Assessment of the Speed and Power of Push-Ups Performed on Surfaces with Different Degrees of Instability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Approach to the Problem
2.2. Participants
2.3. Procedures
2.3.1. Experimental Protocol
2.3.2. Data Extraction
2.3.3. Statistical Analyses
3. Results
3.1. Mean and Maximum Power
3.2. Mean Propulsive and Maximum Speed
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saeterbakken, A.H.; Andersen, V.; Behm, D.G.; Cumming, K.T.; Prieske, O.; Solstad, T.E.J.; Shaw, M.; Stien, N. The Role of Trunk Training for Physical Fitness and Sport-Specific Performance. Protocol for a Meta-Analysis. Front. Sports Act. Living 2021, 3, 157. [Google Scholar] [CrossRef] [PubMed]
- Marquina, M.; Lorenzo-Calvo, J.; Rivilla-García, J.; García-Aliaga, A.; Refoyo Román, I. Effects on Strength, Power and Speed Execution Using Exercise Balls, Semi-Sphere Balance Balls and Suspension Training Devices: A Systematic Review. Int. J. Environ. Res. Public Health 2021, 18, 1026. [Google Scholar] [CrossRef]
- Oliva-Lozano, J.M.; Muyor, J.M. Core Muscle Activity during Physical Fitness Exercises: A Systematic Review. Int. J. Environ. Res. Public Health 2020, 17, 4306. [Google Scholar] [CrossRef] [PubMed]
- Behm, D.G.; Drinkwater, E.J.; Willardson, J.M.; Cowley, P.M. The Use of Instability to Train the Core Musculature. Appl. Physiol. Nutr. Metab. 2010, 35, 91–108. [Google Scholar] [CrossRef]
- Suchomel, T.J.; Nimphius, S.; Bellon, C.R.; Hornsby, W.G.; Stone, M.H. Training for Muscular Strength: Methods for Monitoring and Adjusting Training Intensity. Sports Med. 2021, 51, 2051–2066. [Google Scholar] [CrossRef] [PubMed]
- Suchomel, T.J.; Nimphius, S.; Bellon, C.R.; Stone, M.H. The Importance of Muscular Strength: Training Considerations. Sports Med. 2018, 48, 765–785. [Google Scholar] [CrossRef] [PubMed]
- Dufour, M.; Pillu, M. Biomecánica Funcional. Miembros, Cabeza, Tronco, 2nd ed.; Elsevier: París, France, 2018; ISBN 9788491132639. [Google Scholar]
- Shinkle, J.; Nesser, T.M.; Demchak, T.J.; McMannus, D.M. Effect of Core Strnghth On The Measure In The Extremities. J. Strength Cond. Res. 2012, 26, 373–380. [Google Scholar] [CrossRef]
- Arendt, E.A. Core Strengthening. Instr. Course Lect. 2007, 56, 379–384. [Google Scholar] [CrossRef]
- Tabacchi, G.; Lopez Sanchez, G.F.; Nese Sahin, F.; Kizilyalli, M.; Genchi, R.; Basile, M.; Kirkar, M.; Silva, C.; Loureiro, N.; Teixeira, E.; et al. Field-Based Tests for the Assessment of Physical Fitness in Children and Adolescents Practicing Sport: A Systematic Review within the ESA Program. Sustainability 2019, 11, 7187. [Google Scholar] [CrossRef] [Green Version]
- Leetun, D.T.; Ireland, M.L.; Willson, J.D.; Ballantyne, B.T.; Davis, I.M. Core Stability Measures as Risk Factors for Lower Extremity Injury in Athletes. Med. Sci. Sports Exerc. 2004, 36, 926–934. [Google Scholar] [CrossRef]
- Willardson, J.M.; Fontana, F.E.; Bressel, E. Effect of Surface Stability on Core Muscle Activity for Dynamic Resistance Exercises. Int. J. Sports Physiol. Perform 2009, 4, 97–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rathore, M.; Trivedi, S.; Abraham, J.; Sinha, M. Anatomical Correlation of Core Muscle Activation in Different Yogic Postures. Int. J. Yoga 2017, 10, 59. [Google Scholar] [CrossRef] [PubMed]
