method is based on a classified RF,
which is trained to detect the position of the vertebrae’s centroid, and employs new ways
of obtaining suitable training data and eliminating false positive predictions.

Recent research has also utilized ANNs and DL to identify the structure of the spine.
Chen et al. employed RF classification, which implements a deep CNN to drive the first
coarse localization-hybrid method; this method enables a significant improvement over
prior art not based on DL, with an average localization error of 1.6 to 2 mm [91,92] for the
centroid of the intervertebral disc.

In fact, cutting-edge methods for identifying and classifying spinal structures have
achieved performance levels on par with those of human experts in the field. Commercial
Image Archiving and Communication Systems and commercially accessible clinical imag-
ing software increasingly include detection and labeling features, though the underlying
technical specifics are not publicly disclosed.
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7.2. Segmentation

In terms of spinal image segmentation, in view of the existing characteristics of spinal
images, researchers have proposed many algorithms to achieve spinal image segmentation.
For example, Ma et al. [93] used the mean information of the spine shape generated
by the statistical shape model method to achieve semi-automatic segmentation. In the
segmentation process, the position of the spine in the image is first manually determined,
and a variety of prior information, such as the shape and gradient of the model, which
is used as constraints to achieve segmentation, is then introduced. Li et al. [94] proposed
an improved level set (LSM) segmentation method. In actual implementation, in order to
solve the problem that the level set function (LSF) is sensitive to image noise, the effect
of segmentation on the irregular border of the spine is not effective. The best solution to
the problem is to use the gradient information in the image to evolve the LSF to further
improve the accuracy. Lim et al. [95] introduced the statistical shape of the spinal image as
a priori information to initialize LSF, but this method, though segmentation accuracy was
improved, increased the computational complexity of the LSM.

In recent years, with the advent of big data, researchers in the field of DL have devel-
oped deep CNNs with multiple hidden layers and complex structures that have powerful
feature extraction and feature expression capabilities, enabling DL-related algorithms to
make remarkable strides in the field of computer vision, particularly in image recognition,
classification, and semantic segmentation. Lessmann et al. [96] developed a 3D CNN
with a memory component to remember previously categorized vertebrae. To be able to
process massive datasets, the technique employs a 3D sliding window approach that first
determines the position at which the window contains a whole vertebra and then applies a
deep classifier to perform pixel-level segmentation. The memory is then updated so that, if
a segment of previously segmented vertebrae is found while searching for the subsequent
vertebrae, it will be disregarded. With an average DSC of 0.94 and an MSD of 0.2 mm, this
approach enabled the attainment of exceptional precision.

Haq et al. [97] proposed a 3D segmentation method of MRI images for health and
intervertebral disc herniation. It uses a single mesh deformation model to add shape prior
information. First, an elliptical mesh is initialized on the edge of the original image of the
intervertebral disc. The grid model is then deformed according to the gradient force of the
image to finally obtain the true boundary of the intervertebral disc. The test results show
that this method can accurately segment healthy and herniated spines. The disadvantage is
that, during the deformation process, manual intervention is required to change the single
prior shape model for different images.

Neubert [98] proposed a 3D segmentation method based on the registration of the
statistical shape model and the gray-level intensity distribution. Compared with the manual
segmentation results, the processing results have very small errors, and the accuracy
reaches 98.3%.

The labeling and segmentation of spinal images is the basis and key to the develop-
ment of auxiliary diagnosis and treatment, and it is also a relatively mature field. In 2017,
Forsberg et al. [99] used MRI images of the vertebral body manually annotated by clinicians
to train a DL model for vertebral body recognition. The detection sensitivity, accuracy, and
accuracy rate were 99.1–99.8%, 99.6–100% and 98.8–99.8%, respectively. The results show
that it is feasible to use DL technology to assist radiologists in the rapid identification of
vertebral bodies. In 2017, Belharbi et al. [100] used the convolutional network model to
realize the positioning of the L3 vertebral body on the axial CT through transfer learning,
which plays an important role in the positioning of the entire lumbar spine. The advantage
is that, after the model is pre-trained by the ImageNet database, it does not require a
large amount of expert annotation data to complete the training. The researchers tested
642 CT scans from different patients. The average positioning error was 1.91 ± 2.69 frames
(<5 mm), and the accuracy reached the requirements of routine clinical examinations. In
2018, Galbusera et al. [101] used generative adversarial networks to realize the mapping
and conversion between X-ray and MRI’s T1W image, T2W image, STIR image, and TIRM
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image, showing high consistency (K = 0.691), which shows that the conditional generation
adversarial network can complete the convincing ultra-high resolution spinal image con-
version task. Gawel et al. [102] introduced a new method of segmenting vertebral bodies.
This method combines a variety of ML techniques, uses a cascade classifier for automatic
vertebral body recognition, and then uses the active appearance model to segment again.
The results show that this model has correct algorithm convergence, and the accuracy is
relatively high [FF = (90.19 ± 1.01)%]. In 2019, Lessmann et al. [103] proposed an iterative
neural network model that automatically recognizes and classifies vertebrae. The model is
evaluated based on CT and MRI, covering different segments of vertebrae, and is anatomi-
cally accurate. Compared with the prior art method, this iterative segmentation method is
faster, more flexible, and versatile.

