Changes in Air Quality and Drivers for the Heavy PM2.5 Pollution on the North China Plain Pre- to Post-COVID-19
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Region
2.2. Ambient Air Pollutants and Meteorological Dataset
2.3. Potential Sources Analysis
3. Results and Discussions
3.1. Variation Trends of PM2.5 and Gaseous Pollutants
3.1.1. Yearly Variations
3.1.2. Monthly Variations
3.2. Analysis of PM2.5 Pollution Conditions
3.3. Analysis of PM2.5 Pollution Episodes Pre-, during and Post-COVID
3.3.1. Analysis of PM2.5 Pollution Episodes on the Northern Edge of the NCP
3.3.2. Analysis of PM2.5 Episodes on the Southern Edge of the NCP
4. Conclusions
- (1)
- The annual concentrations of PM2.5, NO2, SO2, and CO decreased year by year during 2017–2021 under a series of clean air action plans, whereas the exception was NO2 in Beijing in 2021, which increased slightly by 3.6% relative to 2020. During 2017–2021, the concentrations of PM2.5, SO2, and CO in Henan were higher than in Beijing. In contrast, NO2 concentration was the opposite, except in 2020. The differences in pollutant levels between Beijing and Henan are related to pollution emissions, development levels, and other socio-economic indicators. Unlike other gaseous pollutants, the 90th percentiles of MDA8 O3 values began to decrease significantly in 2020 in Beijing and Henan.
- (2)
- The lockdown measures to constrain COVID-19 significantly improved air quality, and the concentrations of PM2.5, NO2, SO2, and CO decreased sharply in February 2020. The exceptions were PM2.5 and CO in Beijing, which exhibited a delayed decrease in March caused by adverse meteorological conditions and transported pollutants emitted by non-stop industries and fireworks and reached the lowest values relative to March of 2017–2019 and 2021.
- (3)
- Overall, the PM2.5 pollution conditions have improved significantly. However, Beijing and Henan still suffered from heavy PM2.5 pollution between 2019 and 2021. For Beijing, the formation and evolution of PM2.5 pollution were caused by initial regional transport and following secondary formation under adverse meteorology. Unlike Beijing, PM2.5 elevation in Henan was caused by local accumulation with a dominated proportion of primary emissions under adverse atmospheric conditions, superimposing regional transport on a small scale. Hence, the heavy PM2.5 pollution on the NCP was highly heterogeneous, and stagnant weather, such as low wind speed, shallow boundary layer, and high humidity, is one of the major drivers of heavy PM2.5 pollution on the NCP.
- (4)
- The formation and evolution of elevated PM2.5 pollution are affected by multiple factors. A balanced and coordinated strategy in regulating various air pollutants, the critical role of meteorology, and strengthened regional collaborative air pollution control should be considered when setting mitigation measures on the NCP.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, X.; Zhang, Q.; Chang, W.Y. Does Economic Agglomeration Affect Haze Pollution? Evidence from China’s Yellow River Basin. J. Clean. Prod. 2022, 335, 130271. [Google Scholar] [CrossRef]
- Deng, C.; Qin, C.; Li, Z.; Li, K. Spatiotemporal Variations of PM2.5 Pollution and Its Dynamic Relationships with Meteorological Conditions in Beijing-Tianjin-Hebei Region. Chemosphere 2022, 301, 1–9. [Google Scholar] [CrossRef]
- Chen, Y.; Zhu, Z.; Cheng, S. Industrial Agglomeration and Haze Pollution: Evidence from China. Sci. Total Environ. 2022, 845, 157392. [Google Scholar] [CrossRef]
- Lelieveld, J.; Klingmüller, K.; Pozzer, A.; Pöschl, U.; Fnais, M.; Daiber, A.; Münzel, T. Cardiovascular Disease Burden from Ambient Air Pollution in Europe Reassessed Using Novel Hazard Ratio Functions. Eur. Heart J. 2019, 40, 1590–1596. [Google Scholar] [CrossRef] [Green Version]
- Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; et al. Clinical Course and Risk Factors for Mortality of Adult Inpatients with COVID-19 in Wuhan, China: A Retrospective Cohort Study. Lancet 2020, 395, 1054–1062. [Google Scholar] [CrossRef]
- Wu, X.; Braun, D.; Schwartz, J.; Kioumourtzoglou, M.A.; Dominici, F. Evaluating the Impact of Long-Term Exposure to Fine Particulate Matter on Mortality among the Elderly. Sci. Adv. 2020, 6, 1–10. [Google Scholar] [CrossRef]
- Wang, P.; Chen, K.; Zhu, S.; Wang, P.; Zhang, H. Severe Air Pollution Events Not Avoided by Reduced Anthropogenic Activities during COVID-19 Outbreak. Resour. Conserv. Recycl. 2020, 158, 104814. [Google Scholar] [CrossRef]
- Xue, T.; Liu, J.; Zhang, Q.; Geng, G.; Zheng, Y.; Tong, D.; Liu, Z.; Guan, D.; Bo, Y.; Zhu, T.; et al. Rapid Improvement of PM2.5 Pollution and Associated Health Benefits in China during 2013–2017. Sci. China Earth Sci. 2019, 62, 1847–1856. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, D.; Cheng, N.; Zhuang, Y.; Kwan, M.-P.; Chen, B.; Zhao, B.; Yang, L.; Gao, B.; Li, R.; et al. Evaluating the “2 + 26” Regional Strategy for Air Quality Improvement During Two Air Pollution Alerts in Beijing: Variations of PM2.5 Concentrations, Source Apportionment, and the Relative Contribution of and Regional Transport. Atmos. Chem. Phys. Discuss. 2018, 19, 6879–6891. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Wei, W.; Cheng, S.; Wang, R.; Zhu, J. Evaluation of Continuous Emission Reduction Effect on PM2.5 Pollution Improvement through 2013–2018 in Beijing. Atmos. Pollut. Res. 2021, 12, 101055. [Google Scholar] [CrossRef]
- Li, M.; Wang, L.; Liu, J.; Gao, W.; Song, T.; Sun, Y.; Li, L.; Li, X.; Wang, Y.; Liu, L.; et al. Exploring the Regional Pollution Characteristics and Meteorological Formation Mechanism of PM2.5 in North China during 2013–2017. Environ. Int. 2020, 134, 105283. [Google Scholar] [CrossRef]
- Cao, J.; Qiu, X.; Peng, L.; Gao, J.; Wang, F.; Yan, X. Impacts of the Differences in PM2.5 Air Quality Improvement on Regional Transport and Health Risk in Beijing–Tianjin–Hebei Region during 2013–2017. Chemosphere 2022, 297, 134179. [Google Scholar] [CrossRef] [PubMed]
- Xiaoqi, W.; Wenjiao, D.; Jiaxian, Z.; Wei, W.; Shuiyuan, C.; Shushuai, M. Nonlinear Influence of Winter Meteorology and Precursor on PM2.5 Based on Mathematical and Numerical Models: A COVID-19 and Winter Olympics Case Study. Atmos. Environ. 2022, 278, 119072. [Google Scholar] [CrossRef]
- Liu, S.; Gautam, A.; Yang, X.; Tao, J.; Wang, X.; Zhao, W. Analysis of Improvement Effect of PM2.5 and Gaseous Pollutants in Beijing Based on Self-Organizing Map Network. Sustain. Cities Soc. 2021, 70, 102827. [Google Scholar] [CrossRef]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical Features of Patients Infected with 2019 Novel Coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [Green Version]
- Xu, B.; Gutierrez, B.; Mekaru, S.; Sewalk, K.; Goodwin, L.; Loskill, A.; Cohn, E.L.; Hswen, Y.; Hill, S.C.; Cobo, M.M.; et al. Epidemiological Data from the COVID-19 Outbreak, Real-Time Case Information. Sci. Data 2020, 7, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Filonchyk, M.; Hurynovich, V.; Yan, H. Impact of COVID-19 Lockdown on Air Quality in the Poland, Eastern Europe. Environ. Res. 2021, 198, 110454. [Google Scholar] [CrossRef]
- Chen, H.; Huo, J.; Fu, Q.; Duan, Y.; Xiao, H.; Chen, J. Impact of Quarantine Measures on Chemical Compositions of PM2.5 during the COVID-19 Epidemic in Shanghai, China. Sci. Total Environ. 2020, 743, 140758. [Google Scholar] [CrossRef]
- Tadano, Y.S.; Potgieter-Vermaak, S.; Kachba, Y.R.; Chiroli, D.M.G.; Casacio, L.; Santos-Silva, J.C.; Moreira, C.A.B.; Machado, V.; Alves, T.A.; Siqueira, H.; et al. Dynamic Model to Predict the Association between Air Quality, COVID-19 Cases, and Level of Lockdown. Environ. Pollut. 2021, 268, 115920. [Google Scholar] [CrossRef]
