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Abstract: Rivers are the main sources of freshwater supply for the world population. However, many
economic activities contribute to river water pollution. River water quality can be monitored using
various parameters, such as the pH level, dissolved oxygen, total suspended solids, and the chemical
properties. Analyzing the trend and pattern of these parameters enables the prediction of the water
quality so that proactive measures can be made by relevant authorities to prevent water pollution and
predict the effectiveness of water restoration measures. Machine learning regression algorithms can
be applied for this purpose. Here, eight machine learning regression techniques, including decision
tree regression, linear regression, ridge, Lasso, support vector regression, random forest regression,
extra tree regression, and the artificial neural network, are applied for the purpose of water quality
index prediction. Historical data from Indian rivers are adopted for this study. The data refer to
six water parameters. Twelve other features are then derived from the original six parameters. The
performances of the models using different algorithms and sets of features are compared. The derived
water quality rating scale features are identified to contribute toward the development of better
regression models, while the linear regression and ridge offer the best performance. The best mean
square error achieved is 0 and the correlation coefficient is 1.

Keywords: water quality index; regression; linear regression; ridge

1. Introduction

Surface water, especially that from rivers, is the main source of fresh water and is
important for ecology, social well-being, and economic development [1,2]. According to a
report by the United Nations Environment Program (UNEP) [3], in some countries, surface
water comprises up to 90% of the population’s main drinking water sources. In the same
report, the UNEP reported three important findings: (1) that severe pathogen pollution
affected one-third of the rivers in Latin America, Africa, and Asia, (2) that severe organic
pollution was observed in one-seventh of the rivers of the same continents, and (3) that
moderate to severe salinity pollution in one-tenth of the rivers was reported. Therefore,
realizing the seriousness of the issue, one of the United Nation’s (UN) 15-year Sustainable
Development Goals (SDG) is to ensure water access and sanitation (Goal 6) [4]. This
particular goal aims to guarantee the right of the world population, regardless of economic
status, to have access to clean drinking water and sanitation. In total, 193 of the UN
members signed the pledge to strive for this goal.

The water pollution in rivers is influenced by a variety of causes, including natural
factors, such as rainfall and land erosion [5], and human activities, such as urbanization,
agriculture, and manufacturing [6]. Developing countries frequently experience rapid
economic expansion, and every development initiative has the potential to have negative
environmental consequences. Development also attracts population growth, which in-
creases the demands for food production by the agricultural sector. This puts stress on the
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soil’s natural fertility as a result of the over-extraction of nutrients and necessity for the use
of chemical fertilizers. The fertilizers then run into rivers and groundwater, polluting the
water sources and wreaking havoc on the ecosystem and human health. Thus, the need for
efficient water quality monitoring and assessment is becoming more pressing and critical
with respect to human and environmental health protection, and there is also a need for
effective, long-term water management.

Many countries have water monitoring systems that monitor the water quality through
various water quality parameters. Among the parameters are dissolved oxygen (DO), po-
tential hydrogen (pH), electrical conductivity (CO), biological oxygen demand (BOD),
nitrate (NO3−), faecal coliform (FC), and total coliform (TC). The water quality parameters
are often combined into a single value known as the water quality index (WQI), used to
quantify the level of water quality [7]. The WQI has been widely used to assess and catego-
rize the quality of both surface and ground waters [8–11]. An example of a water quality
monitoring authority is the Malaysian Department of the Environment under the Ministry
of Environment and Water. The department has 233 monitoring stations nationwide [12].
Meanwhile, the United States Geological Survey (USGS) is in charge of monitoring and
collecting the water parameters across the states via more than 13,500 stations [13]. The
historical data from these stations are approximated to amount to more than 4.4 million.
In 2013, it was reported that there are 870 water monitoring stations in India that are
monitored by the Central Pollution Control Board (CPCB) under the Indian Ministry of the
Environment, Forests and Climate Changes [14]. However, among the main weaknesses of
the existing system is a lack of data management and trend analysis.

