Socioeconomic, Ethnocultural, Substance- and Cannabinoid-Related Epidemiology of Down Syndrome USA 1986–2016: Combined Geotemporospatial and Causal Inference Investigation
Abstract
:1. Introduction
2. Methods
2.1. Data
2.2. Derived Data
2.3. Statistical Analysis and Data Cleaning
2.4. Causal Analysis
2.5. Data Availability Statement
2.6. Ethics
3. Results
3.1. Univariate Data
3.2. Bivariate Relationships
3.3. Linear Regressions
3.4. Multiway Panelled Plots
3.5. Case Ascertainment
3.6. Correlograms
3.7. Multiple Regression
3.7.1. Panel Regression
3.7.2. Geospatial Regression
3.8. Legal Status
3.9. Inverse Probability Weighted Mixed Effects Regression
3.10. Robust Regression
3.11. Causality and Uncontrolled Confounding
3.12. Multivariate Regression of Cannabis Legal Status
4. Discussion
4.1. Main Findings
4.2. Pathways and Mechanisms
4.3. Causal Assignment
4.4. Implications for Policy
4.5. Time-Dependent Changes in Down Syndrome Rates
4.6. Generalizability
4.7. Strengths and Limitations
4.8. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hickey, F.; Hickey, E.; Summar, K.L. Medical update for children with Down syndrome for the pediatrician and family practitioner. Adv. Pediatr. 2012, 59, 137–157. [Google Scholar] [CrossRef] [PubMed]
- Birth Defects: Facts about Down Syndrome. Available online: https://www.cdc.gov/ncbddd/birthdefects/downsyndrome.html (accessed on 2 August 2022).
- Birger, Y.; Shiloh, R.; Izraeli, S. Mechanisms of Leukemia Evolution: Lessons from a Congenital Syndrome. Cancer Cell 2019, 36, 115–117. [Google Scholar] [CrossRef] [PubMed]
- Labuhn, M.; Perkins, K.; Matzk, S.; Varghese, L.; Garnett, C.; Papaemmanuil, E.; Metzner, M.; Kennedy, A.; Amstislavskiy, V.; Risch, T.; et al. Mechanisms of Progression of Myeloid Preleukemia to Transformed Myeloid Leukemia in Children with Down Syndrome. Cancer Cell 2019, 36, 123–138.e110. [Google Scholar] [CrossRef]
- McCantz-Katz, E. Annual Report Snippets, NSDUH, SAMHSA, USA DHHS—Selected Streamlined Trends; Substance Abuse and Mental Health Services Administration US Department of Health and Human Services, SAMHSA, DHHS: Rockville, MA, USA, 2018; Volume 1, pp. 1–78. [Google Scholar]
- Forrester, M.B.; Merz, R.D. Risk of selected birth defects with prenatal illicit drug use, Hawaii, 1986–2002. J. Toxicol. Environ. Health 2007, 70, 7–18. [Google Scholar] [CrossRef]
- Public Health Agency of Canada, Health Canada. Congenital Anomalies in Canada. In A Perinatal Health Surveillance Report; Public Health Agency of Canada: Ottawa, ON, Canada, 2013; Volume 1, pp. 1–119. [Google Scholar]
- Reece, A.S.; Hulse, G.K. Canadian Cannabis Consumption and Patterns of Congenital Anomalies: An Ecological Geospatial Analysis. J. Addict. Med. 2020, 14, e195–e210. [Google Scholar] [CrossRef]
- National Cannabis Survey, Second Quarter. 2018. Available online: https://www.facebook.com/StatisticsCanada/posts/1636405843137586:0 (accessed on 11 January 2020).
- Statistics Canada. Third Quarter National Cannabis Survey, Canada; Canada, S., Ed.; Statistics Canada: Ottawa, ON, Canada, 2019; Volume 1. [Google Scholar]
- Colorado: Department of Public Health and the Environment. Colorado Responds to Children with Special Needs-Birth Defect Data, Colorado. In Birth Defect Data-Colorado Register of Congenital Surveillance Network, 1st ed.; Environment CDoPHat, Ed.; Department of Public Health and the Environment: Denver, CO, USA, 2018; Volume 1, Available online: http://www.chd.dphe.state.co.us/cohid/ (accessed on 11 January 2020).
- Reece, A.S.; Hulse, G.K. Cannabis Teratology Explains Current Patterns of Coloradan Congenital Defects: The Contribution of Increased Cannabinoid Exposure to Rising Teratological Trends. Clin. Pediatr. 2019, 58, 1085–1123. [Google Scholar] [CrossRef]
- Queensland Maternal and Perinatal Quality Council. Queensland Mothers and Babies 2014 and 2015. In Brisbane: Queensland Health; Health, Q., Ed.; 2018; Volume 1, pp. 1–70. [Google Scholar]
- Reece, A.S.; Hulse, G.K. Cannabinoid- and Substance- Relationships of European Congenital Anomaly Patterns: A Space-Time Panel Regression and Causal Inferential Study. Environ. Epigenetics 2022, 8, 1–40. [Google Scholar] [CrossRef]
- Reece, A.S.; Hulse, G.K. Cannabis- and Substance- Related Epidemiological Patterns of Chromosomal Congenital Anomalies in Europe: Geospatiotemporal and Causal Inferential Study. Int. J. Environ. Res. Public Health 2022, 19, 11208. [Google Scholar] [CrossRef] [PubMed]
- Colorado Department of Public Health and Environment. THC Concentration in Colorado Marijuana; Colorado Department of Public Health and Environment: Denver, CO, USA, 2020. [Google Scholar]
- Reece, A.S.; Hulse, G.K. Epidemiological Overview of Multidimensional Chromosomal and Genome Toxicity of Cannabis Exposure in Congenital Anomalies and Cancer Development. Sci. Rep. 2021, 11, 13892–13912. [Google Scholar]
- Reece, A.S.; Hulse, G.K. Cannabinoid Genotoxicity and Congenital Anomalies: A Convergent Synthesis of European and USA Datasets. In Cannabis, Cannabinoids and Endocannabinoids; Preedy, V., Patel, V., London, U.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; Volume 1, in press. [Google Scholar]
- Reece, A.S.; Hulse, G.K. European Epidemiological Patterns of Cannabis- and Substance- Related Congenital Cardiovascular Anomalies: Geospatiotemporal and Causal Inferential Study. Environ. Epigenetics 2022, 8, 1–55. [Google Scholar] [CrossRef]
- Reece, A.S.; Hulse, G.K. Cannabis in Pregnancy—Rejoinder, Exposition and Cautionary Tales. Psychiatr. Times 2020, 9, 37. Available online: https://www.psychiatrictimes.com/view/cannabis-pregnancy-rejoinder-exposition-cautionary-tales (accessed on 11 January 2020).
- NBDPN. National Birth Defects Prevention Network; National Birth Defects Prevention Network: Houston, TX, USA, 2018; Volume 2018. [Google Scholar]
- Substance Abuse and Mental Health Services Administration. National Survey of Drug Use and Health; Substance Abuse and Mental Health Services Administration: Silver Springs, MD, USA, 2018. Available online: https://www.samhsa.gov/data/all-reports (accessed on 11 January 2020).
- Wonder, C.D.C. Natality Information, Live Births. Available online: https://wonder.cdc.gov/natality.html (accessed on 11 January 2020).
- ElSohly, M.A.; Mehmedic, Z.; Foster, S.; Gon, C.; Chandra, S.; Church, J.C. Changes in Cannabis Potency Over the Last 2 Decades (1995–2014): Analysis of Current Data in the United States. Biol. Psychiatry 2016, 79, 613–619. [Google Scholar] [CrossRef] [PubMed]
- ElSohly, M.A.; Ross, S.A.; Mehmedic, Z.; Arafat, R.; Yi, B.; Banahan, B.F., 3rd. Potency trends of delta9-THC and other cannabinoids in confiscated marijuana from 1980–1997. J. Forensic Sci. 2000, 45, 24–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Women and Newborn Health Service; Department of Health, Government of Western Australia. Western Australian Register of Developmental Anomalies 1980–2014; Western Australia Health: Perth, WA, Australia, 2015; Volume 1, p. 28. [Google Scholar]
- Bird, T.M.; Hobbs, C.A.; Cleves, M.A.; Tilford, J.M.; Robbins, J.M. National rates of birth defects among hospitalized newborns. Birth Defects Res. A Clin. Mol. Teratol. 2006, 76, 762–769. [Google Scholar] [CrossRef]
- Natoli, J.L.; Ackerman, D.L.; McDermott, S.; Edwards, J.G. Prenatal diagnosis of Down syndrome: A systematic review of termination rates (1995–2011). Prenat. Diagn. 2012, 32, 142–153. [Google Scholar] [CrossRef]
- Mansfield, C.; Hopfer, S.; Marteau, T.M. Termination rates after prenatal diagnosis of Down syndrome, spina bifida, anencephaly, and Turner and Klinefelter syndromes: A systematic literature review. European Concerted Action: DADA (Decision-making After the Diagnosis of a fetal Abnormality). Prenat. Diagn. 1999, 19, 808–812. [Google Scholar] [CrossRef]
- Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; McGowan, L.D.; Francios, R.; Groelmund, G.; Hayes, A.; Henry, L.; Hester, J.; et al. Welcome to the Tidyverse. J. Open Source Softw. 2019, 4, 1686–1691. [Google Scholar] [CrossRef] [Green Version]
- Pebesma, E. Simple Features for R: Standardized Support for Spatial Vector Data. R J. 2018, 10, 439–446. [Google Scholar] [CrossRef] [Green Version]
- Geofacet. ‘ggplot2’ Faceting Utilities for Geographical Data. Available online: https://CRAN.R-project.org/package=geofacet (accessed on 11 January 2020).
