Trace Elements in Soil and Urban Groundwater in an Area Impacted by Metallurgical Activity: Health Risk Assessment in the Historical Barga Municipality (Tuscany, Italy)
Abstract
:1. Introduction
2. Environmental and Geological Setting
3. Materials and Methods
3.1. Sampling
3.2. Analytical Procedures
3.3. Risk Assessment
4. Results
4.1. Soil and Lake Sediments
4.2. Groundwater
4.3. Risk Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gómez-Baggethun, E.; Barton, D.N. Classifying and valuing ecosystem services for urban planning. Ecol. Econ. 2013, 86, 235–245. [Google Scholar] [CrossRef]
- Novák, T.J.; Balla, D.; Kamp, J. Changes in anthropogenic influence on soils across Europe 1990-2018. Appl. Geogr. 2020, 124, 102294. [Google Scholar] [CrossRef]
- De Kimpe, C.R.; Morel, J.-L. Urban soil management: A growing concern. Soil Sci. 2000, 165, 31–40. [Google Scholar] [CrossRef]
- Yang, J.L.; Zhang, G.L. Formation, characteristics and eco-environmental implications of urban soils–A review. Soil Sci. Plant Nutr. 2015, 61, 30–46. [Google Scholar] [CrossRef] [Green Version]
- Sager, M. Urban soils and road dust—Civilization effects and metal pollution—A review. Environments 2020, 7, 98. [Google Scholar] [CrossRef]
- Pickett, S.T.A.; Cadenasso, M.L. Altered resources, disturbance, and heterogeneity: A framework for comparing urban and non-urban soils. Urban Ecosyst. 2009, 12, 23–44. [Google Scholar] [CrossRef]
- Müller, A.; Österlund, H.; Marsalek, J.; Viklander, M. The pollution conveyed by urban runoff: A review of sources. Sci. Total Environ. 2020, 709, 136125. [Google Scholar] [CrossRef] [PubMed]
- Ajmone-Marsan, F.; Biasioli, M. Trace elements in soils of urban areas. Water Air Soil Pollut. 2010, 213, 121–143. [Google Scholar] [CrossRef]
- Simon, E.; Vidic, A.; Braun, M.; Fábián, I.; Tóthmérész, B. Trace element concentrations in soils along urbanization gradients in the city of Wien, Austria. Environ. Sci. Poll. Res. 2013, 20, 917–924. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poggio, L.; Vrščaj, B.; Schulin, R.; Hepperle, E.; Ajmone Marsan, F. Metals pollution and human bioaccessibility of topsoils in Grugliasco (Italy). Environ. Pollut. 2009, 157, 680–689. [Google Scholar] [CrossRef]
- Li, G.; Sun, G.-X.; Ren, Y.; Luo, X.-S.; Zhu, Y.-G. Urban soil and human health: A review. Eur. J. Soil. Sci. 2018, 69, 196–215. [Google Scholar] [CrossRef] [Green Version]
- Davis, S.; Mirik, D. Soil ingestion in children and adults in the same family. J. Expo. Sci. Environ. Epidemiol. 2006, 16, 63–75. [Google Scholar] [CrossRef] [Green Version]
- Różański, S.L.; Peñas Castejón, J.M.; McGahan, D.G. Child risk assessment of selected melal(loid)s from urban soils using in vitro UBM procedure. Ecol. Indic. 2021, 127, 107726. [Google Scholar] [CrossRef]
- Biggeri, A.; Marchi, M. Case-control designs for the detection of space clusters of diseases. Environmetrics 1995, 6, 385–393. [Google Scholar] [CrossRef]
- De Marchi, B.; Ficorilli, A.; Biggeri, A. Research in the air in Valle del Serchio. Futures 2022, 137, 102906. [Google Scholar] [CrossRef]
- Froeling, F.; Gignac, F.; Hoek, G.; Vermeulen, R.; Nieuwenhuijsen, M.; Ficorilli, A.; De Marchi, B.; Biggeri, D.; Robinson, J.; Righi, V.; et al. Narrative review of citizen science in environmental epidemiology: Setting the stage for co-created research projects in environmental epidemiology. Environ. Int. 2021, 152, 106470. [Google Scholar] [CrossRef] [PubMed]
