Changes in Tear Proteomic Profile in Ocular Diseases
Abstract
:1. Introduction
2. Tear Film Collection and Proteomic Analysis
2.1. Method of Collecting Tears for Research
2.2. Proteomic Analysis
2.2.1. Sample Preparation
2.2.2. Protein Purification, Protein Concentration Measurement and Precipitation
3. Tears as a Source of Information about Eye Diseases
3.1. Dry Eye Disease (DED)
3.2. Corneal Diseases
3.3. Glaucoma
3.4. Cataract
3.5. Tear Film in Retinal Diseases
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fung, E.T.; Wright, G.L.; Dalmasso, E.A. Proteomic Strategies for Biomarker Identification: Progress and Challenges. Curr. Opin. Mol. 2000, 2, 643–650. [Google Scholar]
- Rentka, A.; Koroskenyi, K.; Harsfalvi, J.; Szekanecz, Z.; Szucs, G.; Szodoray, P.; Kemeny-Beke, A. Evaluation of Commonly Used Tear Sampling Methods and Their Relevance in Subsequent Biochemical Analysis. Ann. Clin. Biochem. 2017, 54, 521–529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dumortier, G.; Chaumeil, J.C. Lachrymal Determinations: Methods and Updates on Biopharmaceutical and Clinical Applications. ORE 2004, 36, 183–194. [Google Scholar] [CrossRef] [PubMed]
- Ablamowicz, A.F.; Nichols, J.J. Concentrations of MUC16 and MUC5AC Using Three Tear Collection Methods. Mol. Vis. 2017, 23, 529–537. [Google Scholar]
- Posa, A.; Bräuer, L.; Schicht, M.; Garreis, F.; Beileke, S.; Paulsen, F. Schirmer Strip vs. Capillary Tube Method: Non-Invasive Methods of Obtaining Proteins from Tear Fluid. Ann. Anat. 2013, 195, 137–142. [Google Scholar] [CrossRef]
- Lee, S.H.; Cho, Y.C.; Nam, D.Y.; Huh, B.K.; Kim, S.-N.; Lee, D.H.; Park, C.G.; Choy, Y.B. Designing Minimally Invasive Preocular Contact Tips for Potential Application in Tear Collection. Cornea 2018, 37, 1163–1168. [Google Scholar] [CrossRef]
- Barmada, A.; Shippy, S.A. Quantifying Sample Collection and Processing Impacts on Fiber-Based Tear Fluid Chemical Analysis. Transl. Vis. Sci. Technol. 2020, 9, 23. [Google Scholar] [CrossRef]
- Stuchell, R.N.; Feldman, J.J.; Farris, R.L.; Mandel, I.D. The Effect of Collection Technique on Tear Composition. Investig. Ophthalmol. Vis. Sci. 1984, 25, 374–377. [Google Scholar]
- Guyette, N.; Williams, L.; Tran, M.-T.; Than, T.; Bradley, J.; Kehinde, L.; Edwards, C.; Beasley, M.; Fullard, R. Comparison of Low-Abundance Biomarker Levels in Capillary-Collected Nonstimulated Tears and Washout Tears of Aqueous-Deficient and Normal Patients. Investig. Ophthalmol. Vis. Sci. 2013, 54, 3729–3737. [Google Scholar] [CrossRef] [Green Version]
- Markoulli, M.; Papas, E.; Petznick, A.; Holden, B. Validation of the Flush Method as an Alternative to Basal or Reflex Tear Collection. Curr. Eye Res. 2011, 36, 198–207. [Google Scholar] [CrossRef]
- Jones, D.T.; Monroy, D.; Pflugfelder, S.C. A Novel Method of Tear Collection: Comparison of Glass Capillary Micropipettes with Porous Polyester Rods. Cornea 1997, 16, 450–458. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Liu, X.; Song, Z.; Lin, L.; Wu, K. Characterization of Polyethersulfone Membranes for Tear Fluid Collection. Curr. Mol. Med. 2017, 17, 249–257. [Google Scholar] [CrossRef] [PubMed]