- Nakada, L.Y.K.; Urban, R.C. COVID-19 Pandemic: Impacts on the Air Quality during the Partial Lockdown in São Paulo State, Brazil. Sci. Total Environ. 2020, 730, 139087. [Google Scholar] [CrossRef]
- Muhammad, S.; Long, X.; Salman, M. COVID-19 Pandemic and Environmental Pollution: A Blessing in Disguise? Sci. Total Environ. 2020, 728, 138820. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Urrego, D.; Rodríguez-Urrego, L. Air Quality during the COVID-19: PM2.5 Analysis in the 50 Most Polluted Capital Cities in the World. Environ. Pollut. 2020, 266, 115042. [Google Scholar] [CrossRef] [PubMed]
- Yin, Z.; Zhang, Y.; Wang, H.; Li, Y. Evident PM2.5 Drops in the East of China Due to the COVID-19 Quarantine Measures in February. Atmos. Chem. Phys. 2021, 21, 1581–1592. [Google Scholar] [CrossRef]
- Tobías, A.; Carnerero, C.; Reche, C.; Massagué, J.; Via, M.; Minguillón, M.C.; Alastuey, A.; Querol, X. Changes in Air Quality during the Lockdown in Barcelona (Spain) One Month into the SARS-CoV-2 Epidemic. Sci. Total Environ. 2020, 726, 138540. [Google Scholar] [CrossRef]
- Sharma, S.; Zhang, M.; Anshika; Gao, J.; Zhang, H.; Kota, S.H. Effect of Restricted Emissions during COVID-19 on Air Quality in India. Sci. Total Environ. 2020, 728, 138878. [Google Scholar] [CrossRef]
- Lian, X.; Huang, J.; Huang, R.; Liu, C.; Wang, L.; Zhang, T. Impact of City Lockdown on the Air Quality of COVID-19-Hit of Wuhan City. Sci. Total Environ. 2020, 742, 140556. [Google Scholar] [CrossRef]
- Han, B.S.; Park, K.; Kwak, K.H.; Park, S.B.; Jin, H.G.; Moon, S.; Kim, J.W.; Baik, J.J. Air Quality Change in Seoul, South Korea under COVID-19 Social Distancing: Focusing on PM2.5. Int. J. Environ. Res. Public Health 2020, 17, 6208. [Google Scholar] [CrossRef]
- Mahato, S.; Pal, S.; Ghosh, K.G. Effect of Lockdown amid COVID-19 Pandemic on Air Quality of the Megacity Delhi, India. Sci. Total Environ. 2020, 730, 139086. [Google Scholar] [CrossRef]
- Liu, Q.; Harris, J.T.; Chiu, L.S.; Sun, D.; Houser, P.R.; Yu, M.; Duffy, D.Q.; Little, M.M.; Yang, C. Spatiotemporal Impacts of COVID-19 on Air Pollution in California, USA. Sci. Total Environ. 2021, 750, 141592. [Google Scholar] [CrossRef]
- Liu, F.; Page, A.; Strode, S.A.; Yoshida, Y.; Choi, S.; Zheng, B.; Lamsal, L.N.; Li, C.; Krotkov, N.A.; Eskes, H.; et al. Abrupt Decline in Tropospheric Nitrogen Dioxide over China after the Outbreak of COVID-19. Sci. Adv. 2020, 6, 2–7. [Google Scholar] [CrossRef]
- Bao, R.; Zhang, A. Does Lockdown Reduce Air Pollution? Evidence from 44 Cities in Northern China. Sci. Total Environ. 2020, 731, 139052. [Google Scholar] [CrossRef] [PubMed]
- Bhatti, U.A.; Zeeshan, Z.; Nizamani, M.M.; Bazai, S.; Yu, Z.; Yuan, L. Assessing the Change of Ambient Air Quality Patterns in Jiangsu Province of China Pre-to Post-COVID-19. Chemosphere 2022, 288, 132569. [Google Scholar] [CrossRef] [PubMed]
- Pavón-Domínguez, P.; Plocoste, T. Coupled Multifractal Methods to Reveal Changes in Nitrogen Dioxide and Tropospheric Ozone Concentrations during the COVID-19 Lockdown. Atmos. Res. 2021, 261, 10575. [Google Scholar] [CrossRef]
- Zhang, K.; De Leeuw, G.; Yang, Z.; Chen, X.; Jiao, J. The Impacts of the COVID-19 Lockdown on Air Quality in the Guanzhong Basin, China. Remote Sens. 2020, 12, 3042. [Google Scholar] [CrossRef]
- Anil, I.; Alagha, O. The Impact of COVID-19 Lockdown on the Air Quality of Eastern Province, Saudi Arabia. Air Qual. Atmos. Heal. 2021, 14, 117–128. [Google Scholar] [CrossRef]
- Rojas, J.P.; Urdanivia, F.R.; Garay, R.A.; García, A.J.; Enciso, C.; Medina, E.A.; Toro, R.A.; Manzano, C.; Leiva-Guzmán, M.A. Effects of COVID-19 Pandemic Control Measures on Air Pollution in Lima Metropolitan Area, Peru in South America. Air Qual. Atmos. Health 2021, 14, 925–933. [Google Scholar] [CrossRef]
