The Presence of Hyperhomocysteinemia Does Not Aggravate the Cardiometabolic Risk Imposed by Hyperuricemia in Young Individuals: A Retrospective Analysis of a Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Measurements
2.3. Definition of Elevated Uric Acid Levels, Hyperuricemia, Hyperhomocysteinemia, Cardiometabolic Risk Factors, and Metabolic Syndrome
2.4. Statistical Analyses
3. Results
3.1. Males
3.1.1. Correlations between Cardiometabolic Risk Factors and Markers with Uricemia or Homocysteinemia
3.1.2. The Effects of Uricemia and Homocysteinemia on Cardiometabolic Variables
3.1.3. Multivariate Regression Models
3.2. Females
3.2.1. Correlations between Cardiometabolic Risk Factors and Markers with Uricemia or Homocysteinemia
3.2.2. The Effects of Uricemia and Homocysteinemia on Cardiometabolic Variables
3.2.3. Multivariate Regression Models
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ames, B.N.; Cathcart, R.; Schwiers, E.; Hochstein, P. Uric acid provides an antioxidant defense in humans against oxidant- and radical-caused aging and cancer: A hypothesis. Proc. Natl. Acad. Sci. USA 1981, 78, 6858–6862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neogi, T.; George, J.; Rekhraj, S.; Struthers, A.D.; Choi, H.; Terkeltaub, R.A. Are either or both hyperuricemia and xanthine oxidase directly toxic to the vasculature? A critical appraisal. Arthritis Rheum. 2012, 64, 327–338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maruhashi, T.; Hisatome, I.; Kihara, Y.; Higashi, Y. Hyperuricemia and endothelial function: From molecular background to clinical perspectives. Atherosclerosis 2018, 278, 226–231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kubota, M. Hyperuricemia in Children and Adolescents: Present Knowledge and Future Directions. J. Nutr. Metab. 2019, 2019, 3480718. [Google Scholar] [CrossRef]
- Schiel, R.; Heinrichs, M.; Stein, G.; Bambauer, R.; Steveling, A. Non-Alcoholic Fatty Liver Disease (NAFLD) in overweight and obese children and adolescents. Arch. Clin. Gastroenterol. 2020, 6, 082–087. [Google Scholar] [CrossRef]
- Lu, J.; Sun, W.; Cui, L.; Li, X.; He, Y.; Liu, Z.; Li, H.; Han, L.; Ji, A.; Wang, C.; et al. A cross-sectional study on uric acid levels among Chinese adolescents. Pediatr. Nephrol. 2020, 35, 441–446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perła-Kaján, J.; Twardowski, T.; Jakubowski, H. Mechanisms of homocysteine toxicity in humans. Amino Acids 2007, 32, 561–572. [Google Scholar] [CrossRef]
- Azzini, E.; Ruggeri, S.; Polito, A. Homocysteine: Its Possible Emerging Role in At-Risk Population Groups. Int. J. Mol. Sci. 2020, 21. [Google Scholar] [CrossRef] [Green Version]
- Rehackova, P.; Skalova, S.; Kutilek, S. Serum homocysteine levels in children and adolescents with impaired bone health. Rev. Bras. Reumatol. 2013, 53, 464–468. [Google Scholar] [CrossRef]