- Corrgram. Plot a Correlogram. Available online: https://CRAN.R-project.org/package=corrgram (accessed on 11 January 2020).
- Wright, K. Package ‘Corrgram’; CRAN: Trieste, Italy, 2013; pp. 1–8. [Google Scholar]
- Package ‘plm’. Available online: https://cran.r-project.org/web/packages/plm/plm.pdf (accessed on 11 January 2020).
- Lumley, T. Complex Surveys: A Guide to Analysis Using R; Wiley: Hoboken, NJ, USA, 2010; Volume 1. [Google Scholar]
- Bivand, R.; Anselin, L.; Berke, O.; Bernat, A.; Carvalho, M.; Chun, Y.; Dormann, C.; Dray, S.; Halbersma, R.; Lewis-Koh, N.; et al. The Spdep Package; CRAN: Trieste, Italy, 2007; pp. 1–143. [Google Scholar]
- Millo, G. Maximum likelihood estimation of spatially and serially correlated panels with random effects. Comput. Stat. Data Anal. 2014, 71, 914–933. [Google Scholar] [CrossRef]
- Millo, G.; Piras, G. Splm: Spatial Panel Data Models in R. J. Stastistical Softw. 2012, 47, 1–38. [Google Scholar]
- Broom. Convert Statistical Objects into Tidy Tibbles. Available online: https://CRAN.R-project.org/package=broom (accessed on 11 January 2020).
- Broom.mixed. Tidying Methods for Mixed Models. Available online: http://github.com/bbolker/broom.mixed (accessed on 11 January 2020).
- Kapoor, M.; Kelejian, H.H.; Prucha, I.R. Panel Data Models with Spatially Correlated Error Components. J. Econom. 2007, 140, 97–130. [Google Scholar] [CrossRef] [Green Version]
- Millo, G.; Piras, G. Package ‘splm’; CRAN (Central R-Archive Network): Trieste, Italy, 2018; pp. 1–27. Available online: https://cran.r-project.org/web/packages/splm/splm.pdf (accessed on 2 August 2022).
- Croissant, Y.; Millo, G. Panel Data Econometrics with R; Wiley and Sons: Hoboken, NJ, USA; West Sussex, UK, 2019. [Google Scholar]
- Van der Wal, W.M.; Geskus, R.B. Ipw: An R Package for Inverse Probabilty Weighting. J. Stat. Softw. 2011, 43, 1–23. [Google Scholar]
- Pinheiro, J.; Bates, D.; DebRoy, S.; Sarkar, D.; Team, R.C. Nlme: Linear and Nonlinear Mixed Effects Models; Comprehensive R Archive Network: Trieste, Italy, 2020; Volume 1. [Google Scholar]
- Package ‘Evalue’ Online Document. Available online: https://cran.r-project.org/web/packages/EValue/EValue.pdf (accessed on 2 August 2022).
- VanderWeele, T.J.; Ding, P.; Mathur, M. Technical Considerations in the Use of the E-Value. J. Causal Inference 2019, 7, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Yuan, W.; Li, M.D. Genes and pathways co-associated with the exposure to multiple drugs of abuse, including alcohol, amphetamine/methamphetamine, cocaine, marijuana, morphine, and/or nicotine: A review of proteomics analyses. Mol. Neurobiol. 2011, 44, 269–286. [Google Scholar] [CrossRef] [PubMed]
- Reece, A.S.; Hulse, G.K. Chromothripsis and epigenomics complete causality criteria for cannabis- and addiction-connected carcinogenicity, congenital toxicity and heritable genotoxicity. Mutat. Res./Fundam. Mol. Mech. Mutagen. 2016, 789, 15–25. [Google Scholar] [CrossRef]
- Hembree, W.C., III; Nahas, G.G.; Zeidenberg, P.; Huang, H.F.S. Changes in human spermatozoa associated with high dose marihuana smoking; Nahas, G.G., Sutin, K.M., Harvey, D.J., Agurell, S., Eds.; Humana Press: Totowa, NY, USA, 1999; Volume 1, pp. 367–378. [Google Scholar]
- Zimmerman, A.M.; Zimmerman, S. Cytogenetic Studies of Cannabinoid Effects. In Genetic and Perinatal Effects of Abused Substances; Braude, M.C., Zimmerman, A.M., Eds.; Academic Press Inc.: New York, NY, USA; Harcourt Brace Jovanovich: San Diego, CA, USA, 1987; Volume 1, pp. 95–112. [Google Scholar]
- Zimmerman, A.M.; Zimmerman, S.; Raj, A.Y. Effects of Cannabinoids on spermatogenesis in mice. In Marihuana and Medicine; Nahas, G.G., Sutin, K.M., Harvey, D.J., Agurell, S., Totowa, N.J., Eds.; Humana Press: Totowa, NJ, USA, 1999; pp. 347–358. [Google Scholar]
- Zimmerman, S.; Zimmerman, A.M. Genetic effects of marijuana. Int. J. Addict. 1990, 25, 19–33. [Google Scholar] [CrossRef]
- Morishima, A. Effects of cannabis and natural cannabinoids on chromosomes and ova. NIDA Res. Monogr. 1984, 44, 25–45. [Google Scholar]
- Allen, E.G.; Freeman, S.B.; Druschel, C.; Hobbs, C.A.; O’Leary, L.A.; Romitti, P.A.; Royle, M.H.; Torfs, C.P.; Sherman, S.L. Maternal age and risk for trisomy 21 assessed by the origin of chromosome nondisjunction: A report from the Atlanta and National Down Syndrome Projects. Hum. Genet. 2009, 125, 41–52. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, S.; Feingold, E.; Dey, S.K. Etiology of Down syndrome: Evidence for consistent association among altered meiotic recombination, nondisjunction, and maternal age across populations. Am J Med. Genet A 2009, 149, 1415–1420. [Google Scholar] [CrossRef] [Green Version]
- Vranekovic, J.; Bozovic, I.B.; Grubic, Z.; Wagner, J.; Pavlinic, D.; Dahoun, S.; Bena, F.; Culic, V.; Brajenovic-Milic, B. Down syndrome: Parental origin, recombination, and maternal age. Genet Test Mol Biomarkers 2012, 16, 70–73. [Google Scholar] [CrossRef] [Green Version]
- Murphy, S.K.; Itchon-Ramos, N.; Visco, Z.; Huang, Z.; Grenier, C.; Schrott, R.; Acharya, K.; Boudreau, M.H.; Price, T.M.; Raburn, D.J.; et al. Cannabinoid exposure and altered DNA methylation in rat and human sperm. Epigenetics 2018, 13, 1208–1221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schrott, R.; Acharya, K.; Itchon-Ramos, N.; Hawkey, A.B.; Pippen, E.; Mitchell, J.T.; Kollins, S.H.; Levin, E.D.; Murphy, S.K. Cannabis use is associated with potentially heritable widespread changes in autism candidate gene DLGAP2 DNA methylation in sperm. Epigenetics 2019, 15, 161–173. [Google Scholar] [CrossRef] [Green Version]
- Almouzni, G.; Altucci, L.; Amati, B.; Ashley, N.; Baulcombe, D.; Beaujean, N.; Bock, C.; Bongcam-Rudloff, E.; Bousquet, J.; Braun, S.; et al. Relationship between genome and epigenome--challenges and requirements for future research. BMC Genom. 2014, 15, 487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vilne, B.; Schunkert, H. Integrating Genes Affecting Coronary Artery Disease in Functional Networks by Multi-OMICs Approach. Front. Cardiovasc. Med. 2018, 5, 89. [Google Scholar] [CrossRef]
- Schrott, R.; Murphy, S.K.; Modliszewski, J.L.; King, D.E.; Hill, B.; Itchon-Ramos, N.; Raburn, D.; Price, T.; Levin, E.D.; Vandrey, R.; et al. Refraining from use diminishes cannabis-associated epigenetic changes in human sperm. Environ. Epigenetics 2021, 7, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Reece, A.S.; Hulse, G.K. Broad Spectrum epidemiological contribution of cannabis and other substances to the teratological profile of northern New South Wales: Geospatial and causal inference analysis. BMC Pharmacol. Toxicol. 2020, 21, 75–103. [Google Scholar] [CrossRef]
- Reece, A.S.; Hulse, G.K. Epigenomic and Other Evidence for Cannabis-Induced Aging Contextualized in a Synthetic Epidemiologic Overview of Cannabinoid-Related Teratogenesis and Cannabinoid-Related Carcinogenesis. Mendeley Data 2022. [Google Scholar] [CrossRef]
- Reece, A.S.; Hulse, G.K. Cannabis, Cannabidiol, Cannabinoids and Multigenerational Policy. Engineering 2022, in press. [Google Scholar] [CrossRef]
- Reece, A.S.; Hulse, G.K. Extending the “Paracentral Dogma” of biology with the metabolome: Implications for understanding genomic-glycomic-metabolic-epigenomic synchronization. Engineering 2022, in press.
- Causal Inference in Statistics. A Gentle Introduction. Available online: http://bayes.cs.ucla.edu/jsm-august2016-bw.pdf (accessed on 11 January 2020).