- Briz-Redón, Á.; Belenguer-Sapiña, C.; Serrano-Aroca, Á. Changes in Air Pollution during COVID-19 Lockdown in Spain: A Multi-City Study. J. Environ. Sci. 2021, 101, 16–26. [Google Scholar] [CrossRef]
- Kumari, P.; Toshniwal, D. Impact of Lockdown on Air Quality over Major Cities across the Globe during COVID-19 Pandemic. Urban. Clim. 2020, 34, 100719. [Google Scholar] [CrossRef]
- Adams, M.D. Air Pollution in Ontario, Canada during the COVID-19 State of Emergency. Sci. Total Environ. 2020, 742, 140516. [Google Scholar] [CrossRef]
- Donzelli, G.; Cioni, L.; Cancellieri, M.; Llopis-morales, A.; Morales-suárez-varela, M. Relations between Air Quality and COVID-19 Lockdown Measures in Valencia, Spain. Int. J. Environ. Res. Public Health 2021, 18, 2296. [Google Scholar] [CrossRef]
- Varotsos, C.; Christodoulakis, J.; Kouremadas, G.A.; Fotaki, E.F. The Signature of the Coronavirus Lockdown in Air Pollution in Greece. Water. Air. Soil Pollut. 2021, 232, 119. [Google Scholar] [CrossRef] [PubMed]
- Aljahdali, M.O.; Alhassan, A.B.; Albeladi, M.N. Impact of Novel Coronavirus Disease (COVID-19) Lockdown on Ambient Air Quality of Saudi Arabia. Saudi J. Biol. Sci. 2021, 28, 1356–1364. [Google Scholar] [CrossRef]
- Donzelli, G.; Cioni, L.; Cancellieri, M.; Morales, A.L.; Suárez-Varela, M.M.M. The Effect of the COVID-19 Lockdown on Air Quality in Three Italian Medium-Sized Cities. Atmosphere 2020, 11, 1118. [Google Scholar] [CrossRef]
- Pani, S.K.; Chantara, S.; Khamkaew, C.; Lee, C.; Te; Lin, N.H. Biomass Burning in the Northern Peninsular Southeast Asia: Aerosol Chemical Profile and Potential Exposure. Atmos. Res. 2019, 224, 180–195. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.H.; Arafath, S.M.; Lee, K.T.; Hsieh, Y.S.; Han, Y.T. Chemical Characteristics of Filterable and Condensable PM2.5 Emissions from Industrial Boilers with Five Different Fuels. Fuel 2018, 232, 415–422. [Google Scholar] [CrossRef]
- An, Z.; Huang, R.J.; Zhang, R.; Tie, X.; Li, G.; Cao, J.; Zhou, W.; Shi, Z.; Han, Y.; Gu, Z.; et al. Severe Haze in Northern China: A Synergy of Anthropogenic Emissions and Atmospheric Processes. Proc. Natl. Acad. Sci. USA 2019, 116, 8657–8666. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.; Liu, Y.; Chu, B.; Liu, C.; Liu, J.; Ge, Y.; Ma, Q.; Ma, J.; He, H. Differences of the Oxidation Process and Secondary Organic Aerosol Formation at Low and High Precursor Concentrations. J. Environ. Sci. 2019, 79, 256–263. [Google Scholar] [CrossRef]
- Deng, W.; Hu, Q.; Liu, T.; Wang, X.; Zhang, Y.; Song, W.; Sun, Y.; Bi, X.; Yu, J.; Yang, W.; et al. Primary Particulate Emissions and Secondary Organic Aerosol (SOA) Formation from Idling Diesel Vehicle Exhaust in China. Sci. Total Environ. 2017, 593–594, 462–469. [Google Scholar] [CrossRef]
- Iqbal, A.; Afroze, S.; Rahman, M. Probabilistic Total PM2.5 Emissions from Vehicular Sources in Australian Perspective. Environ. Monit. Assess. 2021, 193, 575. [Google Scholar] [CrossRef]
- Hama, S.M.L.; Kumar, P.; Harrison, R.M.; Bloss, W.J.; Khare, M.; Mishra, S.; Namdeo, A.; Sokhi, R.; Goodman, P.; Sharma, C. Four-Year Assessment of Ambient Particulate Matter and Trace Gases in the Delhi-NCR Region of India. Sustain. Cities Soc. 2020, 54, 102003. [Google Scholar] [CrossRef]
- Iqbal, A.; Afroze, S.; Rahman, M.M. Probabilistic Health Risk Assessment of Vehicular Emissions as an Urban Health Indicator in Dhaka City. Sustainability 2019, 11, 6427. [Google Scholar] [CrossRef] [Green Version]
- Chan, C.K.; Yao, X. Air Pollution in Mega Cities in China. Atmos. Environ. 2008, 42, 1–42. [Google Scholar] [CrossRef]
- Lee, H.J.; Chang, L.S.; Jaffe, D.A.; Bak, J.; Liu, X.; Abad, G.G.; Jo, H.Y.; Jo, Y.J.; Lee, J.B.; Kim, C.H. Ozone Continues to Increase in East Asia despite Decreasing NO2: Causes and Abatements. Remote Sens. 2021, 13, 2177. [Google Scholar] [CrossRef]