- Dinleyici, E.C.; Kirel, B.; Alatas, O.; Muslumanoglu, H.; Kilic, Z.; Dogruel, N. Plasma total homocysteine levels in children with type 1 diabetes: Relationship with vitamin status, methylene tetrahydrofolate reductase genotype, disease parameters and coronary risk factors. J. Trop. Pediatr. 2006, 52, 260–266. [Google Scholar] [CrossRef] [PubMed]
- Dvořáková, H.M.; Szitányi, P.; Dvořák, P.; Janda, J.; Seeman, T.; Zieg, J.; Lánská, V.; Kotaška, K.; Piťha, J. Determinants of premature atherosclerosis in children with end-stage renal disease. Physiol. Res. 2012, 61, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Li, Z.; Hou, C.; Sun, F.; Dong, J.; Chu, X.; Guo, Y. Gender differences in risk factors for high plasma homocysteine levels based on a retrospective checkup cohort using a generalized estimating equation analysis. Lipids Health Dis. 2021, 20, 31. [Google Scholar] [CrossRef] [PubMed]
- Bao, F.; Cui, M.; Shi, X.; Ju, S.; Cong, H. Distribution characteristics and influencing factors of homocyteine in an apparently healthy examined population. BMC Cardiovasc. Disord. 2021, 21, 429. [Google Scholar] [CrossRef] [PubMed]
- Lussier-Cacan, S.; Xhignesse, M.; Piolot, A.; Selhub, J.; Davignon, J.; Genest, J., Jr. Plasma total homocysteine in healthy subjects: Sex-specific relation with biological traits. Am. J. Clin. Nutr. 1996, 64, 587–593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, P.J.; Lu, Y.C.; Wang, P.M.; Huang, C.F.; Loke, S.S. Factors associated with hyperhomocysteinemia in relatively healthy Taiwanese adults: A retrospective medical record study. Medicine 2021, 100, e23829. [Google Scholar] [CrossRef] [PubMed]
- Cohen, E.; Levi, A.; Vecht-Lifshitz, S.E.; Goldberg, E.; Garty, M.; Krause, I. Assessment of a possible link between hyperhomocysteinemia and hyperuricemia. J. Investig. Med. 2015, 63, 534–538. [Google Scholar] [CrossRef] [PubMed]
- Fu, S.; Yao, Y.; Zhao, Y.; Luan, F. Relationships of Hyperhomocysteinemia and Hyperuricemia With Metabolic Syndrome and Renal Function in Chinese Centenarians. Front. Endocrinol. 2018, 9, 502. [Google Scholar] [CrossRef]
- Liu, P.-T.; Chen, J.-D. Synergistic association of hyperuricemia and hyperhomocysteinemia with chronic kidney disease in middle-aged adults and the elderly population. Medicine 2021, 100, e27202. [Google Scholar] [CrossRef]
- Wang, S.A.; Wei, Y.S.; Hidru, T.H.; Li, D.B.; Wang, N.; Yang, Y.H.; Wang, Y.S.; Yang, X.L.; Xia, Y.L. Combined Effect of Homocysteine and Uric Acid to Identify Patients With High Risk for Subclinical Atrial Fibrillation. J. Am. Heart Assoc. 2022, 11, e021997. [Google Scholar] [CrossRef] [PubMed]
- El Din, U.; Salem, M.M.; Abdulazim, D.O. Uric acid in the pathogenesis of metabolic, renal, and cardiovascular diseases: A review. J. Adv. Res. 2017, 8, 537–548. [Google Scholar] [CrossRef]