- VanderWeele, T.J.; Ding, P. Sensitivity Analysis in Observational Research: Introducing the E-Value. Ann. Intern. Med. 2017, 167, 268–274. [Google Scholar] [CrossRef] [Green Version]
- Pearl, J.; Mackenzie, D. The Book of Why. The New Science of Cause and Effect; Basic Books: New York, NY, USA, 2018; Volume 1. [Google Scholar]
- Hill, A.B. The Environment and Disease: Association or Causation? Proc. R Soc. Med. 1965, 58, 295–300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cozens, D.D.; Nahas, G.G.; Harvey, D. Prenatal Exposure to Cannabis and Fetal Development. In Marijuana in Medicine; Nahas, G.G., Sutin, K.M., Harvey, D.J., Agurell, S., Eds.; Humana Press: Totowa, NY, USA, 1999; Volume 1, pp. 431–440. [Google Scholar]
- Tahir, S.K.; Zimmerman, A.M. Influence of marihuana on cellular structures and biochemical activities. Pharmacol. Biochem. Behav. 1991, 40, 617–623. [Google Scholar] [CrossRef]
- Russo, C.; Ferk, F.; Mišík, M.; Ropek, N.; Nersesyan, A.; Mejri, D.; Holzmann, K.; Lavorgna, M.; Isidori, M.; Knasmüller, S. Low doses of widely consumed cannabinoids (cannabidiol and cannabidivarin) cause DNA damage and chromosomal aberrations in human-derived cells. Arch. Toxicol. 2019, 93, 179–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McClean DK, Zimmerman AM: Action of delta 9-tetrahydrocannabinol on cell division and macromolecular synthesis in division-synchronized protozoa. Pharmacology 1976, 14, 307–321. [CrossRef] [PubMed]
- Parker, S.J.; Zuckerman, B.S.; Zimmermann, A.M. The Effects of Maternal Marijuana Use During Pregnancy on Fetal Growth. In Marijuana in Medicine; Nahas, G.G., Sutin, K.M., Harvey, D.J., Agurell, S., Eds.; Humana Press: Totowa, NY, USA, 1999; Volume 1, pp. 461–468. [Google Scholar]
- Tahir, S.K.; Trogadis, J.E.; Stevens, J.K.; Zimmerman, A.M. Cytoskeletal organization following cannabinoid treatment in undifferentiated and differentiated PC12 cells. Biochem. Cell Biol. 1992, 70, 1159–1173. [Google Scholar] [CrossRef]
- Thomas, J.; Tilak, S.; Zimmerman, S.; Zimmerman, A.M. Action of delta 9-tetrahydrocannabinol on the pool of acid soluble nucleotides. Cytobios 1984, 40, 71–85. [Google Scholar]
- Zimmerman, A.M.; Raj, A.Y. Influence of cannabinoids on somatic cells in vivo. Pharmacology 1980, 21, 277–287. [Google Scholar] [CrossRef]
- Cozens, D.D.; Clark, R.; Palmer, A.K.; Hardy, N.; Nahas, G.G.; Harvey, D.J. The effect of a crude marihuana extract on embryonic and foetal development of the rabbit. Adv. Biosci. 1978, 22–23, 469–477. [Google Scholar]
- Huang, H.F.S.; Nahas, G.G.; Hembree, W.C. Effects of Marijuana Inhalation on Spermatogenesis of the Rat. In Marijuana in Medicine; Nahas, G.G., Sutin, K.M., Harvey, D.J., Agurell, S., Eds.; Human Press: Totowa, NY, USA, 1999; Volume 1, pp. 359–366. [Google Scholar]
- Morishima, A.; Henrich, R.T.; Jayaraman, J.; Nahas, G.G. Hypoploid metaphases in cultured lymphocytes of marihuana smokers. Adv. Biosci. 1978, 22–23, 371–376. [Google Scholar]
- Nahas, G.G.; Morishima, A.; Desoize, B. Effects of cannabinoids on macromolecular synthesis and replication of cultured lymphocytes. Fed. Proc. 1977, 36, 1748–1752. [Google Scholar]
- Ing, G.M.; Olman, C.L.; Oyd, J.R. Drug-Induced (Thalidomide) Malformations. Can. Med. Assoc. J. 1962, 87, 1259–1262. [Google Scholar] [PubMed]
- Kizaki, M.; Hashimoto, Y. New tubulin polymerization inhibitor derived from thalidomide: Implications for anti-myeloma therapy. Curr. Med. Chem. 2008, 15, 754–765. [Google Scholar] [CrossRef] [PubMed]
- Iguchi, T.; Yachide-Noguchi, T.; Hashimoto, Y.; Nakazato, S.; Sagawa, M.; Ikeda, Y.; Kizaki, M. Novel tubulin-polymerization inhibitor derived from thalidomide directly induces apoptosis in human multiple myeloma cells: Possible anti-myeloma mechanism of thalidomide. Int. J. Mol. Med. 2008, 21, 163–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tseng, S.; Pak, G.; Washenik, K.; Pomeranz, M.K.; Shupack, J.L. Rediscovering thalidomide: A review of its mechanism of action, side effects, and potential uses. J. Am. Acad. Dermatol. 1996, 35, 969–979. [Google Scholar] [CrossRef]
- Therapontos, C.; Erskine, L.; Gardner, E.R.; Figg, W.D.; Vargesson, N. Thalidomide induces limb defects by preventing angiogenic outgrowth during early limb formation. Proc. Natl. Acad. Sci. USA 2009, 106, 8573–8578. [Google Scholar] [CrossRef] [Green Version]
- Vargesson, N. Thalidomide-induced limb defects: Resolving a 50-year-old puzzle. Bioessays 2009, 31, 1327–1336. [Google Scholar] [CrossRef]
- Vargesson, N. Thalidomide-induced teratogenesis: History and mechanisms. Birth Defects Res. Part C: Embryo Today: Rev. 2015, 105, 140–156. [Google Scholar] [CrossRef] [Green Version]
- Khalil, A.; Tanos, R.; El-Hachem, N.; Kurban, M.; Bouvagnet, P.; Bitar, F.; Nemer, G. A HAND to TBX5 Explains the Link Between Thalidomide and Cardiac Diseases. Sci. Rep. 2017, 7, 1416. [Google Scholar] [CrossRef] [Green Version]
- McBride, W. Health of thalidomide victims and their progeny. Lancet 2004, 363, 169. [Google Scholar] [CrossRef]
- Rehman, W.; Arfons, L.M.; Lazarus, H.M. The rise, fall and subsequent triumph of thalidomide: Lessons learned in drug development. Ther. Adv. Hematol. 2011, 2, 291–308. [Google Scholar] [CrossRef]
- Franks, M.E.; Macpherson, G.R.; Figg, W.D. Thalidomide. Lancet 2004, 363, 1802–1811. [Google Scholar] [CrossRef] [Green Version]
- Linz, W. Thalidomide and Congenital Abnormalities. Lancet 1962, 7223, 271–272. [Google Scholar]
- Melchert, M.; List, A. The thalidomide saga. Int. J. Biochem. Cell Biol. 2007, 39, 1489–1499. [Google Scholar] [CrossRef] [PubMed]
- Reece, A.S.; Hulse, G.K. Co-occurrence across time and space of drug- and cannabinoid- exposure and adverse mental health outcomes in the National Survey of Drug Use and Health: Combined geotemporospatial and causal inference analysis. BMC Public Health 2020, 20, 1655–1669. [Google Scholar] [CrossRef] [PubMed]
- Reece, A.S.; Hulse, G.K. Epidemiological Associations of Various Substances and Multiple Cannabinoids with Autism in USA. Clin. Pediatr. Open Access 2019, 4, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Reece, A.S.; Hulse, G.K. Effect of Cannabis Legalization on US Autism Incidence and Medium Term Projections. Clin. Pediatr. Open Access 2019, 4, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Reece, A.S.; Hulse, G.K. Gastroschisis and Autism-Dual Canaries in the Californian Coalmine. JAMA Surg. 2019, 154, 366–367. [Google Scholar] [CrossRef]