Over the last few years, artificial intelligence (AI), particularly machine learning
models, have been broadly applied to solve many environmental engineering problems,
including river water quality prediction modelling [15–18]. The regression techniques,
such as linear regression (LR), decision tree regression (DT), support vector regression
(SVR), random forest regression (RF), extra tree regression (ET), ridge, Lasso, and the
artificial neural network (ANN), are popularly selected by researchers for the forecasting
and prediction of various problems, such as ozone concentration prediction [19], solar
thermal system forecasting [20], indoor temperature forecasting for building temperature
control [21], and water quality prediction [22–24]. However, the best algorithm must be
subject to no free lunch theorem, in which there is no ultimate algorithm that best suits
all the types of problems or data [25]. In this research, we investigate the application
of these eight algorithms for WQI prediction. These techniques are selected based on
their reported high performance, as well as their popularity. We aim to identify the best
performer among these algorithms for WQI prediction is as a guideline for future research
in this area. Indian water quality data are used in this research. The data are freely and
openly available for researchers in Kaggle; hence, future researchers will be able to emulate
this work without data accessibility issues. Six water quality parameters and two sets of
derivative features from the original features are used as the inputs for the algorithms in
order to learn the patterns and predict the WQI. The results show that among the eight
regression techniques studied, LR and ridge, using the derived features, are able to achieve
the zero mean square error (MSE), the highest correlation coefficient (r), the lowest root
mean square error (RMSE), and the lowest mean absolute error (MAE), thus reflecting their
excellent prediction accuracy.

The rest of this paper is organized as follows. Existing works in this area are reviewed
in Section 2, and this is followed by the methodology applied in this research in Section 3.
The results are presented and discussed in Section 4. Directions for future work and
challenges can be found in Section 5. Finally, the work is concluded in Section 6.

2. Related Works

In this age and era of AI data, such data can be analyzed autonomously, efficiently,
and objectively. Therefore, many studies have been conducted on the application of AI
for water quality index predictions. The prediction systems are able to guide authorities
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in making proactive decisions in order to prevent the degradation of water quality and
implement suitable measures in addressing water pollution.

In [9], Hong Kong’s Lam Tsuen River data are used, and the ET machine learning
model is applied to estimate the monthly WQI of the river. The ETR model’s performance
is compared with SVR and DT. Ten water quality parameters, including the BOD, chemical
oxygen demand (COD), DO, CO, pH, nitrate-nitrogen (NO3−N), nitrite-nitrogen (NO2−N),
phosphate (PO4

3−), temperature (T), and turbidity (TUR), are used to create the prediction
models. The prediction test performance achieved a correlation coefficient value of 0.98
and RMSE of 2.99. However, the authors use 10 factors, which is costly, as it requires more
sensors in order to obtain these data [26]. The work also ignores other regression models
that are available. On the other hand, 16 different data mining algorithms are used for WQI
prediction, using the BOD, COD, DO, pH, total solids (TS), FC, PO4

3−, NO3−, TUR, and CO,
in [27]. The data are from two Talar catchment water quality monitoring stations collected
over a six-year period (2012–2018). The data refer to 10 input parameters. However, the
findings show that not all the parameters are important for ensuring a good prediction
accuracy, and the best parameter combination is algorithm-dependent. The FC is observed
as the most important, while the TS is the least important.

In [28], physicochemical data from 19 wells near a shale gas extraction site are applied.
The WQI of groundwater is modelled using ANN techniques. There are seven input
parameters of the ANN, including CO, pH, calcium (Ca), magnesium (Mg), phosphate
(PO4−P), potassium (K), and sulfur (SO4

2−), but the best model is achieved using only
five input neurons, including CO, pH, Ca, Mg, and K, SO4

2−. The model achieved an
RMSE value of 0.651258 and correlation coefficient value of 0.9984. Similarly, the ANN
model is used in another study [29]. The WQI was computed from the COD, BOD, DO,
suspended solids (SS), pH, and ammoniacal nitrogen (AN) parameters and obtained a
high correlation of 98.78%. Nonetheless, there is still room for improvement. The effect of
reducing the number of parameters has been considered, but different ML models have not
been evaluated. ANN is popularly chosen for WQI prediction [24], and it is also adopted
in [30,31] for Malaysian river predictions. The ANN is used in [30] to predict six water
quality parameters using 31 input parameters. The six parameters are important pollution
indicators. Meanwhile, two ANN architectures, namely the back propagation NN (BPNN)
and radial basis function NN (RBFNN), are studied in [31] to predict the WQI based on
standard Malaysian water quality parameters, including the DO, BOD, COD, SS, AN, and
pH. The effect of excluding BOD in WQI prediction is also investigated in the study, as this
parameter measurement is costly. The findings show that excluding BOD in the prediction
does not jeopardize the model’s prediction and, additionally, RBFNN was found to be a
good model.

In other research [32], the ANN is used to predict different sets of water quality param-
eters, including the total nitrogen (TN), ammonium (NH4

+), PO4
3−, and COD. The highest

performance is associated with the prediction of PO4
3−, with a correlation coefficient value

of 0.98. However, the model only predicts individual water quality parameters, rather
than the WQI. ANN models are also used in [33] to predict WQI parameters, where the
results for the pH, CO, DO, and TUR are presented. Specifically, two multilayer perceptron
(MLP) models are employed in the work. A good performance is observed, suggesting
that MLP is able to predict the South African water quality well. Similarly, an ANN is
used in [34] to predict the WQI value of the Warta River in Poland, using five selected
parameters, including the total dissolved solids (TDS), chloride, total hardness (TH), NO3−,
and manganese. The model obtained a 0.9792 correlation coefficient value.

