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Abstract: To provide a safer sitting environment for wheelchair users, it is important to quantitatively
measure the forces acting on the contact surface between the seat and the person in the wheelchair.
In addition to the pressure acting on the buttocks, shear forces have received particular attention in
recent years; however, measuring shear force is more difficult than measuring pressure. To obtain
this measurement, a thin and flexible sensor that can be used in a natural state on a wheelchair is
needed. Therefore, we constructed a measurement system using our previously developed wearable
sheet-type sensor (0.9 mm thick). In this study, preliminary tests were conducted using human
dummies before testing on humans. Sensors were placed in four locations on the humanoid dummy’s
back and buttocks, and the electric wheelchair was tilted and reclined five times each. The results
showed that the sensor output pattern was reproducible and valid enough to proceed to the next
step. However, the shear force in the internal and external directions was greater than expected,
which indicates that the equipment and testing methods must be reviewed. On the basis of the results
obtained in this preliminary study, preparations will be made for testing on human subjects.

Keywords: wearable sensor; shear force; electric wheelchair; pressure ulcer

1. Introduction

For wheelchair users, pressure ulcers on the supporting surface of the buttocks are a se-
rious risk and require special attention [1]. Previous studies have reported a high frequency
of pressure ulcers in older adults and in those with spinal cord injuries who are unable to
walk without assistance [2–4]. Once ulcers develop, they require significant treatment and
greatly reduce an individual’s quality of life [5]. Pressure ulcers are considered to develop
when external pressure is applied to a part of the body and blood flow to the soft tissues
in that area is reduced or stopped. If this condition continues for a long time, the tissue
becomes irreversibly damaged from ischemia [6]. Although the exact mechanism of the
condition is still not fully understood, pressure and a number of other complex factors can
be cited as causative factors. Therefore, seating interventions are commonly used in clinical
practice to select and adjust wheelchairs and cushions based on the subject’s physical and
living conditions. This method distributes the pressure on the subject’s body surface and
prevents pressure from being concentrated in specific areas. In addition to such pressure
redistribution, measures have been recommended such as reducing the amount of time the
subject is seated in a wheelchair [7], but only limited measures can be selected in the field.

Another measure often used is changing the sitting posture in the wheelchair, such as
tilting and reclining. In a wheelchair, reclining means changing the angle between the back
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support and the seat surface, while maintaining the angle between the seat surface and the
ground, and tilting means changing the angle between the seat surface and the ground,
while maintaining the angle between the back support and the seat surface. This postural
transformation avoids prolonged pressure concentration in specific areas and improves
blood flow. Jan et al. [8] found that, to promote skin blood return in patients with spinal
cord injury to reduce the risk of pressure ulcer development, the wheelchair tilt space must
be at least 35◦ to promote skin perfusion over the sciatic tuberosity when combined with
a 100◦ recline, and must be at least 25◦ when combined with a 120◦ recline. Additionally,
Jan et al. [9] reported that, in patients with spinal cord injury, greater angular space tilt
and recline are required to improve muscle perfusion, compared with skin perfusion.
These postural changes may be manipulated by the electric wheelchair users themselves.
However, care must be taken to achieve adequate results.

Otherwise, it has been reported that both pressure and shear forces, which inhibit
blood flow, are factors in pressure ulcer development [10]. Furthermore, researchers have
reported that when a shear force is high, vascular occlusion occurs at half the pressure
of a low shear force, resulting in the viewpoint that this shear force is a more important
factor [11]. This suggests that the effect of shear forces on the obstruction of blood flow
may be a significant factor in pressure ulcers, and efforts have been made to determine
the effect of shear forces acting on the buttocks of wheelchair users [12–15]. However,
one problem in the way of research progress is the difficulty in measuring shear force in
wheelchair users, compared with pressure. There is a need for thin, flexible sensors that can
be placed between the user and the wheelchair to allow measurements in a more natural
state. Therefore, we developed a thin and flexible sensor that can measure shear force [16]
and simultaneously measure tri-axis loads with added pressure [17]. Furthermore, we are
working on a system that uses these sensors to quantitatively and continuously measure
pressure and shear forces on the surface of a wheelchair seat.