- Yao, R.; Li, Z.; Zhang, Y.; Wang, J.; Zhang, S.; Xu, H. Spatiotemporal Evolution of PM2.5 Concentrations and Source Apportionment in Henan Province, China. Polish J. Environ. Stud. 2021, 30, 4815–4826. [Google Scholar] [CrossRef]
- Zhang, X.; Lin, M.; Wang, Z.; Jin, F. The Impact of Energy-Intensive Industries on Air Quality in China’s Industrial Agglomerations. J. Geogr. Sci. 2021, 31, 584–602. [Google Scholar] [CrossRef]
- Li, X.; Zhang, C.; Liu, P.; Liu, J.; Zhang, Y.; Liu, C.; Mu, Y. Significant Influence of the Intensive Agricultural Activities on Atmospheric PM2.5 during Autumn Harvest Seasons in a Rural Area of the North China Plain. Atmos. Environ. 2020, 241, 117844. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, H.; Li, H.; Wu, N.; Zhang, Q. Chemical Characteristics and Source Apportionment of Ambient PM1.0 and PM2.5 in a Polluted City in North China Plain. Atmos. Environ. 2020, 242, 117867. [Google Scholar] [CrossRef]
- Liu, H.; Tian, H.; Zhang, K.; Liu, S.; Cheng, K.; Yin, S.; Liu, Y.; Liu, X.; Wu, Y.; Liu, W.; et al. Seasonal Variation, Formation Mechanisms and Potential Sources of PM2.5 in Two Typical Cities in the Central Plains Urban Agglomeration, China. Sci. Total Environ. 2019, 657, 657–670. [Google Scholar] [CrossRef]
- Li, Z.; Yu, S.; Li, M.; Chen, X.; Zhang, Y.; Li, J.; Jiang, Y.; Liu, W.; Li, P.; Lichtfouse, E. Non-Stop Industries Were the Main Source of Air Pollution during the 2020 Coronavirus Lockdown in the North China Plain. Environ. Chem. Lett. 2022, 20, 59–69. [Google Scholar] [CrossRef]
- Kong, S.F.; Li, L.; Li, X.X.; Yin, Y.; Chen, K.; Liu, D.T.; Yuan, L.; Zhang, Y.J.; Shan, Y.P.; Ji, Y.Q. The Impacts of Firework Burning at the Chinese Spring Festival on Air Quality: Insights of Tracers, Source Evolution and Aging Processes. Atmos. Chem. Phys. 2015, 15, 2167–2184. [Google Scholar] [CrossRef]
- Morawska, L.; Zhu, T.; Liu, N.; Amouei Torkmahalleh, M.; de Fatima Andrade, M.; Barratt, B.; Broomandi, P.; Buonanno, G.; Carlos Belalcazar Ceron, L.; Chen, J.; et al. The State of Science on Severe Air Pollution Episodes: Quantitative and Qualitative Analysis. Environ. Int. 2021, 156, 106732. [Google Scholar] [CrossRef] [PubMed]
- Gui, K.; Che, H.; Wang, Y.; Wang, H.; Zhang, L.; Zhao, H.; Zheng, Y.; Sun, T.; Zhang, X. Satellite-Derived PM2.5 Concentration Trends over Eastern China from 1998 to 2016: Relationships to Emissions and Meteorological Parameters. Environ. Pollut. 2019, 247, 1125–1133. [Google Scholar] [CrossRef] [PubMed]
- Beig, G.; Sahu, S.K.; Rathod, A.; Tikle, S.; Singh, V.; Sandeepan, B.S. Role of Meteorological Regime in Mitigating Biomass Induced Extreme Air Pollution Events. Urban. Clim. 2021, 35, 100756. [Google Scholar] [CrossRef]
- Li, J.; Wu, Y.; Ren, L.; Wang, W.; Tao, J.; Gao, Y.; Li, G.; Yang, X.; Han, Z.; Zhang, R. Variation in PM2.5 Sources in Central North China Plain during 2017–2019: Response to Mitigation Strategies. J. Environ. Manag. 2021, 288, 112370. [Google Scholar] [CrossRef]
- Huang, X.; Ding, A.; Gao, J.; Zheng, B.; Zhou, D.; Qi, X.; Tang, R.; Wang, J.; Ren, C.; Nie, W.; et al. Enhanced Secondary Pollution Offset Reduction of Primary Emissions during COVID-19 Lockdown in China. Natl. Sci. Rev. 2021, 8, 137. [Google Scholar] [CrossRef]
- Zhao, N.; Wang, G.; Li, G.; Lang, J.; Zhang, H. Air Pollution Episodes during the COVID-19 Outbreak in the Beijing–Tianjin–Hebei Region of China: An Insight into the Transport Pathways and Source Distribution. Environ. Pollut. 2020, 267, 115617. [Google Scholar] [CrossRef]
- Zuo, X.; Cheng, T.; Gu, X.; Guo, H.; Wu, Y.; Shi, S. Studying the Regional Transmission and Inferring the Local/External Contribution of Fine Particulate Matter Based on Multi-Source Observation: A Case Study in the East of North China Plain. Remote Sens. 2020, 12, 3936. [Google Scholar] [CrossRef]