- Giancotti, G.F.; Fusco, A.; Varalda, C.; Capelli, G.; Cortis, C. Evaluation of Training Load during Suspension Exercise. J. Strength Cond. Res. 2021, 35, 2151–2157. [Google Scholar] [CrossRef] [PubMed]
- Granacher, U.; Schellbach, J.; Klein, K.; Prieske, O.; Baeyens, J.P.; Muehlbauer, T. Effects of Core Strength Training Using Stable versus Unstable Surfaces on Physical Fitness in Adolescents: A Randomized Controlled Trial. BMC Sports Sci. Med. Rehabil. 2014, 6, 40. [Google Scholar] [CrossRef] [Green Version]
- Behm, D.G.; Anderson, K.G. The Role of Instability With Resistance Training. J. Strength Cond. Res. 2006, 20, 716. [Google Scholar] [CrossRef]
- Anderson, K.G.; Behm, D.G. Maintenance of EMG Activity and Loss of Force Output with Instability. J. Strength Cond. Res. 2004, 18, 637. [Google Scholar] [CrossRef] [PubMed]
- Behm, D.G.; Anderson, K.G.; Curnew, R.S. Muscle Force and Activation under Stable and Unstable Conditions. J. Strength Cond. Res. 2002, 16, 416–422. [Google Scholar] [CrossRef] [PubMed]
- Drinkwater, E.J.; Pritchett, E.J.; Behm, D.G. Effect of Instability and Resistance on Unintentional Squat-Lifting Kinetics. Int. J. Sports Physiol. Perform. 2007, 2, 400–413. [Google Scholar] [CrossRef] [Green Version]
- Koshida, S.; Urabe, Y.; Miyashita, K.; Iwai, K.; Kagimori, A. Muscular Outputs during Dynamic Bench Press under Stable versus Unstable Conditions. J. Strength Cond. Res. 2008, 22, 1584–1588. [Google Scholar] [CrossRef]
- McBride, J.M.; Cormie, P.; Deane, R. Isometric Squat Force Output and Muscle Activity in Stable and Unstable Conditions. J. Strength Cond. Res. 2006, 20, 915–918. [Google Scholar] [CrossRef] [PubMed]
- Saeterbakken, A.H.; Fimland, M.S. Muscle Force Output and Electromyographic Activity in Squats with Various Unstable Surfaces. J. Strength Cond. Res. 2013, 27, 130–136. [Google Scholar] [CrossRef]
- Zemková, E. Instability Resistance Training for Health and Performance. J. Tradit. Complement. Med. 2017, 7, 245–250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zemkova, E.; Jelen, M.; Radman, I.; Svilar, L.; Hamar, D. L’effetto Delle Condizioni Di Sollevamento Stabili e Instabili Sulla Forza Muscolare e Sul Tasso Di Affaticamento Durante Esercizi Di Resistenza. Med. Dello Sport 2017, 70, 36–49. [Google Scholar] [CrossRef]
- Zemková, E.; Jeleň, M.; Kováčiková, Z.; Ollé, G.; Vilman, T.; Hamar, D. Power Outputs in the Concentric Phase of Resistance Exercises Performed in the Interval Mode on Stable and Unstable Surfaces. J. Strength Cond. Res. 2012, 26, 3230–3236. [Google Scholar] [CrossRef]
- Tsoukos, A.; Brown, L.E.; Terzis, G.; Wilk, M.; Zajac, A.; Bogdanis, G.C. Changes in EMG and Movement Velocity during a Set to Failure against Different Loads in the Bench Press Exercise. Scand. J. Med. Sci. Sports 2021, 31, 2071–2082. [Google Scholar] [CrossRef]
- Saeterbakken, A.H.; Solstad, T.E.J.; Behm, D.G.; Stien, N.; Shaw, M.P.; Pedersen, H.; Andersen, V. Muscle Activity in Asymmetric Bench Press among Resistance-Trained Individuals. Eur. J. Appl. Physiol. 2020, 120, 2517–2524. [Google Scholar] [CrossRef] [PubMed]