In preparation for the human application of the constructed system, we conducted
preliminary experiments using a humanoid dummy. The purpose of this study is to visual-
ize continuous changes in pressure and shear forces that act on the wheelchair and body
contact surfaces during common wheelchair postural maneuvers (tilting and reclining),
and to confirm the following two points. The first is to verify that the pressure and shear
force measured between the human dummy and the wheelchair repeatedly exhibit similar
values over multiple measurements. The second is to verify that the measured time series
data show changes corresponding to the posture transformation of the wheelchair. Since
tilting and reclining are two typical postural maneuvers for wheelchairs, these two patterns
were first targeted for this preliminary test.

In the future, we anticipate that the seat angle will be automatically controlled based
on these measured values; however, this research is still in its early stages. We previously
measured the shear force on the buttocks when a healthy subject tilted the upper body
voluntarily [15]. However, this preliminary study simulates the body being moved by
others, without the subject moving themselves.

2. Materials and Methods

In this preliminary test, we attached the developed sensor system to an electric
wheelchair. We placed a humanoid dummy on the sensor to measure and visualize the
contact pressure and shear force data while tilting and reclining the seat.

2.1. Humanoid Dummy

The dummy used was a humanoid dummy with a built-in skeletal model (Humanoid
Dummy β Full Skeleton, HBD-0800-00, Avis Corp., Tokyo, Japan). The dummy is purported
to have human-like flexibility and a range of joint motion, approximating that of a human
body, covering approximately 95% of the moving parts of the average human body. Most
joints are movable in much the same way as in the human body. The scapula is interlocked
when the upper arm is raised, but the temporomandibular and sacroiliac joints are not
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movable. The body surface is covered with a soft urethane sponge, and almost all of the
landmark points of the human body can be confirmed by touch. When pressed with the
hand, the dummy’s body surface concaves, like that of a real human, and returns to its
original shape when the pressing hand is released. The size of the dummy was designed to
mimic a male of approximately 160 cm in height and 55 kg in weight, and the actual weight
was approximately 12 kg.

2.2. Sensor and Measurement Equipment

The sensor used in this study was a thin, flexible sheet-type sensor that was a hybrid
of two types of sensors: a commercially available sheet-type pressure sensor (FlexiForce,
A201/4.4 N, Tekscan Inc., Norwood, MA, USA) and a previously developed shear force
sensor (Figure 1) [17]. Various thin sensors for pressure measurement are already available
on the market, but thin sensors for shear force measurement are generally difficult to obtain,
so a hybrid-type thin sensor was used. The sensor, which has a diameter of 10 mm, is
depicted in Figure 1. With a thickness of 0.9 mm for the measurement portion of the sensor,
the sensor was capable of simultaneous tri-axial measurement of pressure and shear in two
axial directions. The measurement of shear force is based on our original principle [16].
The operating principle of the sensor is depicted in Figure 2. The shear force sensor is
made up of two sheet-type electrode substrates that face each other and are separated by a
rubber ring. An electrolyte is injected into a disk-shaped space between the rubber ring
and the electrode substrate. Therefore, when a voltage is applied between the electrodes on
the upper and lower substrates, current flows. When a shear force, i.e., a force parallel to
the substrate, is applied, the distance between the upper and lower electrodes changes, as
does the current. As a result, the shear force can be calculated by measuring the current.
Shear force is a two-dimensional force, but as illustrated by the photograph in Figure 1,
four electrodes are formed on one side and one electrode is formed on the other side, so
the currents between the two components can be measured simultaneously. According
to Reference [16], the relationship between shear force applied to the sensor and sensor
response is experimentally linear, up to a force of 5 N.
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Figure 1. Tri-axis load sensor. Overview of the tri-axis load sensor.

We also developed a multi-sensor measurement system, which consisted of a sensor-
driven circuit and computer software. The data sampling rate was set to 5 Hz. The sensors
were connected to a PC via Bluetooth technology, and the transmitted signals were digitized
as a value (N), representing the directional force applied to each axis, using proprietary
software. The sensor was placed at four key pressure ulcer prevention points: Ch1, the
subscapular angle; Ch2, the lumbar back; Ch3, the ischial tuberosity; and Ch4, the thigh.

The left side is an enlarged photograph of the main part of the sensor. As shown in
this enlarged photograph, the shear force sensor is laid on top of the pressure sensor. The
signal lines of the shear force sensor and those of the pressure sensor are put together at
the terminal of the right side. The terminal is connected to a normal signal cable (ca. 1 m)
via a connector, and the cable is connected to a circuit box (installed on the back of the
electric wheelchair).