Multi-task learning and deep neural networks are studied in [35] for the purpose
of water quality prediction. Four multitask structures are proposed in the work, which
employs data from 120 water quality monitoring stations in China. The proposed method is
compared with seven other models, and the proposed multi-task, gated, hidden parameter
shows a significantly better performance.
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The works reviewed are tabulated in Table 1. From the reviewed works, it can be
seen that water quality prediction research is an active topic among researchers worldwide.
This demonstrates the importance of this topic. The performance of the predictor is
influenced by the algorithm used, as well as the input parameters. ANN is observed
to be the popular choice among the researchers in this area, and the parameters used
are not uniform. Additionally, the parameters used and their number also influence the
performance. Therefore, this study examines the possibility of improving water quality
index prediction through the choice of the algorithm and parameters.

Table 1. Existing works.

Ref. Data Origin Prediction Algorithm Parameters

[9] Lam Tsuen River, Hong
Kong ET (vs. SVR & DT) BOD, COD, DO, CO, pH, NO3−N,

NO2−N, PO4
3−, T, and TUR

[27] Talar, Iran

M5P; RF; random
tree (RT); reduced error pruning tree (REPT);

BA-M5P; BA-RF; BA-RT; BA-REPT; CVPS-M5P;
CVPS-RF; CVPS-RT; CVPS-REPT; RFC-M5P;

RFC-RF; RFC-RT;
RFC-REPT

(where; bagging (BA); CV
parameter selection (CVPS); and randomizable

filtered classifier
(RFC))

BOD, COD, DO, pH, TS, FC, PO4
3−,

NO3−, TUR, and CO
(FS: the most important, TS: the

least important)

[28] Syczyn, Lublin Province,
Poland ANN CO, pH, Ca, Mg, PO4−P, K, and

SO4
2− (best set: CO, pH, Ca, Mg, K)

[29] Klang, Malaysia ANN
COD, BOD, DO, SS, pH, and AN
(DO: the most important, pH: the

least important)

[30] Langat, Malaysia ANN 31 parameters

[31] Klang and Langat, Malaysia ANN (BPNN & RBFNN) DO, BOD, COD, SS, AN, and pH

[32] Lake Qaroun, Egypt ANN TN, NH4
+, PO4

3−, and COD

[33]

Tyhume River,
Bloukrans River, Buffalo

River, Eastern Cape
Province, South Africa

ANN (MLP)
Input: T, chloride, sulfate,

and PO4
3−

Output: pH, CO, DO, and TUR

[34] Warta River, Poland ANN TDS, chloride, TH, NO3−,
and manganese

[35] 120 rivers and lakes, China
Multi-task learning and deep neural network (vs.

LR, XGBoostmodel, MLP, CNN, LSTM, GRU,
and ATTENTION)

pH, DO, COD, and AN

3. Methodology

The overall structure of the methodology used in this research is illustrated in Figure 1.
Indian water quality data are used in this research. They form an open dataset with
six water quality parameters. The whole methodology can be broadly categorized into
two phases, namely, the data preprocessing phase and regression model training and
testing phase.
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3.1. Dataset

Indian water quality data from Kaggle (https://www.kaggle.com/datasets/anbari
van/indian-water-quality-data, accessed on 1 December 2021) are used in this research.
The data are freely available; thus, this work can easily be replicated by using the same
dataset. In the dataset, historical water quality parameters from several locations in India
are provided. The data were collected between 2003 and 2014, with 1991 samples from
various Indian states. These data are used by the Indian government to determine whether
the drinking water supplied to the population meets the required standards.