- Aguilera-Castells, J.; Buscà, B.; Fort-Vanmeerhaeghe, A.; Montalvo, A.M.; Peña, J. Muscle Activation in Suspension Training: A Systematic Review. Sports Biomech. 2020, 19, 55–75. [Google Scholar] [CrossRef]
- Saeterbakken, A.H.; Stien, N.; Pedersen, H.; Andersen, V. Core Muscle Activation in Three Lower Extremity With Different Stability Requirements. J. Strength Cond. Res. 2019, 36, 304–309. [Google Scholar] [CrossRef] [PubMed]
- Snarr, R.L.; Hallmark, A.V.; Nickerson, B.S.; Esco, M.R. Electromyographical Comparison of Pike Variations Performed with and without Instability Devices. J. Strength Cond. Res. 2016, 30, 3436–3442. [Google Scholar] [CrossRef] [PubMed]
- Calatayud, J.; Borreani, S.; Colado, J.C.; Moya-Nájera, D.; Triplett, N.T.; Martin, F. Muscle Activation during Push-Ups Performed under Stable and Unstable Conditions. J. Exerc. Sci. Fit. 2015, 13, 94–98. [Google Scholar] [CrossRef]
- Dunnick, D.D.; Brown, L.E.; Coburn, J.W.; Lynn, S.K.; Barillas, S.R. Bench Press Upper-Body Muscle Activation between Stable and Unstable Loads. J. Strength Cond. Res. 2015, 29, 3279–3283. [Google Scholar] [CrossRef] [PubMed]
- McGill, S.M.; Cannon, J.; Andersen, J.T. Analysis of Pushing Exercises; Muscle Activity and Spine Load While Contrasting Techniques on Stable Surfaces with a Labile Suspension Strap Training System. J. Strength Cond. Res. 2014, 28, 105–116. [Google Scholar] [CrossRef]
- Zemková, E.; Jeleň, M.; Cepková, A.; Uvaček, M. There Is No Cross Effect of Unstable Resistance Training on Power Produced during Stable Conditions. Appl. Sci. 2021, 11, 3401. [Google Scholar] [CrossRef]
- Andersen, V.; Fimland, M.S.; Brennset, Ø; Haslestad, L.R.; Lundteigen, M.S.; Skalleberg, K.; Saeterbakken, A.H. Muscle Activation and Strength in Squat and Bulgarian Squat on Stable and Unstable Surface. Int. J. Sports Med. 2014, 35, 1196–1202. [Google Scholar] [CrossRef] [PubMed]
- Lehman, G.J.; MacMillan, B.; MacIntyre, I.; Chivers, M.; Fluter, M. Shoulder Muscle EMG Activity during Push up Variations on and off a Swiss Ball. Dyn. Med. 2006, 5, 7. [Google Scholar] [CrossRef] [Green Version]
- Aguilera-Castells, J.; Buscà, B.; Morales, J.; Solana-Tramunt, M.; Fort-Vanmeerhaeghe, A.; Rey-Abella, F.; Bantulà, J.; Peña, J. Muscle Activity of Bulgarian Squat. Effects of Additional Vibration, Suspension and Unstable Surface. PLoS ONE 2019, 14, e0221710. [Google Scholar] [CrossRef]
- Haff, G.G.; Nimphius, S. Training Principles for Power. NSCA CEU Quiz 2012, 34, 2–12. [Google Scholar] [CrossRef] [Green Version]
- Winter, E.M.; Abt, G.; Brookes, F.B.C.; Challis, J.H.; Fowler, N.E.; Knudson, D.V.; Knuttgen, H.G.; Kraemer, W.J.; Lane, A.M.; van Mechelen, W.; et al. Misuse of “Power” and Other Mechanical Terms in Sport and Exercise Science Research. J. Strength Cond. Res. 2016, 30, 292–300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knudson, D. V Correcting the Use of the Term “Power” in the Strength and Conditioning Literature. J. Strength Cond. Res. 2009, 23, 1902–1908. [Google Scholar] [CrossRef] [PubMed]