- Carmignani, L.; Kligfield, R. Crustal extension in the northern Apennines: The transition from compression to extension in the Alpi Apuane core complex. Tectonics 1990, 9, 1275–1303. [Google Scholar] [CrossRef]
- Carosi, R.; Frassi, C.; Montomoli, C.; Pertusati, P.C. Structural evolution of the Tuscan Nappe in the southeastern sector of the Apuan Alps metamorphic dome (Northern Apennines, Italy). Geol. J. 2005, 40, 103–119. [Google Scholar] [CrossRef]
- Fellin, M.G.; Reiners, P.W.; Brandon, M.T.; Wuthrich, E.; Balestrieri, M.L.; Molli, G. Thermo-chronologic evidence of exhumational history of the Alpi Apuane metamorphic core complex, northern Apennines, Italy. Tectonics 2007, 26, TC6015. [Google Scholar] [CrossRef] [Green Version]
- Frassi, C.; Ottria, G.; Ferdeghini, A. Fault tectonics of the Tuscan Nappe in the eastern sector of the Apuan Alps (Italy). J. Maps 2020, 16, 745–754. [Google Scholar] [CrossRef]
- Landi, E.; Ravani, S.; Sarti, G.; Sodini, M. The Villafranchian deposits of the Castelnuovo Garfagnana and Barga Basins (Lucca, Tuscany, Italy): Facies analysis and paleoenvironmental reconstruction. Atti Soc. Tosc. Sci. Nat. Mem. 2003, 108, 81–93. [Google Scholar]
- Perilli, N.; Puccinelli, A.; Sarti, G.; Avanzi, G.D.A. Villafranchian deposits of the Barga and Castelnuovo Garfagnana basins (Tuscany, Italy): Lithostratigraphy and sedimentary features. Quaternario 2004, 17, 313–322. [Google Scholar]
- Coltorti, M.; Pieruccini, P.; Rustioni, M. The Barga basin (Tuscany): A record of Plio-Pleistocene mountain building of the northern Apennines, Italy. Quat. Intern. 2008, 189, 56–70. [Google Scholar] [CrossRef]
- ASTM. Standard Provisional Guide for Risk-Based Corrective Action; Report E 2081-00; American Society for Testing Materials: West Conshohocken, PA, USA, 2000. [Google Scholar]
- US EPA. Soil Screening Guidance: Technical Background Document; EPA/540/R-95/128; Office of Emergency and Remedial Response, US Environmental Protection Agency: Washington, DC, USA, 1996. [Google Scholar]
- Ghezzi, L.; Arrighi, S.; Giannecchini, R.; Bini, M.; Valerio, M.; Petrini, R. The legacy of mercury contamination from a past leather manufacturer and health risk assessment in an urban area (Pisa Municipality, Italy). Sustainability 2022, 14, 4367. [Google Scholar] [CrossRef]
- USDoE. RAIS: Risk Assessment Information System. 2010. University of Tennessee. Available online: http://rais.ornl.gov (accessed on 1 June 2022).
- US EPA. Regional Screening level (RSLs)—Generic Tables. US Environmental Protection Agency 2022. Washington, DC. Available online: https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables (accessed on 1 June 2022).
- USTCEQ. Texas Commission of Environmental Quality. 2022. Current PCL Tables. Available online: www.tceq.texas.gov/remediation/trrp/trrppcls.html (accessed on 1 June 2022).
- US EPA. Risk Assessment Guidance for Superfund. Volume I. Human Health Evaluation Manual, Part A; EPA/540/1-89/002; Office of Emergency and Remediation Response, US Environmental Protection Agency: Washington, DC, USA, 1989. [Google Scholar]
- US EPA. Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites; OSWER 9355.4-24; Office of Emergency and Remediation Response, US Environmental Protection Agency: Washington, DC, USA, 2002. [Google Scholar]
- US EPA. Regional Screening level (RSLs)—Equations. US Environmental Protection Agency. 2022. Washington, DC. Available online: https://www.epa.gov/risk/regional-screening-levels-rsls-equations#res (accessed on 1 June 2022).