India has a tropical climate in its southern states, while the northern states have a
temperate climate [14]. It has 13 major river basins, including the Brahmaputra, Ganga,
Indus, Godavari, Krishna, Mahanadi, Narmada, Cauvery, Brahmini, Tapi, Mahi, Pennar,
and Sabarmati. The river basins cover more than 20,000 km2 of the surface area. The
rivers are mostly perennial and dry up in summer. More than 80% of the rivers are heavily
polluted, with the Ganga and Yamuna Rivers being the most polluted [36].

https://www.kaggle.com/datasets/anbarivan/indian-water-quality-data
https://www.kaggle.com/datasets/anbarivan/indian-water-quality-data
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Six water quality parameters from this dataset, including the DO, pH, CO, BOD, NO3−,
and FC, are used here. These parameters are important for measuring the water quality.
DO is among the most important indicators of water quality. Surface water absorbs oxygen
due to the aerating effects of winds. A low amount of DO in water may indicate that there
are too many bacteria or too much algae present [37]. When the DO level is too low, fish
and other aquatic creatures cannot survive [38]. Lower DO is also reflected by higher BOD,
which is due to less oxygen being available for oxygen-hungry organisms [39]. Healthy
pH levels are also an important water quality indicator. For instance, toxic heavy metals
dissolve quickly in acidic water, making the water more harmful to living things [40].
The availability of crucial plant nutrients is similarly affected by the pH, with several
nutrients becoming less abundant when the pH is above 7. The next parameter, CO, is a key
indication of ionic salt contamination, and it is used to determine the concentration of ionic
salts in water. The conductivity of drinking water ranges from 0.05 to 0.5 mS/cm. High CO
is not only harmful to health but also destructive to piping infrastructure. Additionally,
monitoring the presence of NO3− in water, especially that for domestic usage, is important.
Too much nitrate consumption might alter the way in which the blood transports oxygen
and lead to methemoglobinemia [41]. Furthermore, nitrate is a good indicator of industrial
and urbanization pollution [30]. The last parameter in this dataset is the FC. A high FC
reading indicates fecal contamination, with a strong possibility that harmful pathogens,
such as Salmonella spp., Shigella spp., Vibrio cholerae, and E. coli, exist in the water
supply [42]. Fecal contamination is known to be cause of cholera outbreaks in India [43].
The outbreak had caused loss of many lives.

The water quality index based on this dataset is visualized using choropleth maps
in Figure 2 according to the state and selected years. The pre-processing of the locations
and state features was performed prior to the plotting of these data. For some of the state
data, which are equal to NaN, the state information was obtained from the location feature.
However, due to missing data on the state for some of the years, not all the states appear
on each map. For example, the data for the Madhya Pradesh state (central India) are only
available for 2012 and 2013; therefore, the state only appears in these two years. The lighter
color indicates a better water quality, and the darker color indicates a low water quality. The
WQI of the dataset ranges from 19.3 to 99.62, according to which the water quality ranges
from excellent to poor. The visualization shows that the water quality is not consistent from
year to year and varies from one state to another. The water from protected forestlands in
the upper catchment is of an excellent quality, has a low level of contamination, and has a
very good WQI.

It is worth noting here that the prediction models used in this research are not year-
or location-specific. Hence, the models can be used for any location and time if the same
parameters are used.
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3.2. Data Preprocessing

As a measure used to improve the data quality, data processing is a crucial step in the
data analysis process. In this stage, the WQI is calculated using the dataset’s parameters.
The WQI is calculated by utilizing the parameters that have a substantial impact on the
water quality [26]. The WQI value is calculated using Equation (1) [44].

WQI =
∑n

i=1 WQWSi

∑n
i=1 wi

(1)

Here, n denotes the number of parameters used to calculate the WQI. The wi represents
each feature’s unit weight. Meanwhile, WQWSi is the water quality weight score. It is
calculated using Equation (2) [45].

WQWSi = wi ×WQRi (2)

In Equation (2), WQRi is a value used as a quality rating scale for each feature i and is
calculated using Equation (3) [45,46] below:

WQRi = 100×
(

Actuali − Ideali
Standardi − Ideali

)
(3)

where it is calculated using the actual value of parameter i in the tested water samples,
Actuali, the optimal parameter value i of the pure water, Ideali, and the suggested parame-
ter standard value i, the Standardi. Table 2 displays the values of wi, Ideali, and Standardi
for each parameter, which can be found in [44,47,48].
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Table 2. Parameter unit weights wi and recommended standard values of the parameters used for
calculating the WQI.

Water Quality Parameters wi Ideali Standardi

Dissolved oxygen 0.281 14.6 mg/L 10 mg/L

pH 0.165 7 8.5

Conductivity 0.281 0 µS/cm 1000 µS/cm

Biological oxygen demand 0.234 0 mg/L 5 mg/L

Nitrate 0.028 0 mg/L 45 mg/L

Fecal coliform 0.281 0 Cfu/100 mL 100 Cfu/100 mL

In this study, unlike the previous studies, where researchers investigated the combi-
nations, exclusion, and importance of the parameters and their effects on the prediction
performance, all six parameters are adopted, and the application of two sets of their deriva-
tives features, namely the WQWSi and WQRi, is studied. All 18 features are evaluated as
potential inputs. The features are divided into 3 sets. Table 3 shows the three combinations
that were created and evaluated. Set 1 (i.e., qi1) consists of raw features, including the
DO, pH, CO, BOD, NO3− (i.e., Na), and FC. Next, set 2 (i.e., qi2) consists of the WQRi,
calculated using Equation (3). Another set of features (i.e., qi3) includes the WQWSi from
Equation (2).