- Kumar, A.; Palfrey, H.A.; Pathak, R.; Kadowitz, P.J.; Gettys, T.W.; Murthy, S.N. The metabolism and significance of homocysteine in nutrition and health. Nutr. Metab. 2017, 14, 78. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.; Wu, Z.; Wu, J.; Chen, Z.; Li, P. Serum Homocysteine Level Is Positively Correlated With Serum Uric Acid Level in U.S. Adolescents: A Cross Sectional Study. Front. Nutr. 2022, 9, 818836. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, D.R., Jr.; Woo, J.G.; Sinaiko, A.R.; Daniels, S.R.; Ikonen, J.; Juonala, M.; Kartiosuo, N.; Lehtimäki, T.; Magnussen, C.G.; Viikari, J.S.A.; et al. Childhood Cardiovascular Risk Factors and Adult Cardiovascular Events. N. Engl. J. Med. 2022, 386, 1877–1888. [Google Scholar] [CrossRef] [PubMed]
- Gurecka, R.; Koborova, I.; Sebek, J.; Sebekova, K. Presence of Cardiometabolic Risk Factors Is Not Associated with Microalbuminuria in 14-to-20-Years Old Slovak Adolescents: A Cross-Sectional, Population Study. PLoS ONE 2015, 10, e0129311. [Google Scholar] [CrossRef] [PubMed]
- Katz, A.; Nambi, S.S.; Mather, K.; Baron, A.D.; Follmann, D.A.; Sullivan, G.; Quon, M.J. Quantitative insulin sensitivity check index: A simple, accurate method for assessing insulin sensitivity in humans. J. Clin. Endocrinol. Metab. 2000, 85, 2402–2410. [Google Scholar] [CrossRef] [PubMed]
- Dobiasova, M.; Frohlich, J. The plasma parameter log (TG/HDL-C) as an atherogenic index: Correlation with lipoprotein particle size and esterification rate in apoB-lipoprotein-depleted plasma (FE(HDL)). Clin. Biochem. 2001, 34, 583–588. [Google Scholar] [CrossRef]
- Hoste, L.; Dubourg, L.; Selistre, L.; De Souza, V.C.; Ranchin, B.; Hadj-Aïssa, A.; Cochat, P.; Martens, F.; Pottel, H. A new equation to estimate the glomerular filtration rate in children, adolescents and young adults. Nephrol. Dial. Transpl. 2014, 29, 1082–1091. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soldatovic, I.; Vukovic, R.; Culafic, D.; Gajic, M.; Dimitrijevic-Sreckovic, V. siMS Score: Simple Method for Quantifying Metabolic Syndrome. PLoS ONE 2016, 11, e0146143. [Google Scholar] [CrossRef]
- Cole, T.J.; Bellizzi, M.C.; Flegal, K.M.; Dietz, W.H. Establishing a standard definition for child overweight and obesity worldwide: International survey. BMJ 2000, 320, 1240–1243. [Google Scholar] [CrossRef] [Green Version]
- Ashwell, M.; Gibson, S. A proposal for a primary screening tool: ‘Keep your waist circumference to less than half your height’. BMC Med. 2014, 12, 207. [Google Scholar] [CrossRef] [PubMed]
- Zimmet, P.; George, K.; Alberti, M.M.; Kaufman, F.; Tajima, N.; Silink, M.; Arslanian, S.; Wong, G.; Bennett, P.; Shaw, J.; et al. The metabolic syndrome in children and adolescents—An IDF consensus report. Pediatr. Diabetes 2007, 8, 299–306. [Google Scholar] [CrossRef]
- Sebekova, K.; Stefikova, K.; Polakovicova, D.; Spustova, V.; Dzurik, R. Does magnesium dysbalance participate in the development of insulin resistance in early stages of renal disease? Physiol. Res. 2002, 51, 605–612. [Google Scholar] [PubMed]
