
1

Supplementary Materials

ACF Algorithm: ACF is the correlation of a time series with itself,

given a lag. The statsmodels library was used to calculate the ACF at
each possible lag value (line 1 in the function). As “lag” is defined as
one unit of time in the time series, the total possible lag values is
equivalent to the number of data points in the time series. An array of
numbers 1-N was created to represent lag (line 2 in the function). The
resulting dataframe thus includes ACF after a 1 second lag, ACF after
a 2 second lag, and so on up until ACF after a length_of_series lag. This
ACF-Lag dataframe is used to find Tau in the next function. The process
is repeated for each participant-dance-measurement combination.

def get_acf_lag(my_series: pd.Series) -> pd.DataFrame:

 '''

 Finds the ACF at delay numbers ranging from 0 to the length

 of the time series.

 input

 my_series: the time series for which ACFs should be found

 output

 new_df: a dataframe containing each lag number and its

appropriate ACF

 '''

 # get ACF

 acf = sm.tsa.acf(my_series, nlags=len(my_series), fft=True)

 lag = np.arange(len(my_series))

 new_df = pd.DataFrame({

 'lag':list(lag),

 'acf':list(acf)

 })

 return new_df

Tau Algorithm: Tau, the lowest delay number at which the

autocorrelational function (ACF) is < 0.1, was found using custom
python functions. After calculating the ACF at all possible delay
numbers for each participant measure and dance type using the
get_acf_lag function, the resulting dataset is run through the
find_smallest_lag. It starts off by assuming the lowest ACF is 1 (lines 1-
2 of code), which is perfect correlation of the time series with its lag.
The dataset is then filtered to include those ACF which are less than or
equal to 0.1, and the first 50 rows are extracted (line 3 of code). As this
is a time series, the first 50 rows correspond to the first 50 lowest delay
numbers. The function then goes row by row to find instances where
the lag is less than or equal to 10 and where the ACF is smaller than 1,
this is recorded by overwriting the smallest_acf and smallest_lag
variables. The next row is then compared to the now overwritten

2

variable, thereby ensuring that the smallest lag at the smallest ACF is
found (lines 4-9 of code).

Figure 5 demonstrates a sample of the results, where the red dot

represents tau, the smallest lag with the smallest ACF. The full ACF
range is shown on the first graph of each row, with each subsequent
plot representing a closer zoom level. Our custom functions found tau
at the smallest lag (towards the beginning of the time series delay) and
the smallest ACF (closer to 0, representing no correlation between the
series and its delayed partner).

def find_smallest_lag(dataframe: pd.DataFrame) -> Tuple[float,

float]:

 '''

 Finds the smallest lag where ACF is closest to 0.

 input

 dataframe: a dataframe of all ACF and accompanying lag values

for a given time series

 output

 smallest_lag: the first lag at which ACF was <= 0.1

 smallest_acf: the ACF values closest to 0 at the smallest lag

 '''

 smallest_acf = 1

 smallest_lag = 1

 res = dataframe[abs(dataframe['acf']) <= 0.1].head(50)

 for i, row in res.iterrows():

 acf = abs(row['acf'])

 lag = abs(row['lag'])

 if (acf < smallest_acf) & ((abs(smallest_lag - lag) <= 10) |

(smallest_lag == 1)):

 smallest_acf = acf

 smallest_lag = lag

 return smallest_lag, smallest_acf