- Esmaeelpour, M.; Cai, J.; Watts, P.; Boulton, M.; Murphy, P.J. Tear Sample Collection Using Cellulose Acetate Absorbent Filters. Ophthalmic Physiol. Opt. 2008, 28, 577–583. [Google Scholar] [CrossRef]
- Quah, J.H.M.; Tong, L.; Barbier, S. Patient Acceptability of Tear Collection in the Primary Healthcare Setting. Optom. Vis. Sci. 2014, 91, 452–458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nättinen, J.; Aapola, U.; Jylhä, A.; Vaajanen, A.; Uusitalo, H. Comparison of Capillary and Schirmer Strip Tear Fluid Sampling Methods Using SWATH-MS Proteomics Approach. Transl. Vis. Sci. Technol. 2020, 9, 16. [Google Scholar] [CrossRef] [Green Version]
- Jun, A.S.; Cope, L.; Speck, C.; Feng, X.; Lee, S.; Meng, H.; Hamad, A.; Chakravarti, S. Subnormal Cytokine Profile in the Tear Fluid of Keratoconus Patients. PLoS ONE 2011, 6, e16437. [Google Scholar] [CrossRef] [Green Version]
- Lam, S.M.; Tong, L.; Duan, X.; Petznick, A.; Wenk, M.R.; Shui, G. Extensive Characterization of Human Tear Fluid Collected Using Different Techniques Unravels the Presence of Novel Lipid Amphiphiles1. J. Lipid Res. 2014, 55, 289–298. [Google Scholar] [CrossRef] [Green Version]
- Bachhuber, F.; Huss, A.; Senel, M.; Tumani, H. Diagnostic Biomarkers in Tear Fluid: From Sampling to Preanalytical Processing. Sci. Rep. 2021, 11, 10064. [Google Scholar] [CrossRef]
- Farias, E.; Yasunaga, K.L.; Peixoto, R.V.R.; Fonseca, M.P.; Fontes, W.; Galera, P.D. Comparison of Two Methods of Tear Sampling for Protein Quantification by Bradford Method. Pesq. Vet. Bras. 2013, 33, 261–264. [Google Scholar] [CrossRef] [Green Version]
- Jones, G.; Lee, T.J.; Glass, J.; Rountree, G.; Ulrich, L.; Estes, A.; Sezer, M.; Zhi, W.; Sharma, S.; Sharma, A. Comparison of Different Mass Spectrometry Workflows for the Proteomic Analysis of Tear Fluid. Int. J. Mol. Sci. 2022, 23, 2307. [Google Scholar] [CrossRef]
- Huang, Z.; Du, C.-X.; Pan, X.-D. The Use of In-Strip Digestion for Fast Proteomic Analysis on Tear Fluid from Dry Eye Patients. PLoS ONE 2018, 13, e0200702. [Google Scholar] [CrossRef] [PubMed]
- Green-Church, K.B.; Nichols, K.K.; Kleinholz, N.M.; Zhang, L.; Nichols, J.J. Investigation of the Human Tear Film Proteome Using Multiple Proteomic Approaches. Mol. Vis. 2008, 14, 456–470. [Google Scholar] [PubMed]
- Winiarczyk, M.; Kaarniranta, K.; Winiarczyk, S.; Adaszek, Ł.; Winiarczyk, D.; Mackiewicz, J. Tear Film Proteome in Age-Related Macular Degeneration. Graefes. Arch. Clin. Exp. Ophthalmol. 2018, 256, 1127–1139. [Google Scholar] [CrossRef] [PubMed]
- Winiarczyk, M.; Winiarczyk, D.; Michalak, K.; Kaarniranta, K.; Adaszek, Ł.; Winiarczyk, S.; Mackiewicz, J. Dysregulated Tear Film Proteins in Macular Edema Due to the Neovascular Age-Related Macular Degeneration Are Involved in the Regulation of Protein Clearance, Inflammation, and Neovascularization. J. Clin. Med. 2021, 10, 3060. [Google Scholar] [CrossRef] [PubMed]
- Winiarczyk, D.; Winiarczyk, M.; Winiarczyk, S.; Michalak, K.; Adaszek, Ł. Proteomic Analysis of Tear Film Obtained from Diabetic Dogs. Animals 2020, 10, 2416. [Google Scholar] [CrossRef]