- Kuznetsov, S.I. The Iron and Manganese Cycles in Lakes. In The Microflora of Lakes and Its Geochemical Activity; Oppenheimer, C.H., Ed.; University of Texas Press: Austin, TX, USA, 2021; pp. 365–407. [Google Scholar]
- Zaccarini, F.; Garuti, G. Mineralogy and chemical composition of VMS deposits on northern Apennine ophiolites, Italy: Evidence for the influence of country rock type on ore composition. Mineral. Petrol. 2008, 94, 61–83. [Google Scholar] [CrossRef]
- Gherardi, F.; Pierotti, L. The suitability of the Pieve di Fosciana hydrothermal system (Italy) as a detection site for geochemical seismic precursors. Appl. Geochem. 2018, 92, 166–179. [Google Scholar] [CrossRef]
- US EPA. Supplemental Guidance to RAGS: Calculating the Concentration Term; Office of Solid Waste and Emergency Response. US Environmental Protection Agency: Washington, DC, USA, 1992. [Google Scholar]
- Rudnick, R.ç.; Gao, S. The Composition of the Continental Crust. In Treatise on Geochemistry; Holland, H.D., Turekian, K.K., Eds.; The Crust; Elsevier-Pergamon: Oxford, UK, 2003; Volume 3, pp. 1–64. [Google Scholar]
- Müller, G. Die Schwermetallbelastung der sedimente des Neckars und seiner Nebenflusse: Eine Bestandsaufnahme. Chem. Ztg. 1981, 105, 157–164. [Google Scholar]
- Turekian, K.K.; Wedepohl, K.H. Distribution of the elements in some major units of the Earth’s crust. Geol. Soc. Am. Bull. 1961, 72, 175–192. [Google Scholar] [CrossRef]
- Zhu, Z.; Huang, Y.; Zha, J.; Yu, M.; Liu, X.; Li, H.; Zhu, X. Emission and retention of cadmium during combustion of contaminated biomass with mineral additives. Energy Fuels 2019, 33, 12508–12517. [Google Scholar] [CrossRef]
- Lau, L.L.; Strezov, V.; Gonçalves, M.V.B.; Bagatini, M.V. Trace elements emission in iron ore sintering: A review. Environ. Adv. 2021, 6, 100123. [Google Scholar] [CrossRef]
- Davis, A.P.; Shokouhian, M.; Ni, S. Loading of lead, copper, cadmium, and zinc in urban runoff from specific sources. Chemosphere 2001, 44, 997–1009. [Google Scholar] [CrossRef]
- Nabulo, G.; Oryem-Origa, H.; Diamong, M. Assessment of lead, cdmium, and zinc contamination of roadside soils, surface filma, and vegetables in Kampala City, Uganda. Environ. Res. 2006, 101, 42–52. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Wade, A.M.; Richter, D.D.; Stapleton, H.M.; Kaste, J.M.; Vengosh, A. Legacy of anthropogenic lead in urban soils: Co-occurrence with matal(loids) and fallout radionuclides, isotopic fingerprinting, and in vitro bioaccessibility. Sci. Total Environ. 2022, 806, 151276. [Google Scholar] [CrossRef] [PubMed]