Table 3. Different input feature combinations.

Set Number Feature Combination

1 qi1 = [‘ph’, ‘do’, ‘co’, ‘bod’, ‘na’, ‘fc’]

2 qi2 = [‘npH’, ‘ndo’, ‘nco’, ‘nbod’, ‘nna’, ‘nfc’,]

3 qi3 = [‘wph’, ‘wdo’, ‘wco’, ‘wbod’, ‘wna’, ‘wfc’]

3.3. Regression Water Quality Prediction

Previous studies showed that the selection of the learning algorithm influences the
quality of the prediction system. Hence, this study used eight standalone regression
learning algorithms (DT, LR, Ridge, Lasso, SVR, RF, ET, and ANN) to predict the WQI value.

The standard regression equation serves as the foundation for every type of regression
machine learning model and is calculated using Equation (4) [49]:

Y = Xβ + e (4)

where Y is the dependent variable, which, in this case, is the WQI, X stands for the
independent variables (i.e., water quality parameters, qi1, qi2, and qi3), β stands for the
estimated regression coefficients, and e stands for the errors and residuals.

3.3.1. Decision Tree Regression

The DT model is generated using the provided water quality samples. The DT algo-
rithm, being processed in such a way, is used to identify the optimal tree structure through
the minimization of the fitness function. In this work, the DT fitted the output WQI value
using each of the independent water quality factors. The dataset is divided into different
splitting points of the independent features. The processing of the algorithm generates
the error value between the actual and predicted value for each split point. The error is
calculated based on the pre-defined fitness functionality. The process continues recursively.

A decision tree generated using the water quality data is represented in Figure 3. The
‘root’ represents the top-most decision node, a ‘node’ represents a decision node, and the
leaves represent the final WQI predicted values, which is the final decision.
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The data split is achieved here using the fast divide and conquer greedy algorithm.
However, this greedy algorithm might create bad decisions on deeper levels due to the
instability of the estimations.
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3.3.2. Linear Regression

The LR algorithm links the independent variables Vi to the dependent variable Vd
using Equation (5) [50].

Vd = β0 + β1Vil + · · ·+ βnVin (5)

The β0 in the equation is the intercept value, and βi (i = 1, 2, . . . , n) are the coefficients
of the descriptions/parameters. The βi values are obtained using the least square technique.
Vi refers to the parameters of the water quality {‘ph’, ‘do’, ‘co’, ‘bod’, ‘na’, ‘fc’}. Here, n = 6
is the number of parameters. In this study, there are three sets of parameters, and each set
contains six descriptors, none of which overlap.

3.3.3. Ridge Regression

Ridge regression is commonly used for data with independent and correlated vari-
ables. It overcomes the shortcoming of LR in dealing with highly correlated data using `2
penalized least squares. The `2 penalty avoids a sparse model. It is calculated using the
square of coefficients magnitudes. The ridge regression coefficients are calculated using
Equation (6) [51]:

β̂Ridge = argmin ‖Y− Xβ‖2
2 + λ‖β‖2

2 (6)

where λ > 0 is the tuning parameter. The Y and X are the same as previously defined.

3.3.4. Lasso Regression

Lasso regression, which stands for Least Absolute Shrinkage and Selection Operator, is
reported to work well with a large number of data, where systematic and rapid approaches
are important, but it is not stable for highly correlated predictors [49]. The penalty calcu-
lation approach is expected to obtain a greater number of coefficients close to zero and a
small number of coefficients with larger values. Lasso is also known as `1 regularization,
and the estimator definition is shown in Equation (7) [51]:

β̂lasso = argmin ‖Y− Xβ‖2
2 + λ‖β‖1 (7)

where λ ≥ 0 is the tuning parameter.

3.3.5. Support Vector Regression

Here, the WQI value is also predicted using SVR and the water quality factors. The
x space’s input vector is mapped onto a space with higher dimensions. This process is
executed using the correct nonlinear kernel function, denoted as ϕ(x). To address this
complex nonlinear regression of the input space, a simple linear regression is obtained. The
SVR estimator fSVM is obtained using Equation (8) [9]:

fSVM = w·(x) + b (8)

where w represents the weight vector for the regression coefficient, while the value b
indicates the biases of the estimator.