- Short, T.D.; Stallings, E.B.; Isenburg, J.; O’Leary, L.A.; Yazdy, M.M.; Bohm, M.K.; Ethen, M.; Chen, X.; Tran, T.; Fox, D.J.; et al. Gastroschisis Trends and Ecologic Link to Opioid Prescription Rates—United States, 2006–2015. Morb. Mortal. Wkly. Rep. 2019, 68, 31–36. [Google Scholar] [CrossRef]
Parameter | Model Spatial Parameter, Rho | SCC | |||
---|---|---|---|---|---|
Parameter | Estimate (C.I.) | p-Value | Value | p-Value | |
Down Syndrome Rate | |||||
Cannabis | |||||
spml(DS_Rate~Cigarettes * Cannabis_Exposure * Alcoholism + Analgesics + Cocaine + MHY + 5_Races + AdvMatlAge) | |||||
Asian | 0.48 (0.10, 0.86) | 0.0140 | −0.2453 | 0.0003 | 0.5578 |
Hispanic | 0.44 (0.20, 0.67) | 2.86 × 10−4 | |||
NHWhite | 0.39 (0.13, 0.65) | 2.86 × 10−3 | |||
Cannabis | 0.36 (0.20, 0.52) | 9.01 × 10−6 | |||
NHBlack | 0.33 (0.12, 0.54) | 0.0022 | |||
Cannabis: Alcoholism | 0.20 (0.10, 0.30) | 0.0001 | |||
Median Household Income | 0.17 (0.02, 0.32) | 0.0290 | |||
Alcoholism | 0.15 (0.07, 0.24) | 7.30 × 10−4 | |||
Cigarettes: Alcoholism | 0.08 (0.01, 0.15) | 0.0314 | |||
Cigarettes | −0.16 (−0.29, −0.03) | 0.0203 | |||
Analgesics | −0.18 (−0.30, −0.06) | 0.0045 | |||
Mothers_Older_35_Years | −0.54 (−0.77, −0.31) | 4.92 × 10−6 | |||
THC | |||||
spml(DS_Rate~Cigarettes * THC_Exposure * Alcoholism + Analgesics + Cocaine + MHY + 5_Races + AdvMatlAge) | |||||
THC_Exposure | 0.32 (0.16, 0.47) | 5.51 × 10−5 | -0.2759 | 4.78 × 10−5 | 0.2588 |
Median Household Income | 0.20 (0.07, 0.33) | 0.0021 | |||
Hispanic | 0.18 (0.08, 0.27) | 0.0002 | |||
THC_Exposure: Alcoholism | 0.11 (0.00, 0.21) | 0.0496 | |||
Alcoholism | 0.09 (0.00, 0.18) | 0.0394 | |||
Analgesics | −0.16 (−0.27, −0.05) | 0.0047 | |||
Cigarettes: THC_Exposure: Alcoholism | −0.16 (−0.25, −0.08) | 0.0001 | |||
Mothers_Older_35_Years | −0.26 (−0.40, −0.12) | 0.0004 | |||
Cannabigerol | |||||
spml(DS_Rate~Cigarettes * CBG_Exposure * Alcoholism + Analgesics + Cocaine + MHY + 5_Races + AdvMatlAge) | |||||
Hispanic | 0.42 (0.18, 0.65) | 0.0005 | −1.6944 | 1.25 × 10−5 | 0.4159 |
CBG_Exposure | 0.41 (0.23, 0.59) | 5.15 × 10−6 | |||
Asian | 0.41 (0.03, 0.78) | 0.0325 | |||
NHWhite | 0.34 (0.09, 0.60) | 0.0084 | |||
NHBlack | 0.31 (0.10, 0.52) | 0.0035 | |||
Median Household Income | 0.19 (0.04, 0.34) | 0.0153 | |||
Alcoholism | 0.14 (0.05, 0.23) | 0.0024 | |||
CBG_Exposure: Alcoholism | 0.12 (0.01, 0.22) | 0.0379 | |||
Cigarettes: CBG_Exposure: Alcoholism | −0.11 (−0.20, −0.02) | 0.0148 | |||
Cigarettes | −0.14 (−0.28, 0.00) | 0.0439 | |||
Analgesics | −0.16 (−0.28, −0.04) | 0.0086 | |||
Mothers_Older_35_Years | −0.51 (−0.74, −0.29) | 9.26 × 10−6 | |||
Estimated Corrected Down Syndrome Rate | |||||
Cannabis | |||||
spml(DS_Rate~Cigarettes * Cannabis_Exposure * Alcoholism + Analgesics + Cocaine + MHY + 5_Races + AdvMatlAge) | |||||
Asian | 0.35 (0.05, 0.64) | 0.0221 | -0.251266 | 0.0002 | 0.4128 |
Hispanic | 0.28 (0.10, 0.46) | 0.0026 | |||
NHWhite | 0.27 (0.06, 0.47) | 0.0098 | |||
Cannabis | 0.25 (0.13, 0.37) | 5.22 × 10−5 | |||
NHBlack | 0.21 (0.05, 0.37) | 0.0111 | |||
Cannabis: Alcoholism | 0.16 (0.09, 0.24) | 4.64 × 10−5 | |||
Alcoholism | 0.14 (0.07, 0.21) | 8.48 × 10−5 | |||
Cigarettes: Alcoholism | 0.07 (0.02, 0.13) | 0.0108 | |||
Analgesics | -0.13 (-0.22, -0.03) | 0.0087 | |||
Cigarettes | -0.16 (-0.26, -0.06) | 0.0025 | |||
Mothers_Older_35_Years | -0.33 (-0.50, -0.17) | 9.69 × 10−5 | |||
THC | |||||
spml(DS_Rate~Cigarettes * THC_Exposure * Alcoholism + Analgesics + Cocaine + MHY + 5_Races + AdvMatlAge) | |||||
THC_Exposure | 0.30 (0.16, 0.43) | 2.72 × 10−5 | −0.2798 | 3.67 × 10−5 | 0.4344 |
Asian | 0.29 (0.00, 0.58) | 0.0500 | |||
Hispanic | 0.25 (0.07, 0.43) | 0.0055 | |||
NHWhite | 0.23 (0.04, 0.43) | 0.0200 | |||
NHBlack | 0.18 (0.03, 0.34) | 0.0224 | |||
THC_Exposure: Alcoholism | 0.14 (0.06, 0.22) | 0.0006 | |||
Alcoholism | 0.13 (0.06, 0.20) | 0.0002 | |||
Cigarettes: Alcoholism | 0.08 (0.02, 0.13) | 0.0101 | |||
Analgesics | −0.11 (−0.20, −0.02) | 0.0175 | |||
Cigarettes | −0.15 (−0.25, −0.05) | 0.0026 | |||
Mothers_Older_35_Years | −0.30 (−0.46, −0.15) | 0.0002 | |||
Cannabigerol | |||||
spml(DS_Rate~Cigarettes * CBG_Exposure * Alcoholism + Analgesics + Cocaine + MHY + 5_Races + AdvMatlAge) | |||||
CBG_Exposure | 0.22 (0.12, 0.33) | 1.24 × 10−5 | −0.067 | 0.3253 | 0.3114 |
MHY | 0.11 (0.01, 0.22) | 0.0408 | |||
CBG_Exposure: Alcoholism | 0.09 (0.01, 0.17) | 0.0281 | |||
Mothers_Older_35_Years | −0.18 (−0.29, −0.06) | 0.0029 | |||
Cigarettes | −0.19 (−0.27, −0.11) | 5.92 × 10−6 |
Parameter | Parameters | Model Parameters | ||||
---|---|---|---|---|---|---|
Estimate (C.I.) | p-Value | R-Squared | F | dF | P | |
lm(Downs_Rate~Legal_Status) | ||||||
Status-Legal | 6.5 (4.02, 8.99) | 4.36 × 10−7 | 0.1085 | 18.48 | 3428 | 2.72 × 10−11 |
Status-Decriminalised | 1.70 (0.89, 2.52) | 5.04 × 10−5 | ||||
Status-Medical | 2.27 (1.36, 3.19) | 1.40 × 10−6 | ||||
lm(Downs_Rate~Dichotomized_Legal_Status) | ||||||
Liberal_Status | 2.16 (1.50, 2.82) | 4.68 × 10−10 | 0.0843 | 40.66 | 1430 | 4.68 × 10−10 |
lm(Downs_Rate~Year * Legal_Status) | ||||||
Year | 0.17 (0.13, 0.21) | 5.2 × 10−14 | 0.2607 | 22.71 | 7424 | <2.2 × 10−16 |
Status-Medical | 529.63 (48.63, 1010.62) | 0.0315 | ||||
Year:Status-Medical | −0.26 (−0.5, −0.02) | 0.0319 | ||||
Year:Status-Decriminalised | 0.10 (0.00, 0.21) | 0.0569 | ||||
Status-Decriminalised | −203.45 (−413.39, 6.49) | 0.0582 | ||||
lm(Downs_Rate~Year * Dichotomized_Legal_Status) | ||||||
Liberal_Status | 0 (0, 0) | 8.2 × 10−5 | 0.2359 | 67.54 | 2429 | <2.2 × 10−16 |
Parameter | Model | |||
---|---|---|---|---|
Covariate | Estimate (C.I.) | p-Value | Model Parameter | Value |
Additive Model | ||||
lme(Downs_Rate~Cigarettes + Alcohol.Abuse + THC.Exposure +Cannabigerol.Exposure + Analgesics + Cocaine + 4_Races+ Median.HH.Income, random = ~1|id, weights = ~sw) | ||||
Hispanic | 33.2 (32, 34.4) | 5.66 × 10−159 | AIC | 393.005 |
THC.Exposure | 4.28 (4.19, 4.37) | 9.29 × 10−226 | B IC | 3983.781 |
Cocaine | 0.99 (0.95, 1.02) | 2.31 × 10−164 | LogLik | −1954.003 |
Alcoholism | 0.51 (0.43, 0.59) | 1.88 × 10−31 | S.D. | 51446.470 |