- Ihnatko, R.; Edén, U.; Lagali, N.; Dellby, A.; Fagerholm, P. Analysis of Protein Composition and Protein Expression in the Tear Fluid of Patients with Congenital Aniridia. J. Proteom. 2013, 94, 78–88. [Google Scholar] [CrossRef] [Green Version]
- Powell, D.R.; Thangavelu, M.; Chandler, H.L.; Nichols, K.K.; Nichols, J.J. Evaluation of Extractants and Precipitants in Tear Film Proteomic Analyses. Optom. Vis. Sci. 2010, 87, 854–860. [Google Scholar] [CrossRef]
- Green-Church, K.B.; Zhang, L.; Nichols, K.K. Comparison of Protein Extraction Techniques From Tears Collected by Schirmer Strips for Proteomic Analysis. Investig. Ophthalmol. Vis. Sci. 2010, 51, 4315. [Google Scholar]
- Krajčíková, K.; Glinská, G.; Tomečková, V. Effect of Tear Fluid Sampling and Processing on Total Protein Quantity and Electrophoretic Pattern. Taiwan J. Ophthalmol. 2021, 12, 88–92. [Google Scholar] [CrossRef]
- Kijlstra, A.; Jeurissen, S.H.; Koning, K.M. Lactoferrin Levels in Normal Human Tears. Br. J. Ophthalmol. 1983, 67, 199–202. [Google Scholar] [CrossRef] [Green Version]
- Kuo, M.-T.; Fang, P.-C.; Chao, T.-L.; Chen, A.; Lai, Y.-H.; Huang, Y.-T.; Tseng, C.-Y. Tear Proteomics Approach to Monitoring Sjögren Syndrome or Dry Eye Disease. Int. J. Mol. Sci. 2019, 20, 1932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Acera, A.; Vecino, E.; Rodríguez-Agirretxe, I.; Aloria, K.; Arizmendi, J.M.; Morales, C.; Durán, J.A. Changes in Tear Protein Profile in Keratoconus Disease. Eye 2011, 25, 1225–1233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Micera, A.; Di Zazzo, A.; Esposito, G.; Longo, R.; Foulsham, W.; Sacco, R.; Sgrulletta, R.; Bonini, S. Age-Related Changes to Human Tear Composition. Investig. Ophthalmol. Vis. Sci. 2018, 59, 2024–2031. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Micera, A.; Di Zazzo, A.; Esposito, G.; Sgrulletta, R.; Calder, V.L.; Bonini, S. Quiescent and Active Tear Protein Profiles to Predict Vernal Keratoconjunctivitis Reactivation. BioMed Res. Int. 2016, 2016, e9672082. [Google Scholar] [CrossRef]
- Sebbag, L.; McDowell, E.M.; Hepner, P.M.; Mochel, J.P. Effect of Tear Collection on Lacrimal Total Protein Content in Dogs and Cats: A Comparison between Schirmer Strips and Ophthalmic Sponges. BMC Vet. Res. 2018, 14, 61. [Google Scholar] [CrossRef]
- Rabilloud, T. Solubilization of Proteins for Electrophoretic Analyses. Electrophoresis 1996, 17, 813–829. [Google Scholar] [CrossRef]
- Aluru, S.V.; Agarwal, S.; Srinivasan, B.; Iyer, G.K.; Rajappa, S.M.; Tatu, U.; Padmanabhan, P.; Subramanian, N.; Narayanasamy, A. Lacrimal Proline Rich 4 (LPRR4) Protein in the Tear Fluid Is a Potential Biomarker of Dry Eye Syndrome. PLoS ONE 2012, 7, e51979. [Google Scholar] [CrossRef] [Green Version]
- Aqrawi, L.A.; Galtung, H.K.; Vestad, B.; Øvstebø, R.; Thiede, B.; Rusthen, S.; Young, A.; Guerreiro, E.M.; Utheim, T.P.; Chen, X.; et al. Identification of Potential Saliva and Tear Biomarkers in Primary Sjögren’s Syndrome, Utilising the Extraction of Extracellular Vesicles and Proteomics Analysis. Arthritis Res. Ther. 2017, 19, 14. [Google Scholar] [CrossRef] [Green Version]