SVR has a good prediction performance reputation due to its enhanced optimization
approaches that can be applied to a wide set of variables and kernels.

3.3.6. Random Forest Regression

Similar to the DT algorithm, RF also generate trees. However, instead of one tree,
it consists of multiple decision trees, which can be used to find the best tree with which
to obtain the WQI value. The water quality factors are the features, and x and the WQI
values are values which are factored into the model to create more than one decision tree,
as shown in Figure 4.
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This approach to predicting the WQI value helps us to obtain an unbiased estimate
error of the generalization of the trees. The Gini impurity is used here to obtain the
probability misclassification of each node. The best aspect of the algorithm is that it
preserves a good regression accuracy even with very small and partially missing datasets.
However, it may cause data overfitting and add noisy regression tasks.

3.3.7. Extra Tree Regression

ET is an extension of RF and an ensemble of DT. ET uses all the training set to train all
the tress and makes its prediction by averaging the predictions from the decision trees. It is
a highly randomized extension of RF and, thus, less prone to overfitting compared to RF.

3.3.8. ANN Regression

An ANN is also used here for the WQI regression problem. The ANN is illustrated in
Figure 5. A total of 6 inputs, including ‘ph’, ‘do’, ‘co’, ‘bod’, ‘na’, ‘tc’, as well as 2 hidden
layers with 100 hidden neurons, are used to obtain the possible WQI value. An additional
x0 value, known as bias, is used as an extra weight, z (this weight is different from wi), in
each hidden layer. The biases help us to adjust the weighted sum of the output and input
data for each neuron. The hidden layers are linked using weights, e.g., the neuron z(i)j from

the ith layer. The link is obtained using Equation (9):

z(i)j = f

(
n

∑
k=1

x(i−1)
jk z(i−1)

jn

)
(9)

where f () indicates the involvement of the activation function. In this work, the refined
linear unit (reLU) function is used for all the hidden layers. However, for the output layer,
the pure linear function is adopted. Here, n represents the number of neurons used in
(i− 1)th hidden layer.
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3.4. System Evaluation

The statistical calculations of the mean square error (MSE), correlation coefficient
(r), and mean absolute error (MAE) are utilized to measure the WQI prediction models’
performance. Additionally, the root mean square error (RMSE) is also measured, but only
for the sake of comparison with the available works. The statistical values are calculated
using Equations (10)–(13) [27,33]:

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (10)

r =
∑n

i=0(xi − x)(yi − y)√
∑n

i=0(xi − x)2(yi − y)2
(11)

MAE =
n

∑
i=1
|yi − ŷi|/n (12)

RMSE =
√

MSE (13)

where n represents the overall number of data points, yi is the actual WQI value, and ŷi is
the predicted WQI value for the data point i. In the equation for the correlation coefficient,
xi and yi are the values of the x-variable and y-variable, respectively, whereas x and y are
the means of all the data points.

4. Results & Discussion
4.1. Regression Models Evaluation

The identification of the optimum regression model for WQI prediction from among
the eight regression algorithms and three sets of input features is the main objective of this
study. The data are divided into 80% training and 20% testing ratio groups. Tables 4–6
display the model prediction outcomes for the studied regression techniques and feature
sets. The cells with the best results are shaded in grey.

Based on the MSE, it can be observed that all the regression algorithms using feature
set 2, qi2 = (‘npH’, ‘ndo’, ‘nbdo’, ‘nec’, ‘nna’, ‘nco’), performed better in comparison to the
models built using the same regression algorithms trained with set 1. Among the models
trained using qi2, the LR model and Ridge have the lowest MSE, which is equal to 0. The
correlation coefficient values in Table 5 also show that LR and Ridge have the highest
correlation coefficients, which are equal to 1. It is also observed that qi2 is the best input
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for LR, Ridge, Lasso, and ANN. Meanwhile, qi3 is the best input for DT, SVR, RF and
ET. Furthermore, the calculated MAE results of LR and Ridge also have very low values,
which are 1.3843× 10−14 and 1.2872× 10−5, respectively. Set 2, qi2= [‘wph’, ‘wdo’, ‘wco’,
‘wbod’, ‘wna’, ‘wfc’], is also found to produce the lowest MAE for all the algorithms, with
the exception of DT.

Table 4. Models’ mean square errors, MSE.

WQI WEIGHT DT LR Ridge Lasso SVR RF ET ANN

qi1 8.2011 62.1054 60.6084 57.3244 191.9587 15.6543 7.9947 90.6694
qi2 1.9124 0 0 0.0071 2.7043 1.7122 1.5602 0.1415
qi3 1.0522 0 0.0025 0.3230 2.5803 0.9258 1.4879 1.3240

Table 5. Models’ correlation coefficients, r.