- Kuo, S.; Heilman, P.E.; Baker, A.S. Distribution and forms of copper, zinc, cadmium, iron, and manganese in soils near a copper smelter. Soil Sci. 1983, 135, 101–109. [Google Scholar] [CrossRef]
- Violante, A.; Cozzolino, V.; Perelemov, L.; Caporale, A.G.; Pigna, M. Mobility and bioavailability of heavy metals and metalloids in soil environments. J. Soil Sci. Plant. Nutr. 2010, 10, 268–292. [Google Scholar] [CrossRef] [Green Version]
- Parkhurst, D.L.; Appelo, C.A.J. User’s Guide to PHREEQC—A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations; U.G. Geological Survey Report 99-4250; USGS: Washington DC, USA, 1999. [Google Scholar]
- Waalkes, M.P. Cadmium Carcinogenesis. Mutat. Res. 2003, 533, 107–120. [Google Scholar] [CrossRef] [PubMed]
- Nawrot, T.S.; Martens, D.S.; Hara, A.; Plusquin, M.; Vangronsveld, J.; Roels, H.S.; Staessen, J.A. Association of total cancer and lung cancer with environmental exposure to cadmium: The meta-analytical evidence. Cancer Causes Control 2015, 26, 1281–1288. [Google Scholar] [CrossRef]
- Ferraro, P.M.; Costanzi, S.; Naticchia, A.; Sturniolo, A.; Gambaro, G. Low level exposure to cadmium increases the risk of chronic kidney disease: Analysis of the NHANES 1999-2006. BMC Public Heath 2010, 10, 304. Available online: http://www.biomedcentral.com/1471-2458/10/304 (accessed on 1 June 2022). [CrossRef] [Green Version]
- Nordberg, G.F.; Bernard, A.; Diamond, G.L.; Duffus, J.H.; Illing, P.; Nordberg, M.; Bergdahl, I.A.; Skerfving, S. Risk assessment of effects of cadmium on human heakth (IUPAC Thechnical Report). Pure Appl. Chem. 2018, 90, 755–808. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Cui, W.; Wang, M.; Liang, Y.; Zhu, G.; Jin, T.; Chen, X. The association between life-time dietary cadmium intake from rice and chronic kidney disease. Ecotoxicol. Environ. Saf. 2021, 211, 111933. [Google Scholar] [CrossRef]
Sample | Depth | Li | Be | Mn | Co | Ni | Cu | Zn | Sr | Mo | Ag | Sn | Cd | Sb | Ba | Tl | Pb | Th | U | V | Cr | Fe | As | Hg |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
FB_1Sa | 0–10 | 43 | 1.70 | 892 | 16.1 | 80 | 39 | 84 | 41 | 0.72 | 0.12 | 2.3 | 0.28 | 0.27 | 121 | 0.33 | 22.1 | 7.1 | 1.42 | 66 | 123 | 32,900 | 6.6 | 0.05 |
FB_1Sb | 50–60 | 41 | 1.63 | 1120 | 16.3 | 75 | 41 | 84 | 43 | 0.70 | 0.16 | 2.5 | 0.30 | 0.42 | 127 | 0.36 | 24.2 | 5.8 | 1.22 | 70 | 121 | 34,900 | 7.5 | 0.07 |
FB_2Sa | 0–10 | 22 | 0.91 | 707 | 8.0 | 47 | 216 | 439 | 92 | <0.5 | 0.16 | 4.1 | 5.3 | 0.57 | 113 | 0.25 | 51 | 5.1 | 1.00 | 42 | 84 | 20,900 | 4.5 | 0.31 |