Analgesics | −0.16 (−0.19, −0.13) | 1.92 × 10−21 | SCC | −0.020 |
Cigarettes | −0.36 (−0.4, −0.32) | 4.24 × 10−43 | ||
Median Household Income | −1 (−1.04, −0.96) | 4.58 × 10−153 | ||
CBG.Exposure | −4.3 (−4.42, −4.17) | 2.91 × 10−186 | ||
NHWhite | −8.24 (−8.78, −7.7) | 2.01 × 10−92 | ||
Asian | −21.6 (−22.4, −20.8) | 6.01 × 10−159 | ||
Drug Interactive Model | ||||
lme(Downs_Rate~Cigarettes*Alcohol.Abuse*THC.Exposure*Cannabigerol.Exposure+Analgesics + Cocaine + 4_Races+ Median.HH.Income, random = ~1|id, weights = ~sw) | ||||
Alcoholism: THC.Exposure | 4.98 (4.2, 5.76) | 3.31 × 10−29 | AIC | 3252.770 |
Cigarettes: Alcoholism: THC.Exposure | 3.12 (2.51, 3.73) | 1.41 × 10−20 | B IC | 3336.416 |
THC.Exposure | 2.72 (2.47, 2.96) | 1.21 × 10−64 | LogLik | -1604.385 |
Cigarettes: THC.Exposure | 1.81 (1.56, 2.05) | 8.80 × 10−36 | S.D. | 23106.340 |
Hispanic | 1.14 (0.69, 1.6) | 1.11 × 10−6 | SCC | 2.196 |
NHWhite | 0.85 (0.62, 1.07) | 1.29 × 10−12 | ||
Asian | 0.83 (0.26, 1.41) | 4.47 × 10−3 | ||
Cigarettes | 0.29 (0.18, 0.41) | 9.33 × 10−7 | ||
Analgesics | 0.18 (0.11, 0.24) | 2.01 × 10−7 | ||
Median Household Income | −0.24 (−0.34, −0.14) | 2.15 × 10−6 | ||
Alcoholism: THC.Exposure: CBG.Exposure | −0.4 (−0.68, −0.12) | 4.59 × 10−3 | ||
Cigarettes: Alcoholism: THC.Exposure: CBG.Exposure | −0.45 (−0.75, −0.15) | 3.68 × 10−3 | ||
Alcoholism | −0.57 (−0.71, −0.44) | 5.89 × 10−16 | ||
Cigarettes: CBG.Exposure | −0.66 (−1.04, −0.28) | 7.76 × 10−4 | ||
Cigarettes: THC.Exposure: CBG.Exposure | −0.77 (−0.87, −0.67) | 3.38 × 10−37 | ||
THC.Exposure: CBG.Exposure | −0.77 (−0.94, −0.61) | 6.06 × 10−18 | ||
CBG.Exposure | −1.32 (−1.72, −0.91) | 6.68 × 10−10 | ||
Cigarettes: Alcoholism: CBG.Exposure | −2.13 (−2.74, −1.52) | 3.82 × 10−11 | ||
Alcoholism: CBG.Exposure | −3.94 (−4.71, −3.17) | 1.55 × 10−20 | ||
Drug and Ethnic Interactive Model | ||||
lme(Downs_Rate~Cigarettes*Alcohol.Abuse*THC.Exposure*Cannabigerol.Exposure+Analgesics + Cocaine +NHWhite*NHBlack*Asian*Hispanic+Median.HH.Income, random = ~1|id, weights = ~sw) | ||||
NHBlack: Hispanic: Asian | 11.4 (8.43, 14.4) | 9.42 × 10−13 | AIC | 3198.600 |
NHWhite: NHBlack: Asian | 8.29 (5.69, 10.9) | 1.29 × 10−9 | B IC | 3311.930 |
NHWhite: NHBlack: Hispanic: Asian | 6.43 (4.6, 8.25) | 2.82 × 10−11 | LogLik | -1569.300 |
NHBlack: Asian | 5.01 (1.89, 8.14) | 1.75 × 10−3 | S.D. | 17081.080 |
NHWhite: Asian | 4.31 (2.55, 6.07) | 2.27 × 10−6 | SCC | 4.749 |
Alcoholism: THC.Exposure | 4.09 (3.38, 4.8) | 4.77 × 10−25 | ||
NHBlack: Hispanic | 3.75 (1.06, 6.45) | 6.57 × 10−3 | ||
Cigarettes: Alcoholism: THC.Exposure | 3.16 (2.36, 3.95) | 1.07 × 10−13 | ||
THC.Exposure | 2.66 (2.13, 3.19) | 4.61 × 10−20 | ||
Cigarettes: THC.Exposure | 2.46 (1.91, 3.01) | 1.10 × 10−16 | ||
Cigarettes | 0.35 (0.21, 0.49) | 1.00 × 10−6 | ||
Analgesics | 0.13 (0.06, 0.2) | 2.03 × 10−4 | ||
Median Household Income | −0.23 (−0.34, −0.12) | 4.78 × 10−5 | ||
Cocaine | −0.3 (−0.46, −0.14) | 2.92 × 10−4 | ||
Alcoholism | −0.67 (−0.79, −0.54) | 1.89 × 10−21 | ||
CBG.Exposure | −0.67 (−1.21, −0.13) | 1.46 × 10−2 | ||
Cigarettes: CBG.Exposure | −1.01 (−1.56, −0.45) | 4.04 × 10−4 | ||
Alcoholism: THC.Exposure: CBG.Exposure | −1.1 (−1.42, −0.79) | 2.54 × 10−11 | ||
Cigarettes: Alcoholism: THC.Exposure: CBG.Exposure | −1.19 (−1.52, −0.85) | 2.01 × 10−11 | ||
Cigarettes: THC.Exposure: CBG.Exposure | −1.4 (−1.63, −1.17) | 3.05 × 10−26 | ||
THC.Exposure: CBG.Exposure | −1.69 (−2.02, −1.36) | 1.15 × 10−20 | ||
Cigarettes: Alcoholism: CBG.Exposure | −1.74 (−2.45, −1.03) | 2.23 × 10−6 | ||
Asian | −1.96 (−3.67, −0.26) | 2.40 × 10−2 | ||
Alcoholism: CBG.Exposure | −2.57 (−3.26, −1.88) | 2.38 × 10−12 | ||
NHWhite: NHBlack | −2.65 (−4.32, −0.98) | 1.94 × 10−3 | ||
Hispanic: Asian | −5.36 (−7.65, −3.07) | 6.25 × 10−6 | ||
NHWhite: Hispanic | −5.68 (−6.72, −4.64) | 7.73 × 10−23 |
Parameter | Model | |||
---|---|---|---|---|
Term | Est. (C.I.) | p Value | Parameter | Value |
Drugs Additive | ||||
svyglm(Downs.ETOPFA.Est.Rate~ Cigarettes + Alcoholism + THC.Exposure + CBG.Exposure + Analgesics + Cocaine) | ||||
Analgesics | 1.19 (0.75, 1.64) | 5.13 × 10−7 | AIC | −101,077 |
Cocaine | −1.11 (−1.25, −0.97) | 4.03 × 10−30 | BIC | 16.3 |
Deviance | 33.2 | |||
Ethnic THC Exposure | ||||
svyglm(Downs.ETOPFA.Est.Rate~NHWhite.THC.Exposure + NHBlack.THC.Exposure * Hispanic.THC.Exposure * Asian.THC.Exposure) | ||||
Hispanic.THC.Exposure | 0.68 (0.58, 0.78) | 8.08 × 10−32 | AIC | 2225 |
BIC | 61 | |||
Deviance | 2.06 | |||
Cannabis-Full Additive Model | ||||
svyglm(Downs.ETOPFA.Est.Rate~Cigarettes + Alcoholism + Cannabis.Exposure + Analgesics + Cocaine + | ||||
NHWhite + NHBlack + Hispanic + NHAsian + Median.HH.Income) | ||||
Cannabis.Exposure | 0.41 (0.18, 0.64) | 5.33 × 10−04 | AIC | 2301 |
Hispanic | 0.39 (0.07, 0.71) | 0.0156 | BIC | 88.3 |
NHWhite | 0.36 (0.06, 0.67) | 0.0201 | Deviance | 49.3 |
Median.HH.Income | 0.31 (0.07, 0.55) | 0.0124 | ||
NHBlack | 0.3 (0.05, 0.55) | 0.0201 | ||
Cocaine | −0.53 (−0.78, −0.28) | 3.50 × 10−5 | ||
Cannabinoids-Full Additive Model | ||||
svyglm(Downs.ETOPFA.Est.Rate~Cigarettes + Alcoholism + THC.Exposure + CBG.Exposure + Analgesics + Cocaine + | ||||
NHWhite + NHBlack + Hispanic + NHAsian + Median.HH.Income) | ||||
THC.Exposure | 0.33 (0.14, 0.52) | 0.0006 | AIC | 2279 |
Median.HH.Income | 0.22 (0.01, 0.42) | 0.0420 | BIC | 72.8 |
Cocaine | −0.34 (−0.65, −0.03) | 0.0293 | Deviance | 47.3 |
Cannabinoids-Full Model-Interactive Substances | ||||
svyglm(Downs.ETOPFA.Est.Rate~Cigarettes * Cannabis.Exposure * Alcoholism + Analgesics + Cocaine + | ||||
NHWhite + NHBlack + Hispanic + NHAsian + Median.HH.Income) | ||||
Cigarettes:Cannabis.Exposure | 0.53 (0.45, 0.61) | 4.60 × 10−31 | AIC | 2257 |
Cigarettes | 0.16 (0.01, 0.32) | 3.88 × 10−02 | BIC | 71.0 |
Deviance | 49.4 | |||
Cannabinoids-Full Model-Substances & Ethnicity | ||||
svyglm(Downs.ETOPFA.Est.Rate~Cigarettes * Cannabis.Exposure * Alcoholism + Analgesics + Cocaine + | ||||
NHWhite + NHBlack * Hispanic * NHAsian + Median.HH.Income) | ||||
NHBlack:Hispanic:NHAsian | 0.81 (0.19, 1.44) | 0.0112 | AIC | 2003 |
NHBlack | 0.58 (0.28, 0.89) | 0.0002 | BIC | 104 |
NHBlack:Hispanic | 0.57 (0.11, 1.03) | 0.0161 | Deviance | 53.4 |
Alcoholism | 0.53 (0.24, 0.82) | 0.0003 | ||
Median.HH.Income | 0.47 (0.19, 0.75) | 0.0012 | ||