WQI WEIGHT DT LR Ridge Lasso SVR RF ET ANN

qi1 0.9781 0.7912 0.7841 0.8133 0.4457 0.9459 0.9772 0.7575
qi2 0.9933 1 1 0.9999 0.9917 0.9942 0.9947 0.9995
qi3 0.9965 1 0.9999 0.9995 0.9953 0.9975 0.9966 0.9966

Table 6. Models’ mean absolute errors, MAE.

WQI WEIGHT DT LR Ridge Lasso SVR RF ET ANN

qi1 0.9465 5.8896 6.0249 5.9968 9.3149 2.1533 1.6170 4.7167
qi2 0.2457 1.3843 × 10−14 1.2872 × 10−5 0.0677 0.5926 0.2348 0.1867 0.1137
qi3 0.17458 1.9879 × 10−14 0.0052 0.4633 0.6988 0.2649 0.2274 0.2193

The performances of the eight algorithms are illustrated in Figures 6–8. The y-axis in
the graphs is the WQI value and the x-axis is the time. The graphs in Figure 6 show the
outputs of the models trained using the eight regression algorithms and feature set 1 (i.e.,
qi1), while Figures 7 and 8 presents the predicted outputs for feature set 2 (i.e., qi2) and
feature set 3 (i.e., qi3), respectively. The visualization in Figure 7 shows that the LR- and
Ridge-trained models provided almost exact plot predictions, where the predicted WQI
(red) overlapped with the actual/testing WQI (green) value. The worst predictive model is
that trained with the combination of SVR and qi1 (Figure 6), and it can be seen that there
is almost no overlap between the predicted and actual values. Additionally, the MSE is
as high as 191.9587, and the correlation coefficient observed is 0.4457, while the MAE is
9.31485. From the three figures, it can be seen that the regression models trained using qi2
are better, with more overlaps between the actual and predicted values for all of the eight
models. In contrast, the models trained using raw data (qi1) have poor performances, with
a greater number of inaccurate predictions. The regression models using the water quality
weight score, qi3, have a better performance than those using qi1 and are almost as effective
as those using qi2.
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Overall, it is observed that the regression algorithms influence the WQI prediction
system’s performance. Additionally, one of the most critical performance influencers is
the set of the features used to train the models. The raw features tend to perform the
worst, whereas the derivative features of the water quality rating and weight score (qi2, qi3)
contribute to a better performance. With these derivative features, the LR and Ridge are
the more robust and flexible standalone models, with the lowest prediction error and
highest correlation.

4.2. ANN Models Evaluation

From Section 2, it can be seen that ANN is the popular choice among researchers in
this field. Therefore, the ANN models trained using different features (i.e., qi1, qi2, qi3) are
closely analyzed here.

The accuracy of the model is presented in Figure 9. It can be observed that qi2 provides
a better prediction model, where the accuracy is 99.963%, whereas the set qi1 gives an
accuracy of 90.309% and set qi3 has an accuracy of 91.1789%, which is slightly better than
that of qi1. It is also observed that, with a larger batch size, the accuracy increases more
gradually compared to a smaller batch size. This is to be expected, and the finding follows
the trend usually observed for ANN.
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4.3. Comparison with Existing Works

The performances of the recent and closely related models and the models obtained
in this work are compared in Table 7. The existing works used the ET, ANN, SVM, least
square SVM (LS-SVM), BA-RT, long short-term memory (LSTM), and MLP. Some of the
parameters adopted are the same as those available in the dataset used in this work. All
the works reported the correlation value, but not all reported the RMSE or MSE values.

Table 7. Comparing the proposed models to recent existing models.