The sensor was fixed to the body surface of the dummy using double-sided tape, and
fabric (material: nylon/polyurethane, cut from a commercial stocking, and approximately
0.15 mm thick) was stretched over it to prevent it from catching on the wheelchair’s support



Int. J. Environ. Res. Public Health 2022, 19, 13579 4 of 10

surface during measurement. The sensor’s surface and the stockings were attached to
each other using double-sided tape (Figure 3). The sensor was integrated with a flat cable
(~20 cm in length), and the other end of the flat cable was connected to the measurement
circuit box via a normal cable. The circuit box was fixed to the rear of the wheelchair, and
the cable was taped to the wheelchair so that it would not get in the way when changing
the posture of the humanoid dummy. The circuit box was powered by a mobile battery and
was wirelessly connected to a personal computer, as described above. Therefore, the entire
experimental system was physically independent of other measurement systems and was
easy to handle during experiments.
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Figure 3. Method to attach the sensor to the human dummy. Note: A diagram showing how to attach
the sensor to the humanoid dummy from a cross-sectional view.

2.3. Electric Wheelchairs and Posture Transformation

We used an electric wheelchair (F3 Corpus, Permobil Inc., Timrå, Sweden) with
a cushion (Corpus Ergo Air Cushion, Permobil Inc., Timrå, Sweden) on its seat and a
humanoid dummy (Figure 4).

The examiner manually operated the angle of the back support and seat using the
controller of the electric wheelchair, while also checking the change in that angle with a
three-dimensional position-measuring device (V120: Trio, OptiTrac Inc., Corvallis, OR,
USA) using light-reflective markers installed on the wheelchair. Five measurements were
taken for each of the two patterns, in which the backrest was tilted backward 60◦ from
its initial position (approximately 90◦ for both back and seat) and returned to its original
position, and for the tilting pattern, in which the seat was tilted backward 30◦ from its
initial position and returned to its original position. The dummy was lifted once on each
trial and then returned to a sitting position to release the force remaining on the contact
surface. The sensor was zero-corrected at the point of sitting up, and this was used as the
initial value from which changes were measured (Figure 5).
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understand the position of the sensor, the state before fabric attachment is shown. (Right) electric
wheelchair with the dummy. Multiple markers are affixed to the sides of the dummy and wheelchair
to monitor posture.
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2.4. Data Analysis and Visualization

We stored data collected from the sensors in the comma-separated value format. The
force data of the tri-axes were defined as “x-axis” for the longitudinal direction of shear
force “y-axis”, for the mediolateral direction, and “z-axis” for pressure. These directions
were defined with respect to the forces applied to the sensor. To confirm the approximate
measurement validity, the data were overlaid as a time series graph for all five trials
for each axis direction. In the statistical analysis, we extracted data that showed well-
represented changes in values due to posture, aligned the baselines, and calculated the
standard deviation of data from five measurements of the typical part to confirm that the
values were within 20% of the measurement’s minimum–maximum range.

Additionally, for a more comprehensive view of the magnitude of the forces and their
changes in the three axial directions for a typical trial, the data were visualized as a time
series graph, with the vertical axis as pressure and the two shear force axes as vectors
starting from the plot points.

3. Results

All data were successfully recorded without omissions in a total of 10 trials—5 for
each of the two patterns of postural transformation.
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3.1. Measurement of Forces in Each Axial Direction and Repeatability

The time variation of the measured values for each axis is shown in Figures 6 and 7.
The former is a reclining pattern, and the latter is a tilting pattern. In Figures 6 and 7,
the horizontal axis shows time and the vertical axis shows force. The direction of force
is positive for the foot side and negative for the head side in the longitudinal direction,
and positive for the inside and negative for the outside in the mediolateral direction.
In Figure 6, for each of the five repeated trials, a nearly identical pattern was observed for
each force trajectory. In Figure 7, as with the reclining pattern, these forces showed a similar
trajectory for the five trials, and the force values recorded when tilting were generally
smaller than those when reclining, with the exception of sensor Ch4. Furthermore, the
standard deviations of 20 data points in the x-axis (shear force) were 0.08 N, 0.04 N,
0.05 N, and 0.39 N for before and after the point at which the back support was fully
reclined and for the reclining pattern, where there were large changes in measured values,
respectively. The percentages of the maximum and minimum ranges were 4.9%, 18.5%,
7.6%, and 27.8%, respectively.
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3.2. Direction of Force and Its Change in a Typical Example