- Newton, R.U.; Kraemer, W.J. Developing Explosive Muscular Power: Implications for a Mixed Methods Training Strategy. Strength Cond. J. 1994, 16, 20–31. [Google Scholar] [CrossRef]
- Turner, A.N.; Comfort, P.; McMahon, J.; Bishop, C.; Chavda, S.; Read, P.; Mundy, P.; Lake, J. Developing Powerful Athletes Part 2: Practical Applications. Strength Cond. J. 2021, 43, 23–31. [Google Scholar] [CrossRef]
- Turner, A.N.; Comfort, P.; McMahon, J.; Bishop, C.; Chavda, S.; Read, P.; Mundy, P.; Lake, J. Developing Powerful Athletes, Part 1: Mechanical Underpinnings. Strength Cond. J. 2020, 42, 30–39. [Google Scholar] [CrossRef]
- Erdfelder, E.; Faul, F.; Buchner, A. GPOWER: A General Power Analysis Program. Behav. Res. Methods Instrum. Comput. 1996, 28, 1–11. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Lang, A.-G.; Buchner, A. G*Power 3: A Flexible Statistical Power Analysis Program for the Social, Behavioral, and Biomedical Sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Castilla, A.; Piepoli, A.; Delgado-García, G.; Garrido-Blanca, G.; García-Ramos, A. Reliability and Concurrent Validity of Seven Commercially Available Devices for the Assessment of Movement Velocity at Different Intensities During the Bench Press. J. Strength Cond. Res. 2019, 33, 1258–1265. [Google Scholar] [CrossRef]
- González-Badillo, J.J.; Sánchez-Medina, L. Movement Velocity as a Measure of Loading Intensity in Resistance Training. Int. J. Sports Med. 2010, 31, 347–352. [Google Scholar] [CrossRef]
- Morse, D.T. Minsize2: A Computer Program for Determining Effect Size and Minimum Sample Size for Statistical Significance for Univariate, Multivariate, and Nonparametric Tests. Educ. Psychol. Meas. 1999, 59, 518–531. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Science, 2nd ed.; Lawrence Erlbaum Associates: New York, NY, USA, 1988; ISBN 0-8058-0283-5. [Google Scholar]
- Sannicandro, I.; Cofano, G.; Rosa, A.R. Strength and Power Analysis in Half Squat Exercise with Suspension Training Tools. J. Phys. Educ. Sport 2015, 15, 433–440. [Google Scholar] [CrossRef]
- Nuzzo, J.L.; McCaulley, G.O.; Cormie, P.; Cavill, M.J.; McBride, J.M. Trunk Muscle Activity During Stability Ball and Free Weight Exercises. J. Strength Cond. Res. 2008, 22, 95–102. [Google Scholar] [CrossRef] [Green Version]
- Ghigiarelli, J.J. Advanced Loading Variations in the Push-up Exercise. Strength Cond. J. 2013, 35, 107–110. [Google Scholar] [CrossRef]
- Willardson, J.M. The effectiveness of resistance exercises performed on unstable equipment. Strength Cond. J. 2004, 26, 70–74. [Google Scholar] [CrossRef]
- Maté-Muñoz, J.L.; Antón, A.J.M.; Jiménez, P.J.; Garnacho-Castaño, M.V. Effects of Instability versus Traditional Resistance Training on Strength, Power and Velocity in Untrained Men. J. Sports Sci. Med. 2014, 13, 460–468. [Google Scholar] [CrossRef] [PubMed]
- Behm, D.; Colado, J.C. The Effectiveness of Resistance Training Using Unstable Surfaces and Devices for Rehabilitation. Int. J. Sports Phys. Ther. 2012, 7, 226–241. [Google Scholar] [PubMed]
- Brown, S.H.M.; Vera-Garcia, F.J.; McGill, S.M. Effects of Abdominal Muscle Coactivation on the Externally Preloaded Trunk: Variations in Motor Control and Its Effect on Spine Stability. Spine 2006, 31, E387–E393. [Google Scholar] [CrossRef] [PubMed]