- Ridker, P.M. Clinical application of C-reactive protein for cardiovascular disease detection and prevention. Circulation 2003, 107, 363–369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marti, F.; Vollenweider, P.; Marques-Vidal, P.M.; Mooser, V.; Waeber, G.; Paccaud, F.; Bochud, M. Hyperhomocysteinemia is independently associated with albuminuria in the population-based CoLaus study. BMC Public Health 2011, 11, 733. [Google Scholar] [CrossRef] [Green Version]
- Bonora, E.; Targher, G.; Zenere, M.B.; Saggiani, F.; Cacciatori, V.; Tosi, F.; Travia, D.; Zenti, M.G.; Branzi, P.; Santi, L.; et al. Relationship of uric acid concentration to cardiovascular risk factors in young men. Role of obesity and central fat distribution. The Verona Young Men Atherosclerosis Risk Factors Study. Int. J. Obes. Relat. Metab. Disord. 1996, 20, 975–980. [Google Scholar] [PubMed]
- Ford, E.S.; Li, C.; Cook, S.; Choi, H.K. Serum concentrations of uric acid and the metabolic syndrome among US children and adolescents. Circulation 2007, 115, 2526–2532. [Google Scholar] [CrossRef] [Green Version]
- Wasilewska, A.; Tenderenda, E.; Taranta-Janusz, K.; Tobolczyk, J.; Stypulkowska, J. Markers of systemic inflammation in children with hyperuricemia. Acta Paediatr. 2012, 101, 497–500. [Google Scholar] [CrossRef]
- Lee, A.M.; Gurka, M.J.; DeBoer, M.D. Correlation of metabolic syndrome severity with cardiovascular health markers in adolescents. Metabolism 2017, 69, 87–95. [Google Scholar] [CrossRef] [Green Version]
- Aboul Ella, N.A.; Shehab, D.I.; Ismail, M.A.; Maksoud, A.A. Prevalence of metabolic syndrome and insulin resistance among Egyptian adolescents 10 to 18 years of age. J. Clin. Lipidol. 2010, 4, 185–195. [Google Scholar] [CrossRef]
- Budak, N.; Yazici, C.; Oztürk, A.; Bayram, F.; Mazicioğlu, M.M.; Kurtoglu, S. Is plasma homocysteine level associated with metabolic syndrome components in adolescents? Metab. Syndr. Relat. Disord. 2009, 7, 357–362. [Google Scholar] [CrossRef]
- Tenderenda-Banasiuk, E.; Wasilewska, A.; Taranta-Janusz, K.; Korzeniecka-Kozerska, A. Asymmetric and symmetric dimethylarginine in adolescents with hyperuricemia. Dis. Markers 2013, 35, 407–412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rochette, L.; Lorin, J.; Zeller, M.; Guilland, J.C.; Lorgis, L.; Cottin, Y.; Vergely, C. Nitric oxide synthase inhibition and oxidative stress in cardiovascular diseases: Possible therapeutic targets? Pharmacol. Ther. 2013, 140, 239–257. [Google Scholar] [CrossRef] [PubMed]
- Dayal, S.; Lentz, S.R. ADMA and hyperhomocysteinemia. Vasc. Med. 2005, 10 (Suppl. 1), S27–S33. [Google Scholar] [CrossRef] [PubMed]
- Lai, W.K.; Kan, M.Y. Homocysteine-Induced Endothelial Dysfunction. Ann. Nutr. Metab. 2015, 67, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Böger, R.H.; Maas, R.; Schulze, F.; Schwedhelm, E. Elevated levels of asymmetric dimethylarginine (ADMA) as a marker of cardiovascular disease and mortality. Clin. Chem. Lab. Med. 2005, 43, 1124–1129. [Google Scholar] [CrossRef]