- Craig, J.P.; Nichols, K.K.; Akpek, E.K.; Caffery, B.; Dua, H.S.; Joo, C.-K.; Liu, Z.; Nelson, J.D.; Nichols, J.J.; Tsubota, K.; et al. TFOS DEWS II Definition and Classification Report. Ocul. Surf. 2017, 15, 276–283. [Google Scholar] [CrossRef]
- Messmer, E.M. The Pathophysiology, Diagnosis, and Treatment of Dry Eye Disease. Dtsch. Arztebl. Int. 2015, 112, 71–82. [Google Scholar] [CrossRef] [Green Version]
- Rouen, P.A.; White, M.L. Dry Eye Disease: Prevalence, Assessment, and Management. Home Healthc. Now 2018, 36, 74–83. [Google Scholar] [CrossRef] [PubMed]
- Willcox, M.D.P.; Argüeso, P.; Georgiev, G.A.; Holopainen, J.M.; Laurie, G.W.; Millar, T.J.; Papas, E.B.; Rolland, J.P.; Schmidt, T.A.; Stahl, U.; et al. TFOS DEWS II Tear Film Report. Ocul. Surf. 2017, 15, 366–403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nichols, K.K.; Nichols, J.J.; Mph, M.; Mitchell, G.L. The Lack of Association Between Signs and Symptoms in Patients With Dry Eye Disease. Cornea 2004, 23, 762–770. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.E.; Murphy, P.J. Changes in the Tear Film and Ocular Surface from Dry Eye Syndrome. Prog. Retin. Eye Res. 2004, 23, 449–474. [Google Scholar] [CrossRef]
- Perumal, N.; Funke, S.; Pfeiffer, N.; Grus, F.H. Proteomics Analysis of Human Tears from Aqueous-Deficient and Evaporative Dry Eye Patients. Sci. Rep. 2016, 6, 29629. [Google Scholar] [CrossRef] [Green Version]
- Janssen, P.T.; van, B.O. Tear Fluid Proteins in Sjögren’s Syndrome. Scand. J. Rheumatol. Suppl. 1986, 61, 224–227. [Google Scholar]
- Zhou, L.; Beuerman, R.W.; Choi, M.C.; Shao, Z.Z.; Xiao, R.L.; Yang, H.; Tong, L.; Liu, S.; Stern, M.E.; Tan, D. Identification of Tear Fluid Biomarkers in Dry Eye Syndrome Using ITRAQ Quantitative Proteomics. J. Proteome Res. 2009, 8, 4889–4905. [Google Scholar] [CrossRef]
- Versura, P.; Nanni, P.; Bavelloni, A.; Blalock, W.L.; Piazzi, M.; Roda, A.; Campos, E.C. Tear Proteomics in Evaporative Dry Eye Disease. Eye 2010, 24, 1396–1402. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.; Wei, R.; Zhao, P.; Koh, S.K.; Beuerman, R.W.; Ding, C. Proteomic Analysis Revealed the Altered Tear Protein Profile in a Rabbit Model of Sjögren’s Syndrome-Associated Dry Eye. Proteomics 2013, 13, 2469–2481. [Google Scholar] [CrossRef] [Green Version]
- Kim, W.S.; Wee, S.W.; Lee, S.H.; Kim, J.C. Angiogenin for the Diagnosis and Grading of Dry Eye Syndrome. Korean J. Ophthalmol. 2016, 30, 163–171. [Google Scholar] [CrossRef] [Green Version]
- Grus, F.H.; Podust, V.N.; Bruns, K.; Lackner, K.; Fu, S.; Dalmasso, E.A.; Wirthlin, A.; Pfeiffer, N. SELDI-TOF-MS ProteinChip Array Profiling of Tears from Patients with Dry Eye. Investig. Ophthalmol. Vis. Sci. 2005, 46, 863–876. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jun, J.H.; Lee, Y.H.; Son, M.J.; Kim, H. Importance of Tear Volume for Positivity of Tear Matrix Metalloproteinase-9 Immunoassay. PLoS ONE 2020, 15, e0235408. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, G.; Rama, P. The Keratoconus Enigma: A Review with Emphasis on Pathogenesis. Ocul. Surf. 2020, 18, 363–373. [Google Scholar] [CrossRef] [PubMed]
- Mas Tur, V.; MacGregor, C.; Jayaswal, R.; O’Brart, D.; Maycock, N. A Review of Keratoconus: Diagnosis, Pathophysiology, and Genetics. Surv. Ophthalmol. 2017, 62, 770–783. [Google Scholar] [CrossRef]