Hispanic | 0.39 (0.13, 0.66) | 0.0040 | ||
Cigarettes | 0.28 (0.09, 0.48) | 0.0038 | ||
Analgesics | 0.22 (0.02, 0.43) | 0.0354 | ||
Cigarettes:Cannabis.Exposure | 0.21 (0.03, 0.4) | 0.0233 | ||
Cigarettes:Alcoholism | −0.36 (−0.64, −0.08) | 0.0124 | ||
Cocaine | −0.45 (−0.75, −0.16) | 0.0029 |
Parameter | Table | Regression Coefficient (C.I.) | R.R. (C.I.) | eValues |
---|---|---|---|---|
Linear Regression | eTable 4 | |||
Downs over Time | eTable 4 | 0.21 (0.17, 0.25) | 1.067 (1.055, 1.079) | 1.33, 1.29 |
Downs by Monthly Cannabis Use | eTable 4 | 2.97 (1.91, 4.03) | 2.38 (1.72, 3.31) | 4.21, 2.83 |
Downs by Cannabis Use Quintile | eTable 4 | 3.86 (2.45, 5.27) | 2.31 (1.59, 3.37) | 4.05, 2.56 |
Downs by Cannabis Use Quintile Dichotomized | eTable 4 | 3.54 (2.19, 4.89) | 2.07 (1.44, 2.97) | 3.56, 2.25 |
Legal Relationship | eTable 8 | |||
Legal v Illegal Status | eTable 8 | 6.50 (4.02, 8.99) | 5.97 (3.02, 11.79) | 11.41, 5.49 |
Medical v Illegal Status | eTable 8 | 2.27 (1.36, 3.19) | 1.86 (1.45, 2.39) | 3.14, 2.27 |
Decriminalized v Illegal Status | eTable 8 | 1.70 (0.89, 2.52) | 1.61 (1.29, 2.02) | 2.60, 1.90 |
Time * Decriminalized Status | eTable 8 | 529.63 (48.63, 1010.62) | Inf (5.6 × 1070, Inf) | Inf, 1.1 × 1071 |
Liberal v Illegal Status (Dichotomized) | eTable 8 | 2.16 (1.50, 2.82) | 1.81 (1.51, 2.16) | 3.01, 2.39 |
Geotemporospatial Regression | Table 1 | |||
Cannabis | Table 1 | 0.36 (0.20, 0.52) | 1.67 (1.33, 2.10) | 2.79, 2.00 |
Cannabis: Alcoholism | Table 1 | 0.20 (0.10, 0.30) | 1.32 (1.15, 1.54) | 1.99, 1.56 |
THC_Exposure | Table 1 | 0.32 (0.16, 0.47) | 1.56 (1.26, 1.94) | 2.50, 1.82 |
THC_Exposure: Alcoholism | Table 1 | 0.11 (0.00, 0.21) | 1.16 (1.00, 1.35) | 1.60, 1.02 |
CBG_Exposure | Table 1 | 0.41 (0.23, 0.59) | 1.78 (1.39, 2.31) | 2.99, 2.14 |
CBG_Exposure: Alcoholism | Table 1 | 0.12 (0.01, 0.22) | 1.17 (1.01, 1.38) | 1.64, 1.11 |
Cannabis | Table 1 | 0.25 (0.13, 0.37) | 1.57 (1.26, 1.97) | 2.53, 1.84 |
Cannabis: Alcoholism | Table 1 | 0.16 (0.09, 0.24) | 1.35 (1.16, 1.56) | 1.04, 1.61 |
THC _ Exposure | Table 1 | 0.30 (0.16, 0.43) | 1.71 (1.33, 2.20) | 2.81, 1.99 |
THC _ Exposure: Alcoholism | Table 1 | 0.14 (0.06, 0.22) | 1.29 (1.11, 1.49) | 1.90, 1.47 |
CBG_Exposure | Table 1 | 0.22 (0.12, 0.33) | 1.67 (1.31, 2.13) | 2.73, 1.96 |
CBG_Exposure: Alcoholism | Table 1 | 0.09 (0.01, 0.17) | 1.16 (1.02, 1.33) | 1.60, 1.14 |
Mixed Effects iptw Regression | ||||
THC.Exposure | Table 2 | 4.28 (4.19, 4.37) | 1.00007 (1.00007, 1.00007) | 1.0087, 1.0086 |
Alcoholism: THC.Exposure | Table 2 | 4.98 (4.2, 5.76) | 1.0019 (1.00017, 1.00022) | 1.014, 1.013 |
Cigarettes: Alcoholism: THC.Exposure | Table 2 | 3.12 (2.51, 3.73) | 1.0001 (1.00009, 1.0001) | 1.011, 1.01 |
THC.Exposure | Table 2 | 2.72 (2.47, 2.96) | 1.0001 (1.00009, 1.0001) | 1.01, 1.009 |
Cigarettes: THC.Exposure | Table 2 | 1.81 (1.56, 2.05) | 1.00007 (1.00006, 1.00008) | 1.008, 1.0079 |
Alcoholism: THC.Exposure | Table 2 | 4.09 (3.38, 4.8) | 1.002 (1.0001, 1.0002) | 1.014, 1.013 |
Cigarettes: Alcoholism: THC.Exposure | Table 2 | 3.16 (2.36, 3.95) | 1.00016 (1.00013, 1.00021) | 1.013, 1.011 |
THC.Exposure | Table 2 | 2.66 (2.13, 3.19) | 1.0001 (1.0001, 1.0002) | 1.012, 1.010 |
Cigarettes: THC.Exposure | Table 2 | 2.46 (1.91, 3.01) | 1.0001 (1.0001, 1.0001) | 1.011, 1.010 |
Linear Modelling of Multivariate Legal Status | ||||
Downs Rate | ||||
THC.Exposure | Table S8 | 0.37 (0.08, 0.664) | 1.28 × 103 (4.88, 3.33 × 105) | 2.55 × 103, 9.24 |
Status-Decriminalised | Table S8 | 0.39 (0.176, 0.611) | 1.95 × 103 (31.13, 1.22 × 105) | 3.89 × 103, 61.76 |
Status-Medical | Table S8 | 0.38 (0.0659, 0.697) | 1.54 × 103 (3.77, 6.35 × 105) | 3.09 × 103, 7.00 |
CBG.Exposure | Table S8 | 0.65 (0.414, 0.886) | 7.44 × 108 (4.66 × 105, 1.19 × 1012) | 1.49 × 109, 9.31 × 105 |
Status-Decriminalised | Table S8 | 2.47 (2.13, 2.81) | 5.40 × 105 (4.00 × 103, 7.29 × 107) | 1.08 × 106, 7.99 × 103 |
Status-Medical | Table S8 | 0.42 (0.263, 0.577) | 5.16 × 1033 (1.32 × 1029, 2.02 × 1038) | 1.03 × 1034, 2.64 × 1029 |
Cigarettes: CBG.Exposure | Table S8 | 0.52 (0.052, 0.994) | 1.37 × 107 (5.72, 3.31 × 1013) | 2.75 × 107, 10.92 |
Cigarettes: THC.Exposure: CBG.Exposure | Table S8 | 0.39 (0.165, 0.609) | 1.91 × 105 (184.19, 1.99 × 108) | 3.82 × 105, 367.89 |
THC.Exposure | Table S8 | 0.38 (0.0965, 0.653) | 1.38 × 103 (6.76, 2.81 × 105) | 2.75 × 103, 13.02 |
Dichotomous.Status-Liberal | Table S8 | 0.39 (0.212, 0.567) | 1.84 × 103 (61.40, 5.53 × 104) | 3.68 × 103, 122.30 |
CBG.Exposure | Table S8 | 0.96 (0.703, 1.21) | 3.46 × 1011 (3.26 × 108, 3.67 × 1014) | 6.93 × 1011, 6.54 × 108 |
Dichotomous.Status-Liberal | Table S8 | 0.82 (0.663, 0.974) | 7.87 × 109 (1.06 × 108, 5.80 × 1011) | 1.57 × 1010, 2.13 × 108 |
Cigarettes: Alcoholism: THC.Exposure | Table S8 | 1.13 (0.864, 1.39) | 4.51 × 1013 (3.07 × 1010, 6.63 × 1016) | 9.02 × 1013, 6.14 × 1010 |
ETOPFA-Est. Downs Rate | ||||
Status-Decriminalised | Table 6 | 0.28 (0.113, 0.44) | 1.17 × 103 (18.35, 7.48 × 103) | 2.34 × 103, 36.19 |
Cannabis.Exposure | Table 6 | 0.2 (0.0917, 0.301) | 152.24 (10.65, 2.17 × 103) | 303.98, 20.79 |
Status-Decriminalised | Table 6 | 0.27 (0.107, 0.435) | 977.51 (15.41, 6.19 × 104) | 1.95 × 103, 30.32 |
THC.Exposure | Table 6 | 1.65 (1.42, 1.88) | 267.50 (18.46, 3.87 × 103) | 534.51, 36.41 |
Cigarettes: Alcoholism: THC.Exposure | Table 6 | 0.66 (0.546, 0.772) | 3.62 × 1013 (1.75 × 1011, 7.47 × 1015) | 7.25 × 1013, 3.51 × 1011 |
Cigarettes: Alcoholism: THC.Exposure: CBG.Exposure | Table 6 | 0.63 (0.458, 0.8) | 8.75 × 1012 (2.81 × 109, 2.72 × 1016) | 1.75E+13, 5.62 × 109 |
CBG.Exposure | Table 6 | 0.59 (0.424, 0.759) | 1.44 × 1012 (5.38 × 108, 3.88 × 1015) | 2.89 × 1012, 1.07 × 109 |
Cigarettes: CBG.Exposure | Table 6 | 0.55 (0.151, 0.943) | 1.79 × 1011 (1.46 × 103, 2.21 × 1019) | 3.59 × 1011, 2.95 × 103 |
Cigarettes: THC.Exposure: CBG.Exposure | Table 6 | 0.33 (0.0888, 0.568) | 5.60 × 106 (68.97, 4.56 × 1011) | 1.12 × 107, 137.45 |
Status-Medical | Table 6 | 0.23 (0.121, 0.34) | 8.90 × 1033 (2.09 × 1029, 3.78 × 1038) | 1.78 × 1034, 4.19 × 1029 |
Status-Decriminalised | Table 6 | 0.23 (0.121, 0.34) | 5.66 × 104 (327.53, 9.78 × 106) | 1.13 × 105, 654.55 |
Dichotomous Status-Liberal | Table 6 | 0.39 (0.212, 0.567) | 165.93 (6.01, 4.58 × 103) | 331.35, 11.50 |