- Raslová, K.; Bederová, A.; Gasparovic, J.; Blazícek, P.; Smolková, B. Effect of diet and 677 C-->T 5, 10-methylenetetrahydrofolate reductase genotypes on plasma homocysteine concentrations in slovak adolescent population. Physiol. Res. 2000, 49, 651–658. [Google Scholar]
Males | Females | p | |
---|---|---|---|
N (%) | 1298 (48.1) | 1402 (51.9) | -- |
Age, years | 17.2 ± 1.4 | 17.2 ± 1.4 | 0.274 |
Uric acid, µmol/L | 354 ± 60 | 258 ± 51 | <0.001 |
Homocysteine, μmol/mL | 11.2 (7.7; 16.2) | 9.4 (7.0; 12.7) | <0.001 |
Waist/height | 0.44 ± 0.05 | 0.43 ± 0.05 | <0.001 |
Body mass index, kg/m2 | 23.0 ± 3.9 | 21.9 ± 3.5 | <0.001 |
Systolic blood pressure, mm Hg | 122 ± 12 | 107 ± 9 | <0.001 |
Diastolic blood pressure, mm Hg | 73 ± 8 | 70 ± 8 | <0.001 |
Glucose, mmol/L | 4.9 ± 0.4 | 4.7 ± 0.4 | <0.001 |
Insulin, μIU/mL | 9.6 (5.7; 16.1) | 10.0 (6.3; 16.0) | 0.013 |
QUICKI | 0.343 ± 0.027 | 0.343 ± 0.026 | 0.881 |
HDL-C, mmol/L | 1.25 ± 0.23 | 1.52 ± 0.30 | <0.001 |
Non-HDL-C, mmol/L | 2.56 ± 0.68 | 2.74 ± 0.69 | <0.001 |
Triacylglycerols, mmol/L | 0.79 (0.51; 1.21) | 0.79 (0.52; 1.19) | 0.047 |
Atherogenic index | −0.19 ± 0.23 | −0.26 ± 0.20 | <0.001 |
cMSS | 1.99 ± 0.48 | 1.83 ± 0.41 | <0.001 |
eGFR, mL/min/1.73 m2 | 111 ± 21 | 107 ± 16 | <0.001 |
ACR, mg/mmol crea | 0.4 (0.2; 1.0) | 0.5 (0.2; 1.3) | <0.001 |
C-reactive protein, mg/L | 0.5 (0.2; 1.4) | 0.5 (0.2; 2.0) | 0.001 |
ADMA, (µmol/L) | 0.47 (0.36; 0.60) | 0.44 (0.34; 0.57) | <0.001 |
Erythrocytes, 1012/L | 5.14 ± 0.31 | 4.55 ± 0.29 | <0.001 |
Leukocytes, 109/L | 6.35 ± 1.44 | 6.85 ± 1.78 | <0.001 |
Prevalence | p | ||
Elevated: | |||
Uric acid, n (%) | 401 (30.9) | 81 (5.8) | <0.001 |
Homocysteine, n (%) | 391 (30.1) | 189 (13.5) | <0.001 |
Waist/height, n (%) | 175 (13.5) | 138 (9.8) | 0.004 |
Body mass index, n (%) | 369 (28.4) | 261 (18.6) | <0.001 |
Systolic blood pressure, n (%) | 329 (25.3) | 20 (1.4) | <0.001 |
Diastolic blood pressure, n (%) | 87 (6.7) | 56 (4.0) | 0.002 |
Blood pressure, n (%) | 347 (26.7) | 65 (4.6) | <0.001 |
Glucose, n (%) | 84 (6.5) | 29 (2.1) | <0.001 |
Insulin, n (%) | 104 (8.0) | 89 (6.3) | 0.100 |
Triacylglycerols, n (%) | 66 (5.1) | 73 (5.2) | 0.931 |
Atherogenic index, n (%) | 111 (8.6) | 55 (3.9) | <0.001 |
C-reactive protein, n (%) | 98 (7.6) | 156 (11.1) | 0.002 |
ACR, n (%) | 48 (3.7) | 45 (3.2) | 0.527 |
Low HDL-C, n (%) | 193 (14.9) | 273 (19.5) | 0.001 |
MetSy, n (%) | 53 (4.1) | 19 (1.4) | <0.001 |
Males | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Age | BMI | WHtR | SBP | DBP | Glucose | Insulin | QUICKI | HDL-C | Non-HDL-C | ||
UA | r | −0.029 | 0.316 | 0.286 | 0.152 | 0.120 | 0.009 | 0.121 | −0.103 | −0.156 | 0.176 |
p | 0.298 | <0.001 | <0.001 | <0.001 | <0.001 | 0.752 | <0.001 | <0.001 | <0.001 | <0.001 | |
LnHcy | r | 0.148 | 0.004 | −0.019 | 0.021 | 0.073 | −0.023 | −0.001 | 0.005 | −0.039 | 0.065 |