- Gomes, J.A.P.; Tan, D.; Rapuano, C.J.; Belin, M.W.; Ambrósio, R.J.; Guell, J.L.; Malecaze, F.; Nishida, K.; Sangwan, V.S.; The Group of Panelists for the Global Delphi Panel of Keratoconus and Ectatic Diseases. Global Consensus on Keratoconus and Ectatic Diseases. Cornea 2015, 34, 359–369. [Google Scholar] [CrossRef]
- Kreps, E.O.; Claerhout, I.; Koppen, C. Diagnostic Patterns in Keratoconus. Contact Lens Anterior Eye 2021, 44, 101333. [Google Scholar] [CrossRef]
- Pannebaker, C.; Chandler, H.L.; Nichols, J.J. Tear Proteomics in Keratoconus. Mol. Vis. 2010, 16, 1949–1957. [Google Scholar]
- Cristina Kenney, M.; Brown, D.J. The Cascade Hypothesis of Keratoconus. Contact Lens Anterior Eye 2003, 26, 139–146. [Google Scholar] [CrossRef]
- Lema, I.; Durán, J.A. Inflammatory Molecules in the Tears of Patients with Keratoconus. Ophthalmology 2005, 112, 654–659. [Google Scholar] [CrossRef]
- Malozhen, S.A.; Trufanov, S.V.; Krakhmaleva, D.A. Pterygium: Etiology, pathogenesis, treatment. Vestn. Oftalmol. 2017, 133, 76–83. [Google Scholar] [CrossRef]
- Wanzeler, A.C.V.; Barbosa, I.A.F.; Duarte, B.; Borges, D.; Barbosa, E.B.; Kamiji, D.; Huarachi, D.R.G.; de Melo, M.B.; Alves, M. Mechanisms and Biomarker Candidates in Pterygium Development. Arq. Bras. Oftalmol. 2019, 82, 528–536. [Google Scholar] [CrossRef] [PubMed]
- Di Girolamo, N.; Chui, J.; Coroneo, M.T.; Wakefield, D. Pathogenesis of Pterygia: Role of Cytokines, Growth Factors, and Matrix Metalloproteinases. Prog. Retin. Eye Res. 2004, 23, 195–228. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Beuerman, R.W.; Ang, L.P.K.; Chan, C.M.; Li, S.F.Y.; Chew, F.T.; Tan, D.T.H. Elevation of Human α-Defensins and S100 Calcium-Binding Proteins A8 and A9 in Tear Fluid of Patients with Pterygium. Investig. Ophthalmol. Vis. Sci. 2009, 50, 2077–2086. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The Definition and Classification of Glaucoma in Prevalence Surveys|British Journal of Ophthalmology. Available online: https://bjo.bmj.com/content/86/2/238.short (accessed on 9 March 2022).
- Mastropasqua, R.; Agnifili, L.; Mastropasqua, L. Structural and Molecular Tear Film Changes in Glaucoma. Curr. Med. Chem. 2019, 26, 4225–4240. [Google Scholar] [CrossRef] [PubMed]
- Hagan, S.; Martin, E.; Enríquez-de-Salamanca, A. Tear Fluid Biomarkers in Ocular and Systemic Disease: Potential Use for Predictive, Preventive and Personalised Medicine. EPMA J. 2016, 7, 15. [Google Scholar] [CrossRef] [Green Version]
- Agnifili, L.; Pieragostino, D.; Mastropasqua, A.; Fasanella, V.; Brescia, L.; Tosi, G.M.; Sacchetta, P.; Mastropasqua, L. Chapter 1—Molecular Biomarkers in Primary Open-Angle Glaucoma: From Noninvasive to Invasive. In Progress in Brain Research; Bagetta, G., Nucci, C., Eds.; New Trends in Basic and Clinical Research of Glaucoma: A Neurodegenerative Disease of the Visual System, Part B; Elsevier: Amsterdam, The Netherlands, 2015; Volume 221, pp. 1–32. [Google Scholar]