FB_2Sb | 20–30 | 20 | 0.88 | 719 | 8.0 | 51 | 233 | 465 | 94 | <0.5 | 0.15 | 4.9 | 5.6 | 0.84 | 112 | 0.25 | 60 | 4.4 | 1.00 | 41 | 85 | 20,700 | 4.5 | 0.34 |
FB_3S | 0–10 | 28 | 1.27 | 951 | 15.2 | 63 | 234 | 270 | 26 | <0.5 | 0.08 | 2.2 | 2.6 | 0.55 | 77 | 0.28 | 27 | 5.0 | 0.9 | 50 | 90 | 25,700 | 10.6 | 0.10 |
FB_4S | 0–10 | 22 | 1.06 | 519 | 8.2 | 45 | 43 | 96 | 23 | <0.5 | 0.07 | 2.1 | 0.61 | 0.42 | 75 | 0.22 | 21 | 4.8 | 1.00 | 41 | 80 | 20,400 | 4.3 | 0.07 |
FB_5S | 0–10 | 31 | 1.49 | 754 | 11.5 | 66 | 42 | 74 | 31 | <0.5 | 0.05 | 2.0 | 0.43 | 0.42 | 97 | 0.29 | 25 | 6.1 | 1.27 | 53 | 107 | 27,200 | 5.3 | 0.06 |
FB_6S | 0–10 | 31 | 1.20 | 768 | 10.1 | 61 | 103 | 213 | 29 | <0.5 | 0.08 | 2.3 | 3.3 | 0.51 | 85 | 0.27 | 29 | 5.6 | 1.38 | 50 | 107 | 25,500 | 5.6 | 0.09 |
FB_7S | 0–10 | 32 | 1.20 | 506 | 11.2 | 66 | 37 | 80 | 31 | <0.5 | 0.05 | 1.50 | 0.57 | 0.22 | 58 | 0.19 | 13.2 | 5.4 | 1.06 | 48 | 106 | 27,100 | 4.6 | 0.04 |
FB_8S | 0–10 | 23 | 1.07 | 377 | 9.4 | 55 | 38 | 62 | 26 | <0.5 | 0.05 | 1.39 | 0.27 | 0.20 | 53 | 0.15 | 10.6 | 5.2 | 1.06 | 37 | 89 | 22,900 | 3.0 | 0.06 |
FB_9S | 0–10 | 19.9 | 0.90 | 427 | 8.1 | 49 | 91 | 200 | 79 | 0.22 | 0.06 | 1.81 | 3.1 | 0.29 | 73 | 0.20 | 17.9 | 4.4 | 0.92 | 36 | 74 | 18,500 | 3.5 | 0.04 |
FB10S | 0–10 | 27 | 1.15 | 607 | 10.9 | 68 | 35 | 81 | 33 | 0.22 | 0.03 | 1.43 | 0.50 | 0.23 | 61 | 0.19 | 12.0 | 6.3 | 1.08 | 47 | 100 | 23,800 | 4.7 | 0.05 |
FB_11S | 0–10 | 26 | 1.09 | 1017 | 12.0 | 56 | 155 | 248 | 25.6 | 0.36 | 0.09 | 2.3 | 2.2 | 0.51 | 73 | 0.29 | 29 | 4.7 | 0.86 | 47 | 84 | 23,100 | 5.5 | 0.16 |
FB_12Sa | 35–50 | 24 | 0.99 | 701 | 9.7 | 47 | 78 | 189 | 56 | 0.75 | 0.13 | 2.3 | 1.67 | 0.34 | 99 | 0.33 | 25 | 4.8 | 1.09 | 45 | 87 | 21,900 | 4.0 | 0.11 |
FB_12Sb | 50–60 | 14.4 | 0.60 | 636 | 6.3 | 37 | 134 | 296 | 78 | 0.28 | 0.13 | 2.9 | 2.8 | 0.5 | 65 | 0.21 | 42 | 3.0 | 0.67 | 28.6 | 55 | 14,300 | 3.4 | 0.38 |
FB_13Sa | 20–30 | 19.5 | 0.88 | 455 | 7.6 | 46 | 129 | 445 | 23.5 | 0.70 | 0.26 | 4.5 | 6.7 | 0.61 | 104 | 0.23 | 41 | 5.6 | 1.26 | 36 | 84 | 20,000 | 4.5 | 0.23 |
FB_13Sb | 40–50 | 18.2 | 0.84 | 381 | 7.0 | 42 | 107 | 353 | 20.1 | 0.42 | 0.18 | 3.7 | 4.8 | 0.49 | 83 | 0.22 | 36 | 5.1 | 1.27 | 34 | 72 | 17,300 | 4.1 | 0.22 |
FB_13Sc | 60–70 | 23 | 0.98 | 401 | 8.4 | 48 | 41 | 126 | 17.9 | 0.36 | 0.11 | 2.0 | 1.20 | 0.36 | 72 | 0.24 | 18.6 | 6.6 | 1.36 | 38 | 82 | 21,400 | 4.4 | 0.16 |
FB_14S | 15–22 | 32 | 1.24 | 1530 | 16.5 | 265 | 5280 | 27,400 | 46 | 1.37 | 8.5 | 22.1 | 15.8 | 11.7 | 169 | 0.23 | 221 | 5.3 | 1.29 | 55 | 146 | 34,800 | 255 | 2.2 |