7.3. Outcome Prediction

Since its inception, the healthcare industry has exhibited an interest in predictive
analytics due to its vast potential for enhancing patient care and financial administration.
The healthcare applications of predictive analytics include the identification of chronic
patients at risk for a poor health outcome and who may benefit from interventions, the
development of personalized medicine and therapies, the prediction of adverse events
during hospitalization, and the optimization of the supply chain.

In the past 10 years, a number of studies have provided models for predicting vari-
ous aspects of the outcome of spinal surgery; a sample of these models is outlined here.
McGirt et al. [104] utilized simple approaches drawn from statistics, such as linear and
logistic regression, to predict values such as the Oswestry Disability Index (ODI) [105]
one year after surgery, the occurrence of complications, readmission to the hospital, and
return to work. The accuracy of the prediction model for complications and return to work
ranged from 72% to 84%, based on data from 750 to 1200 patients. The model considered
more than 40 predictors, including the preoperative ODI, age, ethnicity, body mass index,
a full description of the symptoms, the likely presence of additional spinal illnesses, and a
number of ratings describing the patient’s health and functional state. Relatively recently,
Kim et al. [60] used logistic regression and a shallow ANN to specifically predict the oc-
currence of four types of major complications in patients undergoing spine fusion, namely,
cardiac complications, wound complications, venous thromboembolism, and mortality,
and achieved significantly better results than when employing the clinical score typically
employed for such applications. Lee et al. [106] utilized a similar approach to predict
surgical site infections. Intriguingly, a subsequent study undertook an external validation
of this predictive model based on another patient sample, revealing a number of flaws and
demonstrating a generally poor performance [107]. Recent research [108] used an ensemble
of decision trees to predict, with an overall accuracy of 87.6%, severe intraoperative or
perioperative problems following adult spine deformity surgery. Durand et al. examined a
different outcome, i.e., the need for blood transfusion following adult deformity surgery,
which was accurately predicted using single decision trees and random forests [109].

8. Future Applications

The integration of AI into biomechanical investigations is an additional frontier in
spinal surgery research. In this industry, AI has promising applications, despite the fact
that its use is still in its infancy. The analysis of gait and motion patterns, as well as the
identification of abnormal gait in spinal illnesses, is one area that can benefit from the
application of AI [110–112]. For example, AI and ML have had less impact on fundamental
biomechanics compared to clinical and radiological applications. In recent years, however,
a few articles documenting the use of ANNs for classic biomechanical problems, such as the
calculation of loads and stresses, have begun to appear. Despite the fact that there are no
available studies on spine biomechanics, we believe that it is worthwhile to briefly mention
some ML-based studies investigating other musculoskeletal districts, as a review of the
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current state of the art may aid in defining potential future applications of ML techniques
in spine biomechanics.

Zadpoor et al. [113] explored a comparable issue: the prediction of the mechanical
loads that determine particular mechanical properties of a biological tissue undergoing
remodeling, namely, trabecular bone. Using an existing biomechanical computer model
capable of predicting bone tissue adaptation under mechanical loading based on local
strains, the scientists ran a series of simulations in which random loads were given to a small
sample of bone trabecular tissue. The outputs of the simulations, i.e., the reconstructed local
bone densities, were utilized to train an ANN to predict the loads that caused this type of
remodeling. An additional application of AI is the calculation of stresses in patient-specific
analyses, hence reducing the need for computationally expensive finite element models.
For instance, Lu et al. constructed a shallow ANN capable of predicting the stress in the
cartilage of the knee joint’s tibial plateau and femoral condyles. A finite element model of
the knee was used to generate a dataset that was then used to train an ANN, which was able
to predict the stress in each element of the articular cartilage with a significant reduction in
time and cost compared to creating and solving the finite element model itself [114].

The use of AI approaches in musculoskeletal biomechanics appears to be in its infancy;
the few published articles have not yet exploited the promise of the most recent advances,
such as DL. Despite this, the existing literature demonstrates AI’s potential in this subject.
This method would promote the general use of patient-specific modeling in bench-to-
bedside applications, where the computational resources and time necessary for the design
and solution of a traditional biomechanical model may clash with clinical requirements.