- Burgos-Blasco, B.; Vidal-Villegas, B.; Saenz-Frances, F.; Morales-Fernandez, L.; Perucho-Gonzalez, L.; Garcia-Feijoo, J.; Martinez-de-la-Casa, J.M. Tear and Aqueous Humour Cytokine Profile in Primary Open-Angle Glaucoma. Acta Ophthalmol. 2020, 98, e768–e772. [Google Scholar] [CrossRef]
- Csősz, É.; Deák, E.; Tóth, N.; Traverso, C.E.; Csutak, A.; Tőzsér, J. Comparative Analysis of Cytokine Profiles of Glaucomatous Tears and Aqueous Humour Reveals Potential Biomarkers for Trabeculectomy Complications. FEBS Open Bio 2019, 9, 1020–1028. [Google Scholar] [CrossRef] [Green Version]
- Sahay, P.; Rao, A.; Shome, D.; Padhy, D.; Modak, R.; Reddy, M.M. Functional Activity of Matrix Metalloproteinases 2 and 9 in Tears of Patients with Glaucoma. Investig. Ophthalmol. Vis. Sci. 2016, 57, 5050. [Google Scholar] [CrossRef]
- Can Demirdöğen, B.; Koçan Akçin, C.; Özge, G.; Mumcuoğlu, T. Evaluation of Tear and Aqueous Humor Level, and Genetic Variants of Connective Tissue Growth Factor as Biomarkers for Early Detection of Pseudoexfoliation Syndrome/Glaucoma. Exp. Eye Res. 2019, 189, 107837. [Google Scholar] [CrossRef]
- Pieragostino, D.; Bucci, S.; Agnifili, L.; Fasanella, V.; D’Aguanno, S.; Mastropasqua, A.; Ciancaglini, M.; Mastropasqua, L.; Di Ilio, C.; Sacchetta, P.; et al. Differential Protein Expression in Tears of Patients with Primary Open Angle and Pseudoexfoliative Glaucoma. Mol. BioSystems 2012, 8, 1017–1028. [Google Scholar] [CrossRef]
- Malvitte, L.; Montange, T.; Vejux, A.; Baudouin, C.; Bron, A.M.; Creuzot-Garcher, C.; Lizard, G. Measurement of Inflammatory Cytokines by Multicytokine Assay in Tears of Patients with Glaucoma Topically Treated with Chronic Drugs. Br. J. Ophthalmol. 2007, 91, 29–32. [Google Scholar] [CrossRef] [PubMed]
- Wong, T.T.; Zhou, L.; Li, J.; Tong, L.; Zhao, S.Z.; Li, X.R.; Yu, S.J.; Koh, S.K.; Beuerman, R.W. Proteomic Profiling of Inflammatory Signaling Molecules in the Tears of Patients on Chronic Glaucoma Medication. Investig. Ophthalmol. Vis. Sci. 2011, 52, 7385–7391. [Google Scholar] [CrossRef] [PubMed]
- Reddy, S.; Sahay, P.; Padhy, D.; Sarangi, S.; Suar, M.; Modak, R.; Rao, A. Tear Biomarkers in Latanoprost and Bimatoprost Treated Eyes. PLoS ONE 2018, 13, e0201740. [Google Scholar] [CrossRef] [PubMed]
- Ji, Y.; Rong, X.; Ye, H.; Zhang, K.; Lu, Y. Proteomic Analysis of Aqueous Humor Proteins Associated with Cataract Development. Clin. Biochem. 2015, 48, 1304–1309. [Google Scholar] [CrossRef]
- Xiang, M.; Zhang, X.; Li, Q.; Wang, H.; Zhang, Z.; Han, Z.; Ke, M.; Chen, X. Identification of Proteins in the Aqueous Humor Associated with Cataract Development Using ITRAQ Methodology. Mol. Med. Rep. 2017, 15, 3111–3120. [Google Scholar] [CrossRef]
- Su, S.; Liu, P.; Zhang, H.; Li, Z.; Song, Z.; Zhang, L.; Chen, S. Proteomic Analysis of Human Age-Related Nuclear Cataracts and Normal Lens Nuclei. Investig. Ophthalmol. Vis. Sci. 2011, 52, 4182–4191. [Google Scholar] [CrossRef]
- Zhou, H.Y.; Yan, H.; Wang, L.L.; Yan, W.J.; Shui, Y.B.; Beebe, D.C. Quantitative Proteomics Analysis by ITRAQ in Human Nuclear Cataracts of Different Ages and Normal Lens Nuclei. Proteom.-Clin. Appl. 2015, 9, 776–786. [Google Scholar] [CrossRef]
- Aghamollaei, H.; Parvin, S.; Shahriary, A. Review of Proteomics Approach to Eye Diseases Affecting the Anterior Segment. J. Proteom. 2020, 225, 103881. [Google Scholar] [CrossRef]