MCL | 2 | 20 | 120 | 120 | 150 | 2 | 10 | 1 | 100 | 90 | 150 | 20 | 1 | |||||||||||
FB13aleach | <4 | <0.2 | 9.0 | <0.2 | <4 | 58 | 153 | <36 | <5 | <0.4 | <2 | 1.41 | 1.15 | <14 | <0.15 | <4 | 0.16 | <2.5 | <2.5 | 479 | 1.10 | |||
FB14leach | <4 | <0.2 | <4 | <0.2 | <4 | 47 | 178 | 40 | <5 | <0.4 | <2 | 1.20 | 6.9 | 183 | <0.15 | <4 | <0.06 | <2.5 | <2.5 | 46 | 0.94 | |||
MCL | 4 | 50 | 50 | 20 | 1000 | 3000 | 5 | 5 | 2 | 10 | <0.06 | 50 | 200 | 10 |
Sample | Li | Be | Mn | Co | Ni | Cu | Zn | Sr | Mo | Ag | Sn | Cd | Sb | Ba | Tl | Pb | Th | U | V | Cr | Fe | As | Hg |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PC1 | 25 | 0.77 | 1090 | 13.4 | 69 | 22 | 50 | 350 | <0.4 | 0.08 | 0.19 | 0.08 | <0.07 | 253 | 0.08 | 6.7 | 3.5 | 0.48 | 42 | 85 | 29,500 | 2.6 | <0.07 |
PC2 | 29 | 0.76 | 1050 | 13.6 | 68 | 51 | 77 | 162 | <0.4 | 0.08 | 0.33 | 0.10 | <0.07 | 115 | 0.08 | 8.7 | 3.4 | 0.49 | 42 | 76 | 29,600 | 2.8 | <0.07 |
PC3 | 28 | 0.84 | 710 | 12.3 | 66 | 25 | 53 | 131 | <0.4 | 0.06 | 0.21 | 0.09 | <0.07 | 65 | 0.10 | 9.5 | 4.0 | 0.58 | 38 | 71 | 24,900 | 2.9 | <0.07 |
PC4 | 27 | 0.76 | 930 | 14.4 | 78 | 24 | 56 | 173 | <0.4 | 0.08 | 0.19 | 0.19 | <0.07 | 81 | 0.08 | 8.9 | 3.5 | 0.48 | 47 | 85 | 30,400 | 2.9 | <0.07 |
PC5 | 27 | 0.81 | 630 | 13.0 | 64 | 30 | 55 | 129 | <0.4 | 0.08 | 0.17 | 0.10 | <0.07 | 72 | 0.11 | 9.4 | 4.3 | 0.62 | 41 | 83 | 26,800 | 2.8 | <0.07 |
PC6 | 29 | 0.94 | 710 | 13.3 | 72 | 28 | 59 | 131 | <0.4 | 0.06 | 0.27 | 0.09 | <0.07 | 78 | 0.12 | 9.9 | 5.7 | 0.85 | 47 | 92 | 29,600 | 3.4 | <0.07 |
PC7 | 30 | 0.90 | 670 | 13.9 | 70 | 29 | 63 | 125 | <0.4 | 0.07 | 0.19 | 0.12 | <0.07 | 81 | 0.12 | 11.6 | 4.8 | 0.80 | 44 | 81 | 27,300 | 3.3 | <0.07 |
PC8 | 36 | 1.12 | 810 | 16.7 | 84 | 35 | 74 | 149 | <0.4 | 0.08 | 0.24 | 0.15 | <0.07 | 97 | 0.15 | 14.4 | 6.4 | 1.00 | 51 | 95 | 30,900 | 4.2 | <0.07 |
PC9 | 30 | 0.88 | 720 | 12.9 | 70 | 26 | 56 | 123 | <0.4 | 0.12 | 0.21 | 0.09 | <0.07 | 60 | 0.09 | 9.4 | 4.5 | 0.64 | 38 | 76 | 26,400 | 3.3 | <0.07 |
PC10 | 28 | 0.83 | 600 | 10.6 | 55 | 27 | 50 | 115 | <0.4 | 0.08 | 0.15 | 0.11 | <0.07 | 75 | 0.13 | 10.1 | 3.6 | 0.62 | 36 | 62 | 19,900 | 3.2 | <0.07 |
PC11 | 35 | 1.09 | 820 | 14.8 | 74 | 37 | 69 | 166 | <0.4 | 0.09 | 0.37 | 0.15 | <0.07 | 94 | 0.16 | 13.9 | 5.1 | 0.86 | 49 | 88 | 28,400 | 3.8 | <0.07 |
PC12 | 42 | 1.34 | 650 | 16.1 | 75 | 37 | 89 | 100 | <0.4 | 0.07 | 0.21 | 0.16 | <0.07 | 104 | 0.21 | 16.9 | 5.6 | 0.80 | 43 | 86 | 30,900 | 4.3 | <0.07 |