p | <0.001 | 0.889 | 0.497 | 0.440 | 0.008 | 0.401 | 0.967 | 0.856 | 0.156 | 0.019 | |
LnTAG | AIP | cMSS | RF No. | eGFR | LnACR | LnADMA | LnCRP | Ery | Leu | ||
UA | r | 0.155 | 0.188 | 0.270 | 0.257 | −0.062 | −0.093 | 0.063 | 0.185 | 0.110 | 0.067 |
p | <0.001 | <0.001 | <0.001 | <0.001 | 0.025 | 0.001 | 0.023 | <0.001 | <0.001 | 0.017 | |
LnHcy | r | 0.094 | 0.095 | 0.051 | −0.008 | −0.076 | −0.056 | −0.072 | −0.018 | 0.046 | 0.051 |
p | <0.001 | 0.001 | 0.069 | 0.786 | 0.006 | 0.044 | 0.010 | 0.521 | 0.059 | 0.068 | |
Females | |||||||||||
Age | BMI | WHtR | SBP | DBP | Glucose | Insulin | QUICKI | HDL-C | Non-HDL-C | ||
UA | r | −0.087 | 0.253 | 0.198 | 0.111 | 0.110 | 0.037 | 0.022 | −0.012 | −0.134 | 0.055 |
p | 0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.165 | 0.410 | 0.663 | <0.001 | 0.041 | |
LnHcy | r | 0.094 | 0.028 | −0.026 | 0.047 | 0.053 | −0.008 | 0.012 | −0.007 | −0.030 | 0.051 |
p | <0.001 | 0.303 | 0.400 | 0.077 | 0.047 | 0.756 | 0.653 | 0.799 | 0.258 | 0.058 | |
LnTAG | AIP | cMSS | RF No. | eGFR | LnACR | LnADMA | LnCRP | Ery | Leu | ||
UA | r | 0.023 | 0.081 | 0.257 | 0.181 | −0.152 | −0.043 | 0.113 | 0.111 | 0.126 | 0.107 |
p | 0.388 | 0.002 | <0.001 | <0.001 | <0.001 | 0.023 | <0.001 | <0.001 | <0.001 | <0.001 | |
LnHcy | r | 0.078 | 0.059 | −0.008 | 0.030 | −0.131 | 0.018 | −0.071 | 0.010 | 0.053 | 0.052 |
p | 0.003 | 0.026 | 0.786 | 0.267 | <0.001 | 0.527 | 0.009 | 0.706 | 0.048 | 0.053 |
Normouricemia, n = 897 (69.1%) | Hyperuricemia, n = 401 (30.9%) | p | |||||
---|---|---|---|---|---|---|---|
NHcy (71.3%) | HHcy (28.7%) | NHcy (58.6%) | HHcy (41.4%) | UA | Hcy | Interaction | |
Number | 640 (49.3%) | 257 (19.8%) | 235 (18.1%) | 166 (12.8%) | -- | -- | -- |
Age, years | 17.6 ± 1.4 | 16.9 ± 1.4 | 16.8 ± 1.3 | 16.4 ± 1.1 | -- | -- | -- |
Uric acid, µmol/L | 326 ± 43 | 325 ± 39 | 422 ± 42 | 413 ±40 | -- | -- | -- |
Homocysteine, µmol/L | 9.6 (7.6, 12.1) | 16.5 (11.2, 24.2) | 9.1 (7.3, 11.4) | 14.7 (10.5, 20.5) | -- | -- | -- |
Body mass index, kg/m2 | 22.7 ± 3.6 | 21.9 ± 3.0 | 24.7 ± 4.5 | 23.7 ± 4.3 | <0.001 | <0.001 | 0.767 |
WHtR | 0.44 ± 0.05 | 0.43 ± 0.04 | 0.47 ± 0.06 | 0.45 ± 0.06 | <0.001 | <0.001 | 0.406 |
SBP, mmHg | 122 ± 12 | 120 ± 11 | 125 ± 12 | 123 ± 13 | 0.001 | 0.008 | 0.852 |
DBP, mmHg | 72 ±8 | 72 ± 7 | 74 ± 8 | 73 ± 10 | 0.017 | 0.179 | 0.856 |
Glucose, mmol/L | 4.9 ± 0.4 | 4.9 ± 0.4 | 4.9 ± 0.4 | 5.0 ± 0.4 | 0.376 | 0.124 | 0.448 |
Insulin, μIU/mL | 9.1 (5.5, 15.0) | 9.5 (5.8, 15.6) | 10.4 (5.9, 18.3) | 10.3 (6.1, 17.6) | 0.001 | 0.504 | 0.416 |
QUICKI | 0.346 ± 0.027 | 0.343 ± 0.028 | 0.339 ± 0.030 | 0.339 ± 0.028 | 0.002 | 0.272 | 0.554 |
HDL-C, mmol/L | 1.27 ± 0.22 | 1.28 ± 0.24 | 1.21 ± 0.23 | 1.19 ± 0.24 | <0.001 | 0.839 | 0.420 |
Non-HDL-C, mmol/L | 2.55 ± 0.66 | 2.47 ± 0.60 | 2.64 ± 0.73 | 2.67 ± 0.75 | 0.001 | 0.588 | 0.181 |