- Yao, J.; Liu, X.; Yang, Q.; Zhuang, M.; Wang, F.; Chen, X.; Hang, H.; Zhang, W.; Liu, Q. Proteomic Analysis of the Aqueous Humor in Patients with Wet Age-Related Macular Degeneration. Proteom. Clin. Appl. 2013, 7, 550–560. [Google Scholar] [CrossRef]
- Csősz, É.; Deák, E.; Kalló, G.; Csutak, A.; Tőzsér, J. Diabetic Retinopathy: Proteomic Approaches to Help the Differential Diagnosis and to Understand the Underlying Molecular Mechanisms. J. Proteom. 2017, 150, 351–358. [Google Scholar] [CrossRef] [Green Version]
- Semeraro, F.; Cancarini, A.; dell’Omo, R.; Rezzola, S.; Romano, M.R.; Costagliola, C. Diabetic Retinopathy: Vascular and Inflammatory Disease. J. Diabetes Res. 2015, 2015, e582060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; Shi, B.; He, S.; Yao, X.; Willcox, M.D.P.; Zhao, Z. Changes to Tear Cytokines of Type 2 Diabetic Patients with or without Retinopathy. Mol. Vis. 2010, 16, 2931–2938. [Google Scholar] [PubMed]
- Ang, W.J.; Zunaina, E.; Norfadzillah, A.J.; Raja-Norliza, R.O.; Julieana, M.; Ab-Hamid, S.A.; Mahaneem, M. Evaluation of Vascular Endothelial Growth Factor Levels in Tears and Serum among Diabetic Patients. PLoS ONE 2019, 14, e0221481. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.-Y.; Kwon, J.-S.; Hsu, S.-M.; Chuang, H.-S. Sensitive Tear Screening of Diabetic Retinopathy with Dual Biomarkers Enabled Using a Rapid Electrokinetic Patterning Platform. Lab A Chip 2020, 20, 356–362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.-J.; Kim, P.-K.; Yoo, H.-S.; Kim, C.-W. Comparison of Tear Proteins between Healthy and Early Diabetic Retinopathy Patients. Clin. Biochem. 2012, 45, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Costagliola, C.; Romano, V.; De Tollis, M.; Aceto, F.; dell’Omo, R.; Romano, M.R.; Pedicino, C.; Semeraro, F. TNF-Alpha Levels in Tears: A Novel Biomarker to Assess the Degree of Diabetic Retinopathy. Mediat. Inflamm. 2013, 2013, e629529. [Google Scholar] [CrossRef]
- Amil-Bangsa, N.H.; Mohd-Ali, B.; Ishak, B.; Abdul-Aziz, C.N.N.; Ngah, N.F.; Hashim, H.; Ghazali, A.R. Total Protein Concentration and Tumor Necrosis Factor α in Tears of Nonproliferative Diabetic Retinopathy. Optom. Vis. Sci. 2019, 96, 934–939. [Google Scholar] [CrossRef]
- Park, K.S.; Kim, S.S.; Kim, J.C.; Kim, H.C.; Im, Y.S.; Ahn, C.W.; Lee, H.K. Serum and Tear Levels of Nerve Growth Factor in Diabetic Retinopathy Patients. Am. J. Ophthalmol. 2008, 145, 432–437. [Google Scholar] [CrossRef]
- Torok, Z.; Peto, T.; Csosz, E.; Tukacs, E.; Molnar, A.M.; Berta, A.; Tozser, J.; Hajdu, A.; Nagy, V.; Domokos, B.; et al. Combined Methods for Diabetic Retinopathy Screening, Using Retina Photographs and Tear Fluid Proteomics Biomarkers. J. Diabetes Res. 2015, 2015, 623619. [Google Scholar] [CrossRef]
Direct | Indirect | Washout | |
---|---|---|---|
Sample | Basal tears | Basal + reflex tears | Basal + saline |
Difficulty | Difficult, long time, small sample size | Easier technique | Easier due to larger sample |
Patient tolerance | Irritation of the eye surface | Better tolerated, local irritation | Irritation of the eye surface |