PC13 | 25 | 0.76 | 440 | 10.1 | 59 | 18 | 48 | 41 | <0.4 | <0.03 | 0.24 | 0.08 | <0.07 | 51 | 0.09 | 8.3 | 5.1 | 0.82 | 29 | 70 | 18,800 | 2.7 | <0.07 |
PC14 | 41 | 1.43 | 830 | 17.0 | 96 | 37 | 86 | 88 | <0.4 | 0.06 | 0.49 | 0.23 | <0.07 | 137 | 0.23 | 20.0 | 7.0 | 1.48 | 58 | 111 | 31,200 | 5.5 | <0.07 |
PC15 | 27 | 0.84 | 730 | 12.6 | 65 | 26 | 53 | 136 | <0.4 | 0.06 | 0.19 | 0.09 | <0.07 | 62 | 0.09 | 7.5 | 4.5 | 0.55 | 42 | 76 | 27,900 | 2.9 | <0.07 |
Sample | Depth | Tw (°C) | Tair (°C) | DO (mg/L) | EC (mS) | pH | Na+ | K+ | Mg2+ | Ca2+ | F− | Cl− | NO3− | SO42− | HCO3− |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
FB_1W | 50 | 14.0 | 30.2 | 3.5 | 293 | 7.3 | 11 | 1.2 | 6.4 | 60 | <0.2 | 8.4 | 5.8 | 9.1 | 210 |
FB_2W | 8 | 16.6 | 30.2 | 2.4 | 391 | 6.6 | 15 | 1.1 | 9.6 | 58 | 0.3 | 16 | 32 | 17 | 183 |
FB_3W | 7 | 16.4 | 30.2 | 2.0 | 296 | 6.9 | 9.9 | 1.0 | 16 | 40 | 0.3 | 9.7 | 3.2 | 14 | 207 |
FB_4W | 18 | 16.2 | 30.2 | 1.0 | 432 | 7.3 | 11 | 1.0 | 16 | 84 | <0.2 | 11 | 1.5 | 18 | 332 |
FB_5W | 21 | 14.9 | 30.2 | 3.8 | 266 | 6.9 | 9.0 | 1.0 | 5.6 | 43 | <0.2 | 8.4 | 7.5 | 8.8 | 143 |
FB_6Wa | 2 | 17.0 | 15.4 | 6.1 | 520 | 7.6 | 39 | 3.5 | 10 | 68 | n.d. | 42 | n.d. | 132 | 159 |
Samples | Li | Be | Mn | Co | Ni | Cu | Zn | Sr | Mo | Ag | Sn | Cd | Sb | Ba | Tl | Pb | Th | U | V | Cr | Fe | As |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
FB_1W | 1.46 | <0.01 | 5.5 | 0.12 | 3.8 | 2.0 | <7 | 166 | 0.20 | <0.02 | <0.1 | 0.02 | 0.16 | 39 | 0.01 | <0.2 | 0.006 | 0.17 | 0.23 | 0.23 | 53 | 0.14 |
FB_2W | 0.26 | <0.01 | 1.06 | 0.18 | 3.7 | 2.4 | 9 | 156 | <0.2 | <0.02 | <0.1 | 0.02 | 0.04 | 28 | <0.006 | 0.34 | <0.006 | 0.11 | 0.58 | 0.55 | 50 | 0.10 |
FB_3W | 4.1 | <0.01 | 306 | 0.11 | 2.6 | 2.2 | 14 | 130 | <0.2 | <0.02 | <0.1 | 0.03 | 0.04 | 4.7 | 0.01 | <0.2 | <0.006 | 0.19 | 0.21 | <0.1 | 60 | 0.10 |
FB_4W | 2.7 | <0.01 | 10.6 | 0.18 | 4.8 | <1 | 41 | 189 | <0.2 | <0.02 | <0.1 | 0.01 | 0.04 | 13.2 | <0.006 | <0.2 | <0.006 | 0.27 | <0.1 | 0.11 | 123 | 0.09 |
FB_5W | 1.15 | <0.01 | 0.50 | 0.08 | 2.4 | 3.4 | 77 | 131 | <0.2 | <0.02 | <0.1 | 0.02 | 0.05 | 22 | <0.006 | <0.2 | <0.006 | 0.14 | 0.20 | 0.21 | 34 | 0.05 |
FB_6Wa | 35 | <0.01 | 199 | 0.20 | 4.4 | 2.4 | <7 | 570 | 1.59 | 0.03 | 0.11 | 0.04 | 0.18 | 48 | 0.14 | <0.18 | <0.006 | 0.33 | 0.48 | <0.12 | 7.0 | 0.39 |
FB_6Wb | 35 | <0.01 | 155 | 0.35 | 4.4 | 1.10 | <7 | 552 | 1.76 | <0.02 | <0.1 | 0.03 | 0.20 | 52 | 0.01 | <0.18 | <0.006 | 0.39 | 0.51 | <0.12 | 9.0 | 0.47 |
MCL | 4 | 50 | 50 | 20 | 1000 | 3000 | 5 | 5 | 2 | 10 | 50 | 200 | 10 |
HQ | Soil Ingestion | Dermal Contact | HIi |
---|---|---|---|