TAG, mmol/L | 0.77 (0.51, 1.16) | 0.78 (0.54, 1.14) | 0.82 (0.50, 1.33) | 0.82 (0.52, 1.31) | 0.034 | 0.543 | 0.852 |
Atherogenic index | −0.21 ± 0.21 | −0.21 ± 0.20 | −0.16 ± 0.27 | −0.15 ± 0.24 | <0.001 | 0.537 | 0.916 |
cMSS | 1.95 ± 0.43 | 1.91 ± 0.38 | 2.14 ± 0.59 | 2.11 ± 0.57 | <0.001 | 0.239 | 0.871 |
Risk factors number | 0.85 ± 0.98 | 0.72 ± 0.89 | 1.34 ± 1.18 | 1.16 ± 1.16 | <0.001 | 0.017 | 0.686 |
eGFR, mL/min/1.73 m2 | 111 ± 22 | 109 ± 20 | 113 ± 23 | 110 ± 20 | 0.354 | 0. 085 | 0.600 |
ACR, mg/mmol | 0.4 (0.2, 0.9) | 0.4 (0.2, 1.0) | 0.4 (0.2, 1.0) | 0.4 (0.1, 0.9) | 0.309 | 0.531 | 0.102 |
ADMA, µmol/L | 0.43 (0.33, 0.56) | 0.47 (0.37, 0.60) | 0.50 (0.39, 0.65) | 0.52 (0.42, 0.65) | <0.001 | <0.001 | 0.108 |
C-reactive protein, mg/L | 0.5 (0.1, 1.5) | 0.4 (0.1, 1.2) | 0.7 (0.2, 2.3) | 0.5 (0.2, 1.7) | <0.001 | 0.001 | 0.744 |
Erythrocytes, 1012/L | 5.11± 0.30 | 5.16 ± 0.31 | 5.19 ± 0.30 | 5.17± 0.29 | 0.021 | 0.319 | 0.071 |
Leukocytes, 109/L | 6.32 ± 1.35 | 6.34 ± 1.69 | 6.36 ± 1.52 | 6.50 ± 1.24 | 0.268 | 0.364 | 0.509 |
Males | Females | |||||||
---|---|---|---|---|---|---|---|---|
Model 1 | Model 2 | Model 3 | Model 4 | Model 1 | Model 2 | Model 3 | Model 4 | |
Insulin | 1.93 | 1.89 | 2.06 | 2.01 | 1.57 | 1.63 | 1.66 | 1.71 |
lnCRP | 1.19 | 1.21 | 1.24 | 1.25 | 1.50 | 1.57 | 1.58 | 1.65 |
Leukocytes | 1.17 | 1.07 | 1.24 | 1.13 | 1.04 | 1.12 | 1.10 | 1.17 |
Erythrocytes | 0.98 | 0.97 | 1.04 | 1.02 | 0.22 | 0.32 | 0.24 | 0.34 |
lnACR | 0.54 | 0.56 | 0.62 | 0.60 | 0.12 | 0.15 | 0.13 | 0.15 |
Age | 0.44 | 0.54 | 0.41 | 0.48 | 0.88 | 0.87 | 0.92 | 0.90 |
lnADMA | 0.15 | 0.33 | 0.10 | 0.25 | 1.50 | 1.00 | 1.14 | 1.01 |
eGFR | 0.08 | 0.17 | 0.04 | 0.24 | 0.40 | 0.59 | 0.47 | 0.66 |
Uric acid | -- | 1.07 | -- | 1.13 | -- | 0.61 | -- | 0.64 |
lnHcy | -- | 0.29 | 0.35 | -- | -- | 0.31 | 0.43 | |
R2 | 32% | 35% | 32% | 35% | 22% | 23% | 22% | 22% |
Normouricemia, n = 1321 (94.2%) | Hyperuricemia, n = 81 (5.8%) | p | |||||
---|---|---|---|---|---|---|---|
NHcy (85.3%) | HHcy (14.7%) | NHcy (81.5%) | HHcy (18.5%) | UA | Hcy | Interaction | |
Number | 1127 (80.3%) | 194 (13.8%) | 66 (4.7%) | 15 (1.1%) | -- | -- | -- |
Age, years | 17.4 ± 1.4 | 16.5 ± 1.3 | 16.9 ± 1.5 | 16.2 ± 1.3 | -- | -- | -- |
Uric acid, µmol/L | 250 ± 44 | 263 ± 42 | 368 ± 35 | 382 ±45 | -- | -- | -- |
Homocysteine, µmol/L | 8.8 (6.9, 11.1) | 14.3 (11.3, 18.1) | 9.0 (7.3, 11.1) | 14.0 (10.2, 19.4) | -- | -- | -- |
Body mass index, kg/m2 | 21.8 ± 3.3 | 21.7 ± 3.3 | 24.5 ± 5.2 | 24.4 ± 4.8 | <0.001 | 0.848 | 0.990 |
WHtR | 0.43 ± 0.05 | 0.43 ± 0.04 | 0.46 ± 0.07 | 0.46 ± 0.06 | <0.001 | 0.372 | 0.966 |
SBP, mmHg | 107 ± 9 | 107 ± 10 | 112 ± 9 | 110 ± 6 | 0.004 | 0.391 | 0.446 |
DBP, mmHg | 70 ± 7 | 70 ± 8 | 74 ± 7 | 72 ± 6 | 0.004 | 0.262 | 0.411 |
Glucose, mmol/L | 4.7 ± 0.4 | 4.7 ± 0.4 | 4.7 ± 0.4 | 4.8 ± 0.5 | 0.367 | 0.519 | 0.985 |
Insulin, μIU/mL | 9.9 (6.2, 15.8) | 10.1 (6.5, 15.6) | 10.8 (5.8, 20.0) | 12.0 (7.0, 20.7) | 0.065 | 0.374 | 0.527 |