Sample quality | Good | Dilution, risk of contamination | Significant dilution |
Protein | Dry Eye Disease | Keratoconus | Pterygium | Glaucoma | Diabetic Retinopathy | Age-Related Macular Degeneration |
---|---|---|---|---|---|---|
LCN 1 | ↓ | ↑ | ||||
LCN 2 | ↑ | ↑ | ||||
Lactoferrin | ↓ | |||||
Lysozyme | ↓ | |||||
PIP | ↓ | ↓ | ||||
Angiogenin | ↓ | |||||
LPRP-4 | ↓ | |||||
pIgR | ↓ | |||||
Alpha enolase | ↑ | ↑ | ||||
MMP 1 | ↑ | |||||
TIMP- 1 | ↓ | |||||
MMP 9 | ↑ | ↓ | ||||
Il-6 | ↑ | ↑ | ↑ | |||
TNF alpha | ↑ | ↑ | ↑ | ↑ | ||
S100 A8 | ↑ | ↑ | ||||
S100 A9 | ↑ | ↑ | ||||
VEGF | ↑ | ↑ | ||||
NGF | ↑ | |||||
Retinal dehydrogenase 1 | ↑ | |||||
ABCB1 | ↑ | |||||
Annexin A1 | ↓ | |||||
Annexin A4 | ↓ | |||||
Aldo-keto reductase family 1 member A1 | ↓ | |||||
Glutathione S-transferase P | ↓ | |||||
Allograft inflammatory factor 1 | ↓ | |||||
Cytospin-A | ↓ | |||||
Short stature homeobox protein 2 | ↓ |
Disease | Substance | Utility | Status | Source |
---|---|---|---|---|
DED | Prolactin-induced protein (PIP), α-enolase | Diagnostic | Suggested | 49 |
Angiogenin | Severity assessment | Suggested | 50 | |
Metalloproteinase 9 (MMP-9) | Diagnostic Severity assessment | Confirmed | 52 | |
lactoferrin | Early diagnosis | Suggested | 48 | |
pIgR | Diagnosis specific for Sjogren‘s syndrome | Suggested | 49 | |
Keratoconus | MMP-1, TIMP-1 | Pathophysiology | Confirmed | 57 |
MMP-9, Il-6, TNFa | Pathophysiology | Confirmed | 59 | |
Pterygium | Il-1, Il-6, Il-6, TNFa | Pathophysiology | Confirmed | 62 |
S100A8, S100A9 | Risk of recurrence | Suggested | 63 | |
Glaucoma | MMP-9 | Early diagnosis | Suggested | 70 |
Phosphorylated cystatin S (CST4) | Diagnosis (differentiating primary and secondary glaucoma) | Suggested | 72 | |
Granulocyte-macrophage colony-stimulating factor (GM- CSF), interferon-γ (IFN-γ), Interleukin 5 (Il-5) | Prognosis of complications after treatment | Suggested | 69 | |
Diabetic Retinopathy | Vascular endothelial growth factor (VEGF) + lipocalin 1 (LCN1) | Screening | Suggested | 84, 85, 86 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Winiarczyk, M.; Biela, K.; Michalak, K.; Winiarczyk, D.; Mackiewicz, J. Changes in Tear Proteomic Profile in Ocular Diseases. Int. J. Environ. Res. Public Health 2022, 19, 13341. https://doi.org/10.3390/ijerph192013341
Winiarczyk M, Biela K, Michalak K, Winiarczyk D, Mackiewicz J. Changes in Tear Proteomic Profile in Ocular Diseases. International Journal of Environmental Research and Public Health. 2022; 19(20):13341. https://doi.org/10.3390/ijerph192013341
Chicago/Turabian StyleWiniarczyk, Mateusz, Katarzyna Biela, Katarzyna Michalak, Dagmara Winiarczyk, and Jerzy Mackiewicz. 2022. "Changes in Tear Proteomic Profile in Ocular Diseases" International Journal of Environmental Research and Public Health 19, no. 20: 13341. https://doi.org/10.3390/ijerph192013341
APA StyleWiniarczyk, M., Biela, K., Michalak, K., Winiarczyk, D., & Mackiewicz, J. (2022). Changes in Tear Proteomic Profile in Ocular Diseases. International Journal of Environmental Research and Public Health, 19(20), 13341. https://doi.org/10.3390/ijerph192013341