9. Discussion

According to the aforementioned study states, deep learning is performing at the
highest level, even though artificial intelligence in spinal imaging has been widely used
and improved quickly. However, there are still many issues in this area that require
further research. The use of connected spinal scans must win the complete confidence
of the medical community, and more work needs to be put into the creation of artificial
intelligence. For this area, we provide a few examples.

First, spinal image analysis will be more heavily influenced by AI. Every day, nu-
merous photos are produced by international medical institutes; nevertheless, manual
annotation by professionals is a time-consuming and labor-intensive operation [115]. The
continuously expanding volume of data is still challenging to manage, despite the fact that
there are currently graphical interface tools to facilitate annotation.

Second, the development and enhancement of standardized picture datasets will also
be a key area of focus. There are now only a few platforms for spinal image data, many of
the data are private, and the sample size of the data is very small [116]. A pretreatment
procedure must be employed to balance the discrepancies between photos when compiling
a big dataset [117]. A labeling platform needs to be established or improved to enable
experts to label in accordance with common standards.

Third, one of the main areas of research in this area should be the collaborative
application of multimodal data [118]. A single kind of image is extremely specialized
and exclusively performs particular imaging tasks. Therefore, clinical or experimental
data, such as information on clinical diagnosis and therapy in electronic medical records,
should be used extensively [119]. To extract them, employing text recognition and natural
language processing techniques needs to be considered. It is also a crucial stage in the
creation of standard datasets.

Fourth, there is also a need to address how prediction models can be easier to read.
Despite having strong discrimination, artificial intelligence has been criticized for hav-
ing poor interpretability. On the question of whether interpretability is required in ML,
there have been discussions [120]. The interpretability of pictures of the spine should
be improved, although some experts feel that model performance is far more important
than interpretability.
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Fifth, the development of deep learning models will increasingly focus on the pro-
cessing and interpretation of 3D images of the spine. Biological research and medical
diagnostics are increasingly using 3D stereoscopic photographs of bones to retain more de-
tailed and structural information. This can substantially enhance specialists’ interpretation
of images. Certain finite element explorations have been used to create 3D models [121,122].
However, the majority of the most advanced artificial intelligence models currently in
use, particularly deep learning models, are created for 2D images. Voxels in 3D images
must be processed, which means that, in addition to the model’s input structure changing,
exponential growth must also be taken into account [123,124]. The difficulties resulting
from the massive amount of computation will hinder the advancement of artificial intelli-
gence [125,126].

Sixth, regarding prediction reliability and uncertainty quantification, the current
applications of ML in the spinal imaging field (nay, in the entire biomedical informatics field)
generally seem to focus on the prediction task, and the model performance is evaluated
with such metrics as accuracy, ROC, and sensitivity [127–130]. However, the much lower
attended reliability and uncertainty of the predictions can be of great significance in medical
diagnosis [131]. Unreliable predictions can place substantial financial and psychological
burdens on the patients’ families. Therefore, the reliability quantification approaches (such
as conformal prediction) and how users should weigh and interpret the uncertainties in
this field are worthy of study [132].

Finally, data and model communication across different institutes is due to the different
patient information protection protocols. Model sharing strategies, rather than data sharing
strategies, such as federated learning, merit further study [133].

10. Conclusions

Every aspect of the imaging value chain can be significantly improved by AI. By
enhancing image quality, patient centricity, imaging efficiency, and diagnostic accuracy, AI
can increase the value of spinal images delivered to their patients and referring clinicians.
This includes assessing the appropriateness of imaging orders and predicting which patients
are at risk for fracture. Emerging, non-disruptive technology has attained a significant
level of development, allowing it to have a practical impact on a number of study topics.
The fields of computer vision and image processing are gaining traction due to recent
advancements in DL and the increased availability of computational resources, such as
powerful GPUs. In fact, the majority of recent spinal research projects employing AI are
related to medical imaging, but an increasing influence on other domains, such as spine
biomechanics, is anticipated in the near future. However, there are still many issues in this
area that require more research. Researchers still need to put more work into developing
pertinent prediction models if they seek the support of the medical community.
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Abbreviations

CNN Convolutional Neural Network
RNN Recurrent Neural Network
GAN Generative Adversarial Networks
CT Computed Tomography
AI Artificial Intelligence
DL Deep Learning
ML Machine Learning
MRI Magnetic Resonance Imaging
MR Magnetic resonance
CS Compressed sensing
PACS Picture Archiving & Communication System
MSL Marginal space learning
FAST Fully assisting scanner technologies
PSNR Peak signal-to-noise ratio
MTL Multi-task learning
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