QUICKI | 0.344 ± 0.025 | 0.342 ± 0.024 | 0.340 ± 0.033 | 0.333 ± 0.028 | 0.108 | 0.273 | 0.527 |
HDL-C, mmol/L | 1.53 ± 0.30 | 1.48 ± 0.32 | 1.47 ± 0.30 | 1.35 ± 0.24 | 0.030 | 0.076 | 0.415 |
Non-HDL-C, mmol/L | 2.73 ± 0.69 | 2.74 ± 0.70 | 2.88 ± 0.64 | 2.68 ± 0.69 | 0.637 | 0.359 | 0.304 |
TAG, mmol/L | 0.81 (0.53, 1.22) | 0.81 (0.55, 1.20) | 0.86 (0.56, 1.31) | 0.90 (0.60, 1.36) | 0.184 | 0.621 | 0.660 |
Atherogenic index | −0.27 ± 0.20 | −0.25 ± 0.20 | −0.23 ± 0.22 | −0.17 ± 0.19 | 0.035 | 0.215 | 0.468 |
cMSS | 1.82 ± 0.40 | 1.80 ± 0.44 | 1.97 ± 0.55 | 2.05± 0.42 | 0.001 | 0.697 | 0.427 |
Risk factors number | 0.64 ± 0.85 | 0.62 ± 0.88 | 1.17 ± 1.24 | 1.33± 1.23 | <0.001 | 0.570 | 0.480 |
eGFR, mL/min/1.73 m2 | 108 ± 16 | 106 ± 15 | 103 ± 15 | 100 ± 23 | 0.028 | 0. 380 | 0.889 |
ACR, mg/mmol | 0.5 (0.2, 1.3) | 0.5 (0.2, 1.5) | 0.4 (0.2, 1.2) | 0.6 (0.1, 4.3) | 0.896 | 0.170 | 0.156 |
ADMA, µmol/L | 0.43 (0.34, 0.56) | 0.47 (0.38, 0.59) | 0.46 (0.36, 0.60) | 0.49 (0.42, 0.56) | 0.280 | 0.111 | 0.693 |
C-reactive protein, mg/L | 0.5 (0.1, 2.0) | 0.4 (0.1, 1.4) | 1.0 (0.3, 4.0) | 1.4 (0.5, 3.7) | <0.001 | 0.875 | 0.149 |
Erythrocytes, 1012/L | 4.54± 0.28 | 4.59 ± 0.32 | 4.62 ± 0.34 | 4.60± 0.25 | 0.328 | 0.733 | 0.370 |
Leukocytes, 109/L | 6.82 ± 1.76 | 6.79 ± 1.74 | 7.25 ± 1.81 | 7.73 ± 2.89 | 0.009 | 0.392 | 0.327 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šebeková, K.; Gurecká, R.; Repiská, G.; Koborová, I.; Podracká, Ľ. The Presence of Hyperhomocysteinemia Does Not Aggravate the Cardiometabolic Risk Imposed by Hyperuricemia in Young Individuals: A Retrospective Analysis of a Cross-Sectional Study. Int. J. Environ. Res. Public Health 2022, 19, 13521. https://doi.org/10.3390/ijerph192013521
Šebeková K, Gurecká R, Repiská G, Koborová I, Podracká Ľ. The Presence of Hyperhomocysteinemia Does Not Aggravate the Cardiometabolic Risk Imposed by Hyperuricemia in Young Individuals: A Retrospective Analysis of a Cross-Sectional Study. International Journal of Environmental Research and Public Health. 2022; 19(20):13521. https://doi.org/10.3390/ijerph192013521
Chicago/Turabian StyleŠebeková, Katarína, Radana Gurecká, Gabriela Repiská, Ivana Koborová, and Ľudmila Podracká. 2022. "The Presence of Hyperhomocysteinemia Does Not Aggravate the Cardiometabolic Risk Imposed by Hyperuricemia in Young Individuals: A Retrospective Analysis of a Cross-Sectional Study" International Journal of Environmental Research and Public Health 19, no. 20: 13521. https://doi.org/10.3390/ijerph192013521
APA StyleŠebeková, K., Gurecká, R., Repiská, G., Koborová, I., & Podracká, Ľ. (2022). The Presence of Hyperhomocysteinemia Does Not Aggravate the Cardiometabolic Risk Imposed by Hyperuricemia in Young Individuals: A Retrospective Analysis of a Cross-Sectional Study. International Journal of Environmental Research and Public Health, 19(20), 13521. https://doi.org/10.3390/ijerph192013521