Cannabis.Exposure | Table 6 | 0.38 (0.0965, 0.653) | 75.43 (5.78, 967.81) | 150.36, 11.23 |
THC.Exposure | Table 6 | 0.44 (0.237, 0.65) | 1.04 × 105 (497.78, 2.18 × 107) | 2.08 × 105, 995.06 |
Dichotomous Status-Liberal | Table 6 | 0.26 (0.124, 0.387) | 782.59 (26.10, 2.34 × 104) | 1.56 × 103, 51.69 |
Cigarettes: Alcoholism: THC.Exposure: CBG.Exposure | Table 6 | 1.22 (0.999, 1.43) | 3.60 × 1020 (8.53 × 1016, 1.52x 1024) | 7.230 × 1020, 1.71E+17 |
Cigarettes: Alcoholism: THC.Exposure | Table 6 | 1.18 (0.779, 1.59) | 7.63 × 1019 (1.213 × 1013, 4.69 × 1026) | 1.53 × 102, 2.48 × 1013 |
THC.Exposure | Table 6 | 1 (0.736, 1.27) | 7.07 × 1016 (2.51 × 10 × 1012, 1.99 × 1021) | 1.41 × 1017, 5.03 × 1012 |
Dichotomous Status-Liberal | Table 6 | 0.61 (0.494, 0.715) | 1.56 × 1010 (2.19 × 108, 1.11 × 1012) | 3.13 × 1010, 4.39 × 108 |
Number | E-Value Estimate | E-Value Lower Bound |
---|---|---|
1 | Infinity | 1.10 × 1071 |
2 | 1.78 × 10 × 1034 | 4.19 × 1029 |
3 | 1.03 × 10 × 1034 | 2.64 × 1029 |
4 | 7.23 × 10 × 1020 | 1.71 × 1017 |
5 | 1.41 × 10 × 1017 | 2.48 × 1013 |
6 | 9.02 × 10 × 1013 | 5.03 × 1012 |
7 | 7.25 × 10 × 1013 | 3.51 × 1011 |
8 | 1.75 × 10 × 1013 | 6.14 × 1010 |
9 | 2.89 × 10 × 1012 | 5.62 × 109 |
10 | 6.93 × 1011 | 1.07 × 109 |
11 | 3.59 × 1011 | 6.54 × 108 |
12 | 3.13 × 1010 | 4.39 × 108 |
13 | 1.57 × 1010 | 2.13 × 108 |
14 | 1.49 × 109 | 9.31 × 105 |
15 | 2.75 × 107 | 7.99 × 103 |
16 | 1.12 × 107 | 2.95 × 103 |
17 | 1.08 × 106 | 995.06 |
18 | 3.82 × 105 | 654.55 |
19 | 2.08 × 105 | 367.89 |
20 | 1.13 × 105 | 137.45 |
21 | 3.89 × 103 | 122.3 |
22 | 3.68 × 103 | 61.76 |
23 | 3.09 × 103 | 51.69 |
24 | 2.75 × 103 | 36.41 |
25 | 2.55 × 103 | 36.19 |
26 | 2.34 × 103 | 30.32 |
27 | 1.95 × 103 | 20.79 |
28 | 1.56 × 103 | 13.02 |
29 | 534.51 | 11.5 |
30 | 331.35 | 11.23 |
31 | 303.98 | 10.92 |
32 | 1.53 × 102 | 9.24 |
33 | 150.36 | 7 |
34 | 11.41 | 5.49 |
35 | 4.21 | 2.83 |
36 | 4.05 | 2.56 |
37 | 3.56 | 2.39 |
38 | 3.14 | 2.27 |
39 | 3.01 | 2.25 |
40 | 2.99 | 2.14 |
41 | 2.81 | 2 |
42 | 2.79 | 1.99 |
43 | 2.73 | 1.96 |
44 | 2.6 | 1.9 |
45 | 2.53 | 1.84 |
46 | 2.5 | 1.82 |
47 | 1.99 | 1.61 |
48 | 1.9 | 1.56 |
49 | 1.64 | 1.47 |
50 | 1.6 | 1.29 |
51 | 1.6 | 1.14 |
52 | 1.33 | 1.11 |
53 | 1.04 | 1.02 |
54 | 1.014 | 1.013 |
55 | 1.014 | 1.013 |
56 | 1.013 | 1.011 |
57 | 1.012 | 1.01 |
58 | 1.011 | 1.01 |
59 | 1.011 | 1.01 |
60 | 1.01 | 1.009 |
61 | 1.0087 | 1.0086 |
62 | 1.008 | 1.0079 |
Model and Term | Term Parameters | Model Parameters | ||
---|---|---|---|---|
Estimate (C.I.) | p-Value | Parameter | Value | |
Legal Status | ||||
Additive Cannabis | ||||
lm(ETOPFA.Corrected.DSR~Cigarettes+Alcohol.Abuse+Cannabis.Exposure+Analgesics+Cocaine+4_Races+ Median.HH.Income+Status, weights = sw) | ||||
Median Household Income | 0.56 (0.431, 0.682) | 1.19 × 10−16 | Adj R Squ. | 0.7535 |
Hispanic | 0.43 (0.291, 0.562) | 1.63 × 10−9 | F | 90.14 |
NHBlack | 0.4 (0.269, 0.522) | 2.42 × 10−9 | dF | 12, 338 |
NHWhite | 0.28 (0.135, 0.428) | 1.85 × 10−4 | S.D. | 0.0356 |
Status-Decriminalised | 0.28 (0.113, 0.44) | 9.89 × 10−4 | P | 1.52 × 10−97 |
Analgesics | 0.23 (0.128, 0.323) | 7.92 × 10−6 | ||
Cannabis.Exposure | 0.2 (0.0917, 0.301) | 2.62 × 10−4 | ||
Alcoholism | 0.18 (0.106, 0.254) | 2.47 × 10−6 | ||
Cigarettes | 0.17 (0.0734, 0.275) | 7.49 × 10−4 | ||
Status-Medical | −0.11 (−0.308, 0.098) | 0.3090 | ||
Status-Legal | −0.52 (−56.8, 55.8) | 0.9850 | ||
Cocaine | −0.53 (−0.624, −0.439) | 2.95 × 10−25 | ||
Additive Cannabinoids | ||||
lm(ETOPFA.Corrected.DSR~Cigarettes+Alcohol.Abuse+THC.Exposure+Cannabigerol.Exposure+Analgesics+Cocaine+4_Races+ Median.HH.Income+Status, weights = sw) | ||||
Median Household Income | 0.42 (0.285, 0.548) | 1.55 × 10−9 | Adj R Squ. | 0.7535 |
Status-Decriminalised | 0.27 (0.107, 0.435) | 0.0013 | F | 90.14 |
NHBlack | 0.22 (0.13, 0.316) | 3.44 × 10−6 | dF | 12, 338 |
THC.Exposure | 0.22 (0.115, 0.326) | 5.22 × 10−5 | S.D. | 0.0356 |
Hispanic | 0.21 (0.113, 0.309) | 3.04 × 10−5 | P | 1.52 × 10−97 |
Alcoholism | 0.21 (0.136, 0.28) | 3.13 × 10−8 | ||
Analgesics | 0.2 (0.0999, 0.297) | 9.05 × 10−5 | ||
Cigarettes | 0.13 (0.0272, 0.238) | 0.0138 | ||
Status-Medical | −0.05 (−0.248, 0.157) | 0.6570 | ||
Status-Legal | −0.42 (−57, 56.1) | 0.9880 | ||
Cocaine | −0.43 (−0.518, −0.342) | 1.64 × 10−19 | ||
Interactive Cannabinoids | ||||
lm(ETOPFA.Corrected.DSR~Cigarettes*Alcohol.Abuse*THC.Exposure*Cannabigerol.Exposure+Analgesics+Cocaine+4_Races+ Median.HH.Income+Status, weights = sw) | ||||
NHWhite: NHBlack: Hispanic: Asian | 27.8 (24, 31.7) | 1.15 × 10−35 | Adj R Squ. | 0.9285 |
NHBlack: Hispanic: Asian | 23.6 (20.7, 26.5) | 1.98 × 10−43 | F | 152.6 |
NHWhite: NHBlack: Asian | 14.2 (12, 16.4) | 4.26 × 10−30 | dF | 30, 320 |
NHWhite: Hispanic: Asian | 14 (11.6, 16.3) | 1.94 × 10−26 | S.D. | 0.0358 |
NHBlack: Asian | 12.3 (10.4, 14.1) | 1.39 × 10−32 | P | 1.69 × 10−170 |
Hispanic: Asian | 9.64 (7.77, 11.5) | 3.33 × 10−21 | ||
NHWhite: Asian | 8.78 (7.25, 10.3) | 4.03 × 10−25 | ||
NHWhite: NHBlack: Hispanic | 7.51 (6.39, 8.63) | 4.71 × 10−32 | ||
NHBlack: Hispanic | 7.03 (6.13, 7.93) | 2.47 × 10−40 | ||
Asian | 5.54 (4.52, 6.56) | 6.96 × 10−23 | ||
NHBlack | 3.48 (2.98, 3.98) | 1.44 × 10−33 | ||
NHWhite: NHBlack | 3.14 (2.55, 3.72) | 1.54 × 10−22 | ||
NHWhite: Hispanic | 2.76 (2.21, 3.31) | 2.84 × 10−20 | ||
Hispanic | 2.41 (1.93, 2.88) | 1.17 × 10−20 | ||
NHWhite | 1.76 (1.46, 2.06) | 1.04 × 10−25 | ||
Status-Medical | 1.65 (1.42, 1.88) | 3.11 × 10−36 | ||
Cigarettes: Alcoholism: THC.Exposure | 0.66 (0.546, 0.772) | 9.79 × 10−26 | ||
Cigarettes: Alcoholism: THC.Exposure: CBG.Exposure | 0.63 (0.458, 0.8) | 3.31 × 10−12 | ||
CBG.Exposure | 0.59 (0.424, 0.759) | 2.13 × 10−11 | ||
Cigarettes: CBG.Exposure | 0.55 (0.151, 0.943) | 6.94 × 10−3 | ||
Cigarettes: THC.Exposure: CBG.Exposure | 0.33 (0.0888, 0.568) | 7.37 × 10−3 | ||
Analgesics | 0.3 (0.216, 0.381) | 6.13 × 10−12 | ||
Median Household Income | 0.23 (0.0867, 0.377) | 1.83 × 10−3 | ||
Status-Decriminalised | 0.23 (0.121, 0.34) | 4.26 × 10−5 | ||
Cocaine | 0.28 (0.384, 0.181) | 9.12 × 10−8 | ||
Alcoholism: THC.Exposure: CBG.Exposure | −0.38 (−0.513, −0.251) | 2.17 × 10−8 | ||
Cigarettes | −0.51 (−0.672, −0.342) | 4.33 × 10−9 | ||
Cigarettes: THC.Exposure | −0.72 (−1.02, −0.421) | 3.31 × 10−6 | ||