Figure 8 shows a vector representation of the combined tri-axial forces with respect to
a typical one from the five-trial data. In Figure 8, the horizontal axis shows time and the
vertical axis shows force. The arrows represent a two-dimensional vector of shear forces,
with the pressure value (z-axis) as the starting point. The length of the arrow represents
the magnitude of the shear force vector, and the direction of the arrow represents the
direction of the shear force vector. The horizontal component of the arrow corresponds
to the x direction in Figures 6 and 7 (positive—foot side; negative—head side), and the
vertical component corresponds to the y direction in Figures 6 and 7 (positive—medial side;
negative—lateral side). The length scale of the vector is the same as the pressure (z-axis). In
the upper part of Figure 8, regarding the recline pattern, a large shearing force was observed
in the longitudinal direction on Ch1 and Ch4. In the lower part of Figure 8, regarding the
tilting pattern, all forces showed smaller values to those in the recline pattern; however,
in Ch3, we observed that only the shear force in the longitudinal direction increased and
then decreased.
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4. Discussion

In this study, we confirmed that the sensor system we constructed was capable of
continuously collecting quantitative data during postural changes in a wheelchair. The
recorded data showed similar trends over multiple trials and seemed to be reproducible.
The x-axis data for Ch4 in the reclining pattern showed more variation in measured values
than the others. However, when the baselines were aligned, the overall trend was similar
and appeared to be influenced by the variation in the initial values. One of the limitations
of this study is that variations in the mechanical initial conditions of the human dummy
may have influenced the measurements, which could not be fully unified.

The fact that relatively large forces were observed on Ch1 and Ch4 during reclin-
ing was considered a reasonable result, because the shearing force increased because of
the deviation between the position of the center of rotation of the human body and the
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wheelchair. Additionally, the force was smaller when tilting than when reclining, and only
the displacement of the ischial nodule appeared large (Figure 8, Ch3). This was considered
appropriate in terms of the tilting characteristics, as the body does not move on the seat
and the load site changes only when the direction of gravity changes.

However, it should be noted that the test we conducted used a humanoid dummy,
which is fundamentally different from an actual person. First, the dummy used in this
study weighed approximately 12 kg, which is approximately one-fifth of the weight of
the human model. Although the skeletal model is built into the dummy and mimics bone
protrusion, joint motion, and so forth, the lumbar vertebrae are not mobile, and the soft
tissues are composed of urethane sponge, which have different characteristics from those
of a real person. In particular, the fact that the dummy is considerably lighter than a human
is expected to have a significant effect on changes in pressure and shear force.

We also found some concerns regarding points other than the dummies. We repeatedly
observed spike-like data over a relatively long period in multiple trials, so there may not
be an instantaneous displacement (i.e., transition point from static to dynamic friction).
Additionally, although we zero-corrected the sensor before each measurement, it may
have been more appropriate to zero-correct the sensor with no load, to confirm the true
magnitude and direction of the force in this case. Furthermore, the fact that the y-axis
forces (in the internal and external directions) were unexpectedly large suggests that the
experiment may not have been set up well enough. To set up the dummy in a sufficiently
neutral condition, the examiner may need to not only confirm this by observation, but also
devise a more appropriate initial condition.

The preliminary findings indicate that the measurement system, based on the wearable
seat-type sensor developed by us, has reasonable repeatability and that the initial state
of the subject’s sitting affects the subsequent measurement results. The latter problem
can arise when applied to actual users, and clarification of this point was especially clini-
cally significant. Furthermore, the equipment and testing methods will be reviewed, and
preparations will be made for human subject testing. In the future, the development of
such measurement devices is expected to progress further and contribute to the safety of
wheelchair users.

5. Conclusions

In this preliminary test using humanoid dummies, our system with wearable sheet-
type sensors showed similar trends in repeated trials. This might indicate that the system
is valid for measuring the pressure and shear forces acting on the contact surface between
the person sitting in the wheelchair and the seat surface. This will assist in more effective
planning of human trials and will help improve the safety of wheelchair users in the future.
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