- Hou, L.; Dai, Q.; Song, C.; Liu, B.; Guo, F.; Dai, T.; Li, L.; Liu, B.; Bi, X.; Zhang, Y.; et al. Revealing Drivers of Haze Pollution by Explainable Machine Learning. Environ. Sci. Technol. Lett. 2022, 9, 112–119. [Google Scholar] [CrossRef]
- Haque, M.M.; Fang, C.; Schnelle-Kreis, J.; Abbaszade, G.; Liu, X.; Bao, M.; Zhang, W.; Zhang, Y.L. Regional Haze Formation Enhanced the Atmospheric Pollution Levels in the Yangtze River Delta Region, China: Implications for Anthropogenic Sources and Secondary Aerosol Formation. Sci. Total Environ. 2020, 728, 138013. [Google Scholar] [CrossRef]
- Li, M.; Wang, T.; Xie, M.; Li, S.; Zhuang, B.; Fu, Q.; Zhao, M.; Wu, H.; Liu, J.; Saikawa, E.; et al. Drivers for the Poor Air Quality Conditions in North China Plain during the COVID-19 Outbreak. Atmos. Environ. 2021, 246, 118103. [Google Scholar] [CrossRef]
- Dai, Q.; Ding, J.; Hou, L.; Li, L.; Cai, Z.; Liu, B.; Song, C.; Bi, X.; Wu, J.; Zhang, Y.; et al. Haze Episodes before and during the COVID-19 Shutdown in Tianjin, China: Contribution of Fireworks and Residential Burning. Environ. Pollut. 2021, 286, 117252. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, Z.; Xiao, Z.; Tang, G.; Li, H.; Gao, R.; Dao, X.; Wang, Y.; Wang, W. Heavy Haze Pollution during the COVID-19 Lockdown in the Beijing-Tianjin-Hebei Region, China. J. Environ. Sci. 2022, 114, 170–178. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Jia, J.; Wu, F.; Niu, H.; Ma, Q.; Guo, B.; Shao, L.; Zhang, D. Local Emissions and Secondary Pollutants Cause Severe PM2.5 Elevation in Urban Air at the South Edge of the North China Plain: Results from Winter Haze of 2017–2018 at a Mega City. Sci. Total Environ. 2022, 802, 149630. [Google Scholar] [CrossRef] [PubMed]
- Luo, L.; Bai, X.; Liu, S.; Wu, B.; Liu, W.; Lv, Y.; Guo, Z.; Lin, S.; Zhao, S.; Hao, Y.; et al. Fine Particulate Matter (PM2.5/PM1.0) in Beijing, China: Variations and Chemical Compositions as Well as Sources. J. Environ. Sci. 2022, 121, 187–198. [Google Scholar] [CrossRef]
- Lu, X.; Lin, C.; Li, W.; Chen, Y.; Huang, Y.; Fung, J.C.H.; Lau, A.K.H. Analysis of the Adverse Health Effects of PM2.5 from 2001 to 2017 in China and the Role of Urbanization in Aggravating the Health Burden. Sci. Total Environ. 2019, 652, 683–695. [Google Scholar] [CrossRef]
- Wang, Z.; Lv, D. Analysis of Agricultural CO2 Emissions in Henan Province, China, Based on EKC and Decoupling. Sustainability 2022, 14, 1931. [Google Scholar] [CrossRef]
- Stein, A.F.; Draxler, R.R.; Rolph, G.D.; Stunder, B.J.B.; Cohen, M.D.; Ngan, F. Noaa’s Hysplit Atmospheric Transport and Dispersion Modeling System. Bull. Am. Meteorol. Soc. 2015, 96, 2059–2077. [Google Scholar] [CrossRef]
- Miao, Y.; Che, H.; Zhang, X.; Liu, S. Relationship between Summertime Concurring PM2.5 and O3 Pollution and Boundary Layer Height Differs between Beijing and Shanghai, China. Environ. Pollut. 2021, 268, 115775. [Google Scholar] [CrossRef]
- Zeng, Y.; Hopke, P.K. A Study of the Sources of Acid Precipitation in Ontario, Canada. Atmos. Environ. 1989, 23, 1499–1509. [Google Scholar] [CrossRef]
- dos Santos, O.N.; Hoinaski, L. Incorporating Gridded Concentration Data in Air Pollution Back Trajectories Analysis for Source Identification. Atmos. Res. 2021, 263, 105820. [Google Scholar] [CrossRef]
- Polissar, A.V.; Hopke, P.K.; Harris, J.M. Source Regions for Atmospheric Aerosol Measured at Barrow, Alaska. Environ. Sci. Technol. 2001, 35, 4214–4226. [Google Scholar] [CrossRef] [PubMed]
- Polissar, A.V.; Hopke, P.K.; Paatero, P.; Kaufmann, Y.J.; Hall, D.K.; Bodhaine, B.A.; Dutton, E.G.; Harris, J.M. The Aerosol at Barrow, Alaska: Long-Term Trends and Source Locations. Atmos. Environ. 1999, 33, 2441–2458. [Google Scholar] [CrossRef]