Reference & Source Model Used Parameters Predicted Value(s) r RMSE MSE

[9]
Lam Tsuen River,

Hong Kong

ET

BOD, COD, DO, EC,
pH, NO3-N, NO2-N,
PO43-, T, and TUR

WQI 0.98 2.99

BOD, TUR, PO43- WQI 0.97 3.74

[28]
Syczyn, Lublin

Province, Poland
ANN EC, pH, Ca, Mg, K WQI 0.9992 0.2131

[52]
Perak, Malaysia

SVM COD, BOD, DO, AN,
SS, pH

WQI 0.9184

LS-SVM WQI 0.9227

[29]
Klang, Malaysia ANN COD, BOD, DO, AN,

SS, pH WQI 98.78

[27]
Talar, Iran BA-RT

BOD, COD, DO, pH,
TS, FC, PO43-, NO3-,

TUR, and EC
WQI 0.941 2.71

[44]
India

ANN pH, DO, CO, BOD,
NA, FC

WQI 0.9617

LSTM WQI 0.9421

[32]
Lake Qaroun, Egypt ANN TN, NH4

+, PO43
−,

and COD PO43
− 0.98

[33]
Eastern Cape Province,

South Africa
ANN(MLP) pH, EC, DO, and TUR pH, EC, DO, TUR 0.9935 39.0308

[34]
Warta River, Poland ANN TDS, chloride, TH,

NO3-, and manganese WQI 0.9792 0.62450

Proposed model,
India LR, Ridge pH, DO, CO, BOD,

NA, FC WQI 1 0 0
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One work [44] used the same dataset as the one adopted here. It can be seen that the
proposed work reported the best correlation value and RMSE and MSE values, which are 1,
0, and 0, respectively. These are also better than the findings of [44]. The better results are
contributed by the regression algorithm, as well as the features used.

5. Future Works and Challenges

The findings suggest that LR and Ridge are the best regression algorithms for water
quality prediction systems, while the water quality rating scale is the best input for the
model. As can be seen from previous research [27–29], not all the features are important,
and selecting the best combination leads to a better prediction model. Hence, in the future,
a more in-depth study on the effect of the feature combination and its importance should
be pursued.

In a paper issued by the International Telecommunication Union (ITU) [53], AI’s
ability to support the UN’s SDG is acknowledged. However, despite the many benefits
of AI-based prediction systems, such as their capacity for automated data pattern and
trend analysis [54], ability to predict complex, nonlinear systems [18,55], and capacity to
handle noisy and large dynamic data [55], the adoption of AI systems in environment
science, including water quality and hydrology studies, faces many challenges. Among the
main challenges, as listed in [56,57], are the following: (1) The heavy usage of historical
data for machine learning training causes biased models, as the modelled systems are
frequently dynamic systems. For example, the water quality is affected by climate, which
is highly dynamic. (2) In comparison to the ways in which humans make decisions and
form responses, AI-based systems are considered static and less adaptive. (3) An AI-based
system is also prone to cyber security issues. (4) Moreover, training a machine learning
system is a costly process that leaves a large carbon footprint, and (5) stakeholders, such as
policy makers and communities, need to be convinced of, trained in, and educated on the
application of AI. Additionally, the digital divide between the world populations is another
challenge for AI system adoption [53]. Economically, AI is expected to have a positive
impact [53]. However, these challenges need to be addressed so that the benefits can be
fully gained.

6. Conclusions

AI solutions such as machine learning ease the task of WQI prediction. The AI-based
WQI prediction system supports efforts to provide timely and efficient water pollution
prevention and response systems by forecasting the change in the WQI based on historical
data. In this paper, eight standalone machine learning regression algorithms (DT, LR,
Ridge, Lasso, SVR, RF, ET and ANN) were compared for their predictions of the WQI using
three sets of water parameter features. An open dataset based on data from Indian rivers
collected between 2003 to 2014 was used. The WQI was measured using six water quality
features, including the pH, DO, CO, BOD, NA, and FC. Two sets of derivative features were
derived, namely the water quality rating scale and water quality weight score. The original
water quality features and the two sets of derivative features were then used in the WQI
prediction. The results show that LR and Ridge trained using the water quality rating scale
are able to predict the WQI accurately, with MSE = 0 and r = 1. The results outperformed
the performances of existing models. Overall, it was observed that the regression algorithm
and set of features used are the main factors affecting the performance of an WQI prediction
model. Future research directions and challenges were also addressed in this work.
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i in pure water

CO electrical conductivity ET extra tree regression MAE mean absolute error
COD chemical oxygen

demand
LR linear regression MSE mean square error

DO dissolved oxygen MLP multilayer perceptron r correlation coefficient
FC faecal coliform RBFNN radial basis

function NN
RMSE root mean square error

K potassium RF random forest
regression

SDG Sustainable Development
Goals

Mg magnesium SVR support vector
regression

Standardi the suggested parameter
standard value i

NH4
+ ammonium UN United Nation

NO3− i.e., Na nitrate UNEP United Nations Environment
Program

NO3−N nitrate-nitrogen wi each feature’s unit weight
NO2−N nitrite-nitrogen WQI Water Quality Index
pH potential for hydrogen WQRi Water quality rating scale for

each feature i
PO4

3- Phosphate WQWSi water quality weight score
for each feature i

PO4−P phosphate
SO4

2− sulfur
SS suspended solids
T temperature
TC total coliform
TDS total dissolved solids
TH total hardness
TN total nitrogen
TS total solids
TUR turbidity
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