Cadmium RfDoral = 1 × 10−4 mg/kg/day | 0.857 (9.18 × 10−2) | 2.40 × 10−3 (3.66 × 10−4) | 0.859 (9.22 × 10−2) |
Copper RfDoral= 4 × 10−2 mg/kg/day | 7.48 × 10−2 (8.01 × 10−3) | 2.09 × 10−3 (3.20 × 10−4) | 7.69 × 10−2 (8.33 × 10−3) |
Zinc RfDoral = 3 × 10−1 mg/kg/day | 1.98 × 10−2 (2.12 × 10−3) | 5.55 × 10−4 (8.47 × 10−5) | 2.04 × 10−2 (2.21 × 10−3) |
Sum of individual hazard quotients for each route considered | 0.952 (0.102) | 5.05 × 10−3 (7.71 × 10−4) | HIcum (all contaminants) 0.956 (0.103) |
Individual SSL | Soil Ingestion | Dermal Contact | Sum of Direct Exposures * | f | Cumulative SSL ** |
---|---|---|---|---|---|
Cadmium Cmax = 6.7 mg/kg | 7.82 (7.30 × 101) | 2.79 × 103 (1.83 × 104) | 7.80 (7.27 × 101) | 1.11 | 7.03 (6.55 × 101) |
Copper Cmax = 234 mg/kg | 3,13 × 103 (2.92 × 104) | 1,12 × 105 (7.32 × 105) | 3.04 × 103 (2.81 × 104) | 13 | 2.34 × 102 (2.16 × 103) |
Zinc Cmax = 465 mg/kg | 2.35 × 104 (2.19 × 105) | 8.38 × 105 (>106) | 2.28 × 104 (2.11 × 105) | 49 | 4.66 × 102 (4.30 × 103) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrini, R.; Ghezzi, L.; Arrighi, S.; Genovesi, L.; Frassi, C.; Pandolfi, L. Trace Elements in Soil and Urban Groundwater in an Area Impacted by Metallurgical Activity: Health Risk Assessment in the Historical Barga Municipality (Tuscany, Italy). Int. J. Environ. Res. Public Health 2022, 19, 13419. https://doi.org/10.3390/ijerph192013419
Petrini R, Ghezzi L, Arrighi S, Genovesi L, Frassi C, Pandolfi L. Trace Elements in Soil and Urban Groundwater in an Area Impacted by Metallurgical Activity: Health Risk Assessment in the Historical Barga Municipality (Tuscany, Italy). International Journal of Environmental Research and Public Health. 2022; 19(20):13419. https://doi.org/10.3390/ijerph192013419
Chicago/Turabian StylePetrini, Riccardo, Lisa Ghezzi, Simone Arrighi, Lisa Genovesi, Chiara Frassi, and Luca Pandolfi. 2022. "Trace Elements in Soil and Urban Groundwater in an Area Impacted by Metallurgical Activity: Health Risk Assessment in the Historical Barga Municipality (Tuscany, Italy)" International Journal of Environmental Research and Public Health 19, no. 20: 13419. https://doi.org/10.3390/ijerph192013419
APA StylePetrini, R., Ghezzi, L., Arrighi, S., Genovesi, L., Frassi, C., & Pandolfi, L. (2022). Trace Elements in Soil and Urban Groundwater in an Area Impacted by Metallurgical Activity: Health Risk Assessment in the Historical Barga Municipality (Tuscany, Italy). International Journal of Environmental Research and Public Health, 19(20), 13419. https://doi.org/10.3390/ijerph192013419