- Gao, C.; Li, S.; Liu, M.; Zhang, F.; Achal, V.; Tu, Y.; Zhang, S.; Cai, C. Impact of the COVID-19 Pandemic on Air Pollution in Chinese Megacities from the Perspective of Traffic Volume and Meteorological Factors. Sci. Total Environ. 2021, 773, 145545. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Strezov, V.; Jiang, Y.; Kan, T.; Evans, T. Temporal and Spatial Variations of Air Pollution across China from 2015 to 2018. J. Environ. Sci. 2022, 112, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Lyu, Y.; Ju, Q.; Lv, F.; Feng, J.; Pang, X.; Li, X. Spatiotemporal Variations of Air Pollutants and Ozone Prediction Using Machine Learning Algorithms in the Beijing-Tianjin-Hebei Region from 2014 to 2021. Environ. Pollut. 2022, 306, 119420. [Google Scholar] [CrossRef] [PubMed]
- Zheng, B.; Zhang, Q.; Geng, G.; Chen, C.; Shi, Q.; Cui, M.; Lei, Y.; He, K. Changes in China’s Anthropogenic Emissions and Air Quality during the COVID-19 Pandemic in 2020. Earth Syst. Sci. Data 2021, 13, 2895–2907. [Google Scholar] [CrossRef]
- Zhou, W.; Sun, Y.; Xu, W.; Zhao, X.; Wang, Q.; Tang, G.; Zhou, L.; Chen, C.; Du, W.; Zhao, J.; et al. Vertical Characterization of Aerosol Particle Composition in Beijing, China: Insights From 3-Month Measurements with Two Aerosol Mass Spectrometers. J. Geophys. Res. Atmos. 2018, 123, 13016–13029. [Google Scholar] [CrossRef]
- Zhou, W.; Lei, L.; Du, A.; Zhang, Z.; Li, Y.; Yang, Y.; Tang, G.; Chen, C.; Xu, W.; Sun, J.; et al. Unexpected Increases of Severe Haze Pollution During the Post COVID-19 Period: Effects of Emissions, Meteorology, and Secondary Production. J. Geophys. Res. Atmos. 2022, 127, 1–14. [Google Scholar] [CrossRef]
- Zhong, J.; Zhang, X.; Dong, Y.; Wang, Y.; Liu, C.; Wang, J.; Zhang, Y.; Che, H. Feedback Effects of Boundary-Layer Meteorological Factors on Cumulative Explosive Growth of PM2.5 during Winter Heavy Pollution Episodes in Beijing from 2013 to 2016. Atmos. Chem. Phys. 2018, 18, 247–258. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Wang, T.; Xie, M.; Li, S.; Zhuang, B.; Huang, X.; Chen, P.; Zhao, M.; Liu, J. Formation and Evolution Mechanisms for Two Extreme Haze Episodes in the Yangtze River Delta Region of China During Winter 2016. J. Geophys. Res. Atmos. 2019, 124, 3607–3623. [Google Scholar] [CrossRef]
- Zhang, T.; Che, H.; Gong, Z.; Wang, Y.; Wang, J.; Yang, Y. The Dominant Mechanism of the Explosive Rise of PM2.5 after Significant Pollution Emissions Reduction in Beijing from 2017 to the COVID-19 Pandemic in 2020. Atmos. Pollut. Res. 2021, 12, 272–281. [Google Scholar] [CrossRef]
- Xu, K.; Cui, K.; Young, L.H.; Hsieh, Y.K.; Wang, Y.F.; Zhang, J.; Wan, S. Impact of the COVID-19 Event on Air Quality in Central China. Aerosol Air Qual. Res. 2020, 20, 915–929. [Google Scholar] [CrossRef] [Green Version]
- Nichol, J.E.; Bilal, M.; Ali, A.M.; Qiu, Z. Air Pollution Scenario over China during COVID-19. Remote Sens. 2020, 12, 2100. [Google Scholar] [CrossRef]
- Le, T.; Wang, Y.; Liu, L.; Yang, J.; Yung, Y.L.; Li, G.; Seinfeld, J.H. Unexpected Air Pollution with Marked Emission Reductions during the COVID-19 Outbreak in China. Science 2020, 369, 702–706. [Google Scholar] [CrossRef]
- Tian, H.; Liu, Y.; Li, Y.; Wu, C.H.; Chen, B.; Kraemer, M.U.G.; Li, B.; Cai, J.; Xu, B.; Yang, Q.; et al. An Investigation of Transmission Control Measures during the First 50 Days of the COVID-19 Epidemic in China. Science 2020, 368, 638–642. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Lei, L.; Zhou, W.; Chen, C.; He, Y.; Sun, J.; Li, Z.; Xu, W.; Wang, Q.; Ji, D.; et al. A Chemical Cocktail during the COVID-19 Outbreak in Beijing, China: Insights from Six-Year Aerosol Particle Composition Measurements during the Chinese New Year Holiday. Sci. Total Environ. 2020, 742, 140739. [Google Scholar] [CrossRef]
- Chang, Y.; Huang, R.J.; Ge, X.; Huang, X.; Hu, J.; Duan, Y.; Zou, Z.; Liu, X.; Lehmann, M.F. Puzzling Haze Events in China During the Coronavirus (COVID-19) Shutdown. Geophys. Res. Lett. 2020, 47, 1–11. [Google Scholar] [CrossRef]