- Vera-Garcia, F.J.; Elvira, J.L.L.; Brown, S.H.M.; McGill, S.M. Effects of Abdominal Stabilization Maneuvers on the Control of Spine Motion and Stability against Sudden Trunk Perturbations. J. Electromyogr. Kinesiol. 2007, 17, 556–567. [Google Scholar] [CrossRef]
- Norwood, J.T.; Anderson, G.S.; Gaetz, M.B.; Twist, P.W. Electromyographic Activity of the Trunk Stabilizers during Stable and Unstable Bench Press. J. Strength Cond. Res. 2007, 21, 343–347. [Google Scholar] [CrossRef]
- Wang, R.; Hoffman, J.R.; Sadres, E.; Bartolomei, S.; Muddle, T.W.D.; Fukuda, D.H.; Stout, J.R. Effects of Different Relative Loads on Power Performance during the Ballistic Push-Up. J. Strength Cond. Res. 2017, 31, 3411–3416. [Google Scholar] [CrossRef]
Group | Age (years) | Body Mass (kg) | Body Height (cm) |
---|---|---|---|
Untrained (n = 26) | 27.43 ± 5.17 | 77.27 ± 7.01 | 176.92 ± 6.01 |
Trained (n = 25) | 29.16 ± 7.01 | 85.73 ± 17.37 | 183.67 ± 4.98 |
Untrained MP | Trained MP | Totals | ||||||||||||||
N | M | SD | % Dif | IC—95% | N | M | SD | % Dif | IC—95% | % Dif Groups | M | SD | % Dif | |||
LL | UP | LL | UP | |||||||||||||
Stable (PS) | 26 | 861.93 | 36.51 | 822.79 | 901.07 | 25 | 979.36 | 136.91 | 939.45 | 1019.3 | 11.99% | 919.49 | 114.80 | |||
Ring (PR) | 26 | 708.60 | 45.95 | 17.79% | 666.82 | 750.37 | 25 | 894.39 | 144.02 | 8.68% | 851.78 | 936.99 | 20.77% | 799.67 | 140.75 | 13.03% |
Monopodal (PM) | 26 | 682.46 | 45.10 | 20.82% | 645.75 | 719.17 | 25 | 816.20 | 124.88 | 16.66% | 778.76 | 853.64 | 16.39% | 748.02 | 114.29 | 18.65% |
TRX (PT) | 26 | 646.72 | 26.75 | 24.97% | 617.48 | 675.96 | 25 | 749.71 | 102.43 | 23.45% | 719.89 | 779.52 | 13.74% | 697.20 | 89.99 | 24.18% |
Bosu Hands (PH) | 26 | 600.85 | 35.97 | 30.29% | 568.68 | 633.02 | 25 | 718.49 | 110.70 | 26.64% | 685.68 | 751.29 | 16.37% | 658.51 | 100.28 | 28.38% |
Bosu Feet (PF) | 26 | 499.74 | 23.81 | 42.02% | 475.35 | 524.14 | 25 | 634.79 | 85.03 | 35.18% | 609.92 | 659.67 | 21.27% | 565.95 | 91.67 | 38.45% |
Untrained MaP | Trained MaP | Totals | ||||||||||||||
N | M | SD | % Dif | IC—95% | N | M | DT | % Dif | IC—95% | % Dif Groups | M | SD | % Dif | |||
LL | UP | LL | UP | |||||||||||||
Stable (PS) | 26 | 1692.96 | 87.37 | 1595.37 | 1790.55 | 25 | 2045.55 | 342.41 | 1946.03 | 2145.08 | 17.24% | 1865.8 | 302.96 | |||
Ring (PR) | 26 | 1373.90 | 96.17 | 18.85% | 1277.28 | 1470.51 | 25 | 1871.16 | 336.24 | 8.53% | 1772.64 | 1969.69 | 26.58% | 1617.65 | 349.17 | 13.30% |
Monopodal (PM) | 26 | 1338.54 | 100.06 | 20.94% | 1252.20 | 1424.87 | 25 | 1703.55 | 295.88 | 16.72% | 1615.51 | 1791.59 | 21.43% | 1517.46 | 284.59 | 18.67% |
TRX (PT) | 26 | 1269.32 | 67.53 | 25.02% | 1197.77 | 1340.87 | 25 | 1576.84 | 250.10 | 22.91% | 1503.87 | 1649.81 | 19.50% | 1420.07 | 237.51 | 23.89% |
Bosu Hands (PH) | 26 | 1179.35 | 86.23 | 30.34% | 1104.57 | 1254.13 | 25 | 1524.16 | 256.44 | 25.49% | 1447.90 | 1600.42 | 22.62% | 1348.38 | 256.10 | 27.73% |
Bosu Feet (PF) | 26 | 1008.93 | 60.61 | 40.40% | 951.51 | 1066.35 | 25 | 1352.68 | 198.77 | 33.87% | 1294.12 | 1411.23 | 25.41% | 1177.43 | 225.66 | 36.89% |