Alcoholism: CBG.Exposure | −0.92 (−1.07, −0.769) | 2.71 × 10−28 | ||
Status-Legal | −1.04 (−31.4, 29.3) | 0.9460 | ||
Dichotomous Legal Status | ||||
Additive Cannabis | ||||
lm(ETOPFA.Corrected.DSR~Cigarettes+Alcohol.Abuse+Cannabis.Exposure+Analgesics+Cocaine+4_Races+ Median.HH.Income+ Dichotomized.Status, weights = sw) | ||||
Median Household Income | 0.87 (0.666, 1.07) | 6.37 × 10−16 | Adj R Squ. | 0.7519 |
Dichotomous Status-Liberal | 0.39 (0.212, 0.567) | 2.05 × 10−5 | F | 107.1 |
THC.Exposure | 0.38 (0.0965, 0.653) | 0.0085 | dF | 10, 340 |
NHBlack | 0.33 (0.212, 0.457) | 1.52 × 10−7 | S.D. | 0.0357 |
Analgesics | 0.27 (0.149, 0.383) | 1.06 × 10−5 | P | 1.08 × 10−98 |
Alcoholism | 0.26 (0.158, 0.357) | 5.52 × 10−7 | ||
Hispanic | 0.24 (0.0851, 0.392) | 0.0024 | ||
Cigarettes | 0.21 (0.0624, 0.348) | 0.0050 | ||
Cocaine | −0.3 (−0.435, −0.156) | 3.99 × 10−5 | ||
Asian | −0.49 (−0.827, −0.144) | 0.0055 | ||
CBG.Exposure | −0.49 (−0.813, −0.174) | 0.0026 | ||
Additive Cannabinoids | ||||
lm(ETOPFA.Corrected.DSR~Cigarettes+Alcohol.Abuse+THC.Exposure+Cannabigerol.Exposure+Analgesics+Cocaine+4_Races+ Median.HH.Income+Dichotomized.Status, weights = sw) | ||||
Median Household Income | 0.53 (0.384, 0.682) | 9.91 × 10−12 | Adj R Squ. | 0.7631 |
Cannabis.Exposure | 0.44 (0.237, 0.65) | 2.97 × 10−5 | F | 103.5 |
Hispanic | 0.26 (0.145, 0.372) | 1.09 × 10−5 | dF | 11, 339 |
Dichotomous Status-Liberal | 0.26 (0.124, 0.387) | 1.55 × 10−4 | S.D. | 0.0349 |
NHBlack | 0.22 (0.132, 0.314) | 2.09 × 10−6 | P | 2.92 × 10−101 |
Alcoholism | 0.17 (0.0948, 0.242) | 9.22 × 10−6 | ||
Cigarettes | 0.15 (0.0483, 0.26) | 0.0044 | ||
Analgesics | 0.14 (0.0564, 0.23) | 0.0013 | ||
CBG.Exposure | −0.24 (−0.481, −0.00715) | 0.0435 | ||
Cocaine | −0.39 (−0.494, −0.287) | 8.68 × 10−13 | ||
Asian | −0.47 (−0.722, −0.215) | 3.16 × 10−4 | ||
Interactive Cannabinoids | ||||
lm(ETOPFA.Corrected.DSR~Cigarettes*Alcohol.Abuse*THC.Exposure*Cannabigerol.Exposure+Analgesics+Cocaine+4_Races+ Median.HH.Income+Dichotomized.Status, weights = sw) | ||||
NHWhite: NHBlack: Hispanic: Asian | 26.8 (21.9, 31.6) | 1.19 × 10−23 | Adj R Squ. | 0.8934 |
NHBlack: Hispanic: Asian | 20 (16.5, 23.5) | 3.31 × 10−25 | F | 109.7 |
NHWhite: Hispanic: Asian | 15.1 (12.2, 18.1) | 7.40 × 10−21 | dF | 27, 323 |
NHWhite: NHBlack: Asian | 14 (11.2, 16.8) | 2.64 × 10−20 | S.D. | 0.0234 |
NHBlack: Asian | 11 (8.76, 13.3) | 2.27 × 10−19 | P | 2.37 × 10−145 |
Hispanic: Asian | 10.8 (8.46, 13.1) | 8.68 × 10−18 | ||
NHWhite: Asian | 9.09 (7.14, 11) | 5.81 × 10−18 | ||
NHWhite: NHBlack: Hispanic | 6.86 (5.49, 8.24) | 3.87 × 10−20 | ||
NHBlack: Hispanic | 5.56 (4.49, 6.62) | 1.07 × 10−21 | ||
Asian | 5.44 (4.12, 6.76) | 1.12 × 10−14 | ||
NHWhite: Hispanic | 3.04 (2.37, 3.72) | 4.41 × 10−17 | ||
NHWhite: NHBlack | 3 (2.27, 3.73) | 1.46 × 10−14 | ||
NHBlack | 2.88 (2.28, 3.48) | 9.10 × 10−19 | ||
Hispanic | 2.7 (2.14, 3.25) | 4.92 × 10−19 | ||
NHWhite | 1.72 (1.34, 2.1) | 4.80 × 10−17 | ||
Cigarettes: Alcoholism: THC.Exposure: CBG.Exposure | 1.22 (0.999, 1.43) | 3.76 × 10−24 | ||
Cigarettes: Alcoholism: THC.Exposure | 1.18 (0.779, 1.59) | 2.04 × 10−8 | ||
THC.Exposure | 1 (0.736, 1.27) | 1.19 × 10−12 | ||
Dichotomous Status-Liberal | 0.61 (0.494, 0.715) | 2.71 × 10−23 | ||
Analgesics | 0.35 (0.25, 0.443) | 8.75 × 10−12 | ||
Cigarettes: Alcoholism | 0.29 (0.00514, 0.571) | 4.60 × 10−2 | ||
Median Household Income | 0.25 (0.0671, 0.438) | 7.76 × 10−3 | ||
Cocaine | −0.34 (−0.444, −0.242) | 9.40 × 10−11 | ||
Alcoholism: THC.Exposure: CBG.Exposure | −0.66 (−0.876, −0.451) | 2.51 × 10−9 | ||
Alcoholism: CBG.Exposure | −0.92 (−1.15, −0.689) | 4.18 × 10−14 | ||
Cigarettes | −1.03 (−1.34, −0.714) | 3.49 × 10−10 | ||
Cigarettes: THC.Exposure | −1.03 (−1.36, −0.698) | 3.09 × 10−9 |
Hill Criterion | Supporting Evidence |
---|---|
Strength of Association | Yes. Hawaii, Colorado, Europe, USA, Australia, Canada (Refs. [3,15,17,21,22,23]) |
Consistency Amongst Studies | Yes. Hawaii, Colorado, Europe, USA, Australia, Canada (Refs. [3,15,17,21,22,23]) |
Specificity | Yes. Hawaii, Colorado, Europe, USA, Australia, Canada (Refs. [3,15,17,21,22,23]) |
Temporality | Yes. Hawaii, Colorado, Europe, USA, Australia, Canada (Refs. [3,15,17,21,22,23]) |
Coherence with Known Data | Yes. Hawaii, Colorado, Europe, USA, Australia, Canada (Refs. [3,15,17,21,22,23]) |
Biological Plausibility | Yes. Linked with both micronucleus formation and chromosomal mis-segregation. Also damage to eggs and sperm. Also many epigenetic mechanisms. See mechanistic discussion and also Ref. [15] |
Dose–response Relationships | Yes. Hawaii, Colorado, Europe, USA, Australia, Canada (Refs. [3,15,17,21,22,23]) |
Analogy with Similar Situations Elsewhere | Yes. Hawaii, Colorado, Europe, USA, Australia, Canada (Refs. [3,15,17,21,22,23]) |
Experimental Confirmation | Yes. Linked with both micronucleus formation and chromosomal mis-segregation. See mechanistic discussion. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reece, A.S.; Hulse, G.K. Socioeconomic, Ethnocultural, Substance- and Cannabinoid-Related Epidemiology of Down Syndrome USA 1986–2016: Combined Geotemporospatial and Causal Inference Investigation. Int. J. Environ. Res. Public Health 2022, 19, 13340. https://doi.org/10.3390/ijerph192013340
Reece AS, Hulse GK. Socioeconomic, Ethnocultural, Substance- and Cannabinoid-Related Epidemiology of Down Syndrome USA 1986–2016: Combined Geotemporospatial and Causal Inference Investigation. International Journal of Environmental Research and Public Health. 2022; 19(20):13340. https://doi.org/10.3390/ijerph192013340
Chicago/Turabian StyleReece, Albert Stuart, and Gary Kenneth Hulse. 2022. "Socioeconomic, Ethnocultural, Substance- and Cannabinoid-Related Epidemiology of Down Syndrome USA 1986–2016: Combined Geotemporospatial and Causal Inference Investigation" International Journal of Environmental Research and Public Health 19, no. 20: 13340. https://doi.org/10.3390/ijerph192013340
APA StyleReece, A. S., & Hulse, G. K. (2022). Socioeconomic, Ethnocultural, Substance- and Cannabinoid-Related Epidemiology of Down Syndrome USA 1986–2016: Combined Geotemporospatial and Causal Inference Investigation. International Journal of Environmental Research and Public Health, 19(20), 13340. https://doi.org/10.3390/ijerph192013340