- Wang, Y.S.; Yao, L.; Wang, L.L.; Liu, Z.R.; Ji, D.S.; Tang, G.Q.; Zhang, J.K.; Sun, Y.; Hu, B.; Xin, J.Y. Mechanism for the Formation of the January 2013 Heavy Haze Pollution Episode over Central and Eastern China. Sci. China Earth Sci. 2014, 57, 14–25. [Google Scholar] [CrossRef]
- Xu, W.; Sun, J.; Liu, Y.; Xiao, Y.; Tian, Y.; Zhao, B.; Zhang, X. Spatiotemporal Variation and Socioeconomic Drivers of Air Pollution in China during 2005–2016. J. Environ. Manag. 2019, 245, 66–75. [Google Scholar] [CrossRef]
- Liu, X.J.; Xia, S.Y.; Yang, Y.; Wu, J.; Zhou, Y.N.; Ren, Y.W. Spatiotemporal Dynamics and Impacts of Socioeconomic and Natural Conditions on PM2.5 in the Yangtze River Economic Belt. Environ. Pollut. 2020, 263, 114569. [Google Scholar] [CrossRef]
- Jiang, W.; Gao, W.; Gao, X.; Ma, M.; Zhou, M.; Du, K.; Ma, X. Spatio-Temporal Heterogeneity of Air Pollution and Its Key Influencing Factors in the Yellow River Economic Belt of China from 2014 to 2019. J. Environ. Manag. 2021, 296, 113172. [Google Scholar] [CrossRef] [PubMed]
PM2.5 Concentrations (μg m−3) | Beijing | Henan | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
2017 | 2018 | 2019 | 2020 | 2021 | 2017 | 2018 | 2019 | 2020 | 2021 | |
≤35 | 43.1 | 42.2 | 50.3 | 57.8 | 69.4 | 15.4 | 25.0 | 39.3 | 43.1 | 49.2 |
35–75 | 33.1 | 35.8 | 36.2 | 32.5 | 19.2 | 58.3 | 49.9 | 34.4 | 37.0 | 33.7 |
75–115 | 14.3 | 13.6 | 10.0 | 6.1 | 5.8 | 13.4 | 14.0 | 15.1 | 11.9 | 13.3 |
115–150 | 3.9 | 4.2 | 2.3 | 1.9 | 3.9 | 6.7 | 4.5 | 3.7 | 5.8 | 1.9 |
150–250 | 4.5 | 4.2 | 1.2 | 1.7 | 1.7 | 5.9 | 6.3 | 7.5 | 2.2 | 1.9 |
>250 | 1.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3 | 0.3 | 0.0 | 0.0 | 0.0 |
Event | Date | Duration (Day) | Mean PM2.5 Concentrations (μg m−3) | Maximum Hourly PM2.5 Concentration (μg m−3) |
---|---|---|---|---|
HPE1 | 10 January–14 January 2019 | 5 | 123.87 | 428.50 |
HPE2 | 27 February–5 March 2019 | 7 | 117.42 | 227.08 |
HPE3 | 24 January–28 January 2020 | 5 | 138.70 | 204.83 |
HPE4 | 9 February–13 February 2020 | 5 | 166.45 | 250.50 |
HPE5 | 10 February–14 February 2021 | 5 | 151.31 | 296.00 |
HPE6 | 8 March–15 March 2021 | 8 | 143.16 | 639.91 |
Event | Date | Duration (Day) | Mean PM2.5 Concentrations (μg m−3) | Maximum Hourly PM2.5 Concentration (μg m−3) |
---|---|---|---|---|
HPE1 | 11 February–6 March 2019 | 24 | 119.35 | 236.97 |
HPE2 | 2 January–6 January 2020 | 5 | 135.88 | 224.65 |
HPE3 | 10 January–18 January 2020 | 9 | 138.60 | 197.83 |
HPE4 | 21 January–5 February 2020 | 15 | 115.90 | 244.73 |
HPE5 | 26 November–12 December 2020 | 17 | 105.93 | 180.67 |
HPE6 | 20 January–27 January 2021 | 8 | 160.85 | 236.96 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Yang, X.; Duan, F.; Zhao, W. Changes in Air Quality and Drivers for the Heavy PM2.5 Pollution on the North China Plain Pre- to Post-COVID-19. Int. J. Environ. Res. Public Health 2022, 19, 12904. https://doi.org/10.3390/ijerph191912904
Liu S, Yang X, Duan F, Zhao W. Changes in Air Quality and Drivers for the Heavy PM2.5 Pollution on the North China Plain Pre- to Post-COVID-19. International Journal of Environmental Research and Public Health. 2022; 19(19):12904. https://doi.org/10.3390/ijerph191912904
Chicago/Turabian StyleLiu, Shuang, Xingchuan Yang, Fuzhou Duan, and Wenji Zhao. 2022. "Changes in Air Quality and Drivers for the Heavy PM2.5 Pollution on the North China Plain Pre- to Post-COVID-19" International Journal of Environmental Research and Public Health 19, no. 19: 12904. https://doi.org/10.3390/ijerph191912904
APA StyleLiu, S., Yang, X., Duan, F., & Zhao, W. (2022). Changes in Air Quality and Drivers for the Heavy PM2.5 Pollution on the North China Plain Pre- to Post-COVID-19. International Journal of Environmental Research and Public Health, 19(19), 12904. https://doi.org/10.3390/ijerph191912904