Untrained MPS | Trained MPS | Totals | ||||||||||||||
N | M | SD | % Dif | IC—95% | N | M | SD | % Dif | IC—95% | % Dif Groups | M | SD | % Dif | |||
LL | UP | LL | UP | |||||||||||||
Stable (PS) | 26 | 0.53 | 0.06 | 0.49 | 0.57 | 25 | 1.12 | 0.12 | 1.08 | 1.16 | 52.99% | 0.82 | 0.31 | |||
Ring (PR) | 26 | 0.43 | 0.05 | 18.55% | 0.39 | 0.47 | 25 | 1.02 | 0.13 | 8.93% | 0.98 | 1.06 | 57.96% | 0.72 | 0.31 | 12.20% |
Monopodal (PM) | 26 | 0.42 | 0.06 | 20.23% | 0.38 | 0.45 | 25 | 0.93 | 0.11 | 16.96% | 0.90 | 0.97 | 54.84% | 0.67 | 0.27 | 18.29% |
TRX (PT) | 26 | 0.39 | 0.04 | 25.36% | 0.37 | 0.42 | 25 | 0.86 | 0.09 | 23.21% | 0.83 | 0.89 | 54.30% | 0.62 | 0.25 | 24.39% |
Bosu Hands (PH) | 26 | 0.37 | 0.05 | 29.73% | 0.34 | 0.40 | 25 | 0.83 | 0.10 | 25.89% | 0.80 | 0.86 | 55.42% | 0.59 | 0.25 | 28.05% |
Bosu Feet (PF) | 26 | 0.31 | 0.04 | 41.12% | 0.28 | 0.33 | 25 | 0.74 | 0.07 | 33.93% | 0.72 | 0.76 | 58.11% | 0.52 | 0.23 | 36.59% |
Untrained MaS | Trained MaS | Totals | ||||||||||||||
N | M | SD | % Dif | IC—95% | N | M | DT | % Dif | IC—95% | % Dif Groups | M | SD | % Dif | |||
LL | UP | LL | UP | |||||||||||||
Stable (PS) | 26 | 0.90 | 0.14 | 0.83 | 0.97 | 25 | 1.73 | 0.21 | 1.67 | 1.81 | 48.00% | 1.31 | 0.46 | |||
Ring (PR) | 26 | 0.73 | 0.12 | 18.57% | 0.66 | 0.80 | 25 | 1.56 | 0.22 | 9.83% | 1.49 | 1.63 | 53.04% | 1.14 | 0.45 | 12.98% |
Monopodal (PM) | 26 | 0.71 | 0.12 | 20.77% | 0.65 | 0.78 | 25 | 1.43 | 0.19 | 17.34% | 1.36 | 1.49 | 50.16% | 1.06 | 0.39 | 19.08% |
TRX (PT) | 26 | 0.67 | 0.10 | 25.34% | 0.62 | 0.72 | 25 | 1.32 | 0.15 | 23.70% | 1.27 | 1.38 | 49.11% | 0.99 | 0.35 | 24.43% |
Bosu Hands (PH) | 26 | 0.63 | 0.11 | 30.36% | 0.57 | 0.68 | 25 | 1.27 | 0.17 | 26.59% | 1.22 | 1.33 | 50.67% | 0.94 | 0.35 | 28.24% |
Bosu Feet (PF) | 26 | 0.53 | 0.08 | 41.09% | 0,49 | 0.58 | 25 | 1.13 | 0.13 | 34.68% | 1.08 | 1.17 | 53.10% | 0.82 | 0.32 | 37.40% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marquina Nieto, M.; Rivilla-García, J.; de la Rubia, A.; Lorenzo-Calvo, J. Assessment of the Speed and Power of Push-Ups Performed on Surfaces with Different Degrees of Instability. Int. J. Environ. Res. Public Health 2022, 19, 13739. https://doi.org/10.3390/ijerph192113739
Marquina Nieto M, Rivilla-García J, de la Rubia A, Lorenzo-Calvo J. Assessment of the Speed and Power of Push-Ups Performed on Surfaces with Different Degrees of Instability. International Journal of Environmental Research and Public Health. 2022; 19(21):13739. https://doi.org/10.3390/ijerph192113739
Chicago/Turabian StyleMarquina Nieto, Moisés, Jesús Rivilla-García, Alfonso de la Rubia, and Jorge Lorenzo-Calvo. 2022. "Assessment of the Speed and Power of Push-Ups Performed on Surfaces with Different Degrees of Instability" International Journal of Environmental Research and Public Health 19, no. 21: 13739. https://doi.org/10.3390/ijerph192113739
APA StyleMarquina Nieto, M., Rivilla-García, J., de la Rubia, A., & Lorenzo-Calvo, J. (2022). Assessment of the Speed and Power of Push-Ups Performed on Surfaces with Different Degrees of Instability. International Journal of Environmental Research and Public Health, 19(21), 13739. https://doi.org/10.3390/ijerph192113739