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Supplementary Materials 
 
ACF Algorithm: ACF is the correlation of a time series with itself, 

given a lag. The statsmodels library was used to calculate the ACF at 
each possible lag value (line 1 in the function). As “lag” is defined as 
one unit of time in the time series, the total possible lag values is 
equivalent to the number of data points in the time series. An array of 
numbers 1-N was created to represent lag (line 2 in the function). The 
resulting dataframe thus includes ACF after a 1 second lag, ACF after 
a 2 second lag, and so on up until ACF after a length_of_series lag. This 
ACF-Lag dataframe is used to find Tau in the next function. The process 
is repeated for each participant-dance-measurement combination. 

 
def get_acf_lag(my_series: pd.Series) -> pd.DataFrame: 

  ''' 

  Finds the ACF at delay numbers ranging from 0 to the length 

  of the time series. 

  input 

  ----- 

  my_series: the time series for which ACFs should be found 

  output 

  ------ 

  new_df: a dataframe containing each lag number and its 

appropriate ACF 

  ''' 

  # get ACF 

  acf = sm.tsa.acf(my_series, nlags=len(my_series), fft=True) 

  lag = np.arange(len(my_series)) 

  new_df = pd.DataFrame({ 

    'lag':list(lag), 

    'acf':list(acf) 

  }) 

  return new_df 

 
Tau Algorithm: Tau, the lowest delay number at which the 

autocorrelational function (ACF) is < 0.1, was found using custom 
python functions. After calculating the ACF at all possible delay 
numbers for each participant measure and dance type using the 
get_acf_lag function, the resulting dataset is run through the 
find_smallest_lag. It starts off by assuming the lowest ACF is 1 (lines 1-
2 of code), which is perfect correlation of the time series with its lag. 
The dataset is then filtered to include those ACF which are less than or 
equal to 0.1, and the first 50 rows are extracted (line 3 of code). As this 
is a time series, the first 50 rows correspond to the first 50 lowest delay 
numbers. The function then goes row by row to find instances where 
the lag is less than or equal to 10 and where the ACF is smaller than 1, 
this is recorded by overwriting the smallest_acf and smallest_lag 
variables. The next row is then compared to the now overwritten 
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variable, thereby ensuring that the smallest lag at the smallest ACF is 
found (lines 4-9 of code).  

 
Figure 5 demonstrates a sample of the results, where the red dot 

represents tau, the smallest lag with the smallest ACF. The full ACF 
range is shown on the first graph of each row, with each subsequent 
plot representing a closer zoom level. Our custom functions found tau 
at the smallest lag (towards the beginning of the time series delay) and 
the smallest ACF (closer to 0, representing no correlation between the 
series and its delayed partner).  

 

def find_smallest_lag(dataframe: pd.DataFrame) -> Tuple[float, 

float]: 

   ''' 

   Finds the smallest lag where ACF is closest to 0. 

   input 

   ----- 

   dataframe: a dataframe of all ACF and accompanying lag values 

for a given time series 

   output 

   ------ 

   smallest_lag: the first lag at which ACF was <= 0.1 

   smallest_acf: the ACF values closest to 0 at the smallest lag 

   ''' 

   smallest_acf = 1 

   smallest_lag = 1 

   res = dataframe[abs(dataframe['acf']) <= 0.1].head(50) 

   for i, row in res.iterrows(): 

      acf = abs(row['acf']) 

      lag = abs(row['lag']) 

      if (acf < smallest_acf) & ((abs(smallest_lag - lag) <= 10) | 

(smallest_lag == 1)): 

         smallest_acf = acf 

         smallest_lag = lag 

   return smallest_lag, smallest_acf 

 


