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Abstract: Soundscape is the production of sounds and the acoustic environment, and it emphasizes
peoples’ perceiving and experiencing process in the context. To this end, this paper focuses on the
Pearl River Delta in China, and implements an empirical study based on the soundscape evaluation
data from the Participatory Soundscape Sensing (PSS) system, and the geospatial data from multiple
sources. The optimal variable set with 24 features are successfully used to establish a random forest
model to predict the soundscape comfort of a new site (F1 = 0.61). Results show that the acoustic
factors are most important to successfully classify soundscape comfort (averaged relative importance
of 17.45), subsequently ranking by built environment elements (11.28), temporal factors (9.59), and
demographic factors (9.14), while landscape index (8.60) and land cover type (7.71) seem to have
unclear importance. Furthermore, the partial dependence analysis provides the answers about the
appropriate threshold or category of various variables to quantitatively or qualitatively specify the
necessary management and control metrics for maintaining soundscape quality. These findings
suggest that mainstreaming the soundscape in the coupled natural–human systems and clarifying
the mechanisms between soundscape perception and geospatial factors can be beneficial to create a
high-quality soundscape in human habitats.

Keywords: soundscape; geospatial factors; machine learning; classification prediction; partial
dependence analysis

1. Introduction

The term “soundscape” was firstly proposed in the late 1960s by R. Murray Schafer, a
Canadian musician. It was initially referred to as “The Music of Environment”, regarding
the whole world as a macro music piece and advocating the combination of noise reduction
and positive soundscape creation [1]. Nonetheless, studies are confined to conceptions
aiming to arouse people’s awareness at this stage. In practice, the implementation of
soundscape planning was originally only embodied in noise control, the particular negative
aspect of the soundscape. The Environmental Noise Directive (END) raised by European
Union in 2002 takes the most large-scale action. It established rules of measurement and
management of environmental noise in the form of legislation, requiring the Member
States to prepare and publish noise maps and noise management action plans every five
years [2]. In 2014, making use of the available results of the second round of noise mapping
in the framework of END (version August 2013), they assessed the health implications
of environmental noise, including annoyance, sleep disturbance, reading impairment,
hypertension, coronary heart disease and stroke [3]. These series of actions eventually
caused great concern from the communities of academy and practice.
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As researchers realized that noise maps do not include preferred sounds, such as
the wind in trees, purling water, or birdsong perceived as enjoyable, their attention has
gradually moved to the positive facets of the soundscape [4]. The U.S. National Park
Service (NPS) recognizes soundscape as a resource while considering “natural quiet” as the
ideal state of soundscape protection and management in the national park [5]. Despite the
inspiring work by NPS, the realm of positive soundscape planning practice is still limited
in the natural areas. Yet, in the areas of human habitats, such as urban and its peripheral
regions, the overall soundscape planning, including both negative and positive ones, has
not fallen into regulation or practice.

However, soundscape can largely influence human physical and mental health, thus
relative issues in areas with intensive human activities should be extensively taken into
account. The World Health Organization (WHO) has implemented Environmental Noise
Guidelines for the European region. The findings show that noise is the second largest
environmental cause of health problems, just after the impact of air quality (particulate
matter). Various researchers endeavor to unravel the correlation between noise and sev-
eral health outcomes—cardiovascular and metabolic effects, annoyance, effects on sleep,
cognitive impairment, hearing impairment and tinnitus, adverse birth outcomes and
quality of life, mental health and well-being—and different degrees of significance were
demonstrated [6–9]. Similar effects have also been verified regarding positive soundscape,
normally in the form of natural sounds. Buxton et al. [10] conducted a systematic liter-
ature review and meta-analysis. The results indicated that water sounds had the most
significant effect on health and positive affective outcomes, while bird sounds had the
most significant impact on alleviating stress and annoyance based on Attention Restoration
Theory and Stress Recover Theory. They asserted that natural sounds as a sort of natural
services’ provider.

According to these pivotal health effects, soundscape planning in human habitats
appears to be an urgent need, despite facing great challenges due to the complexity of
human–nature interaction. In the view of theory development, the acoustic researchers
focus on the objective attribute of the sound environment and the reduction of noise. In
contrast, the soundscape researchers are concerned with people’s subjective experiences,
especially after the precise definition of soundscape emphasizing perception was con-
firmed by International Standardization Organization (ISO) in 2014 [11]. Simultaneously,
Pijanowski et al. [12] initiated the discipline of soundscape ecology, putting soundscape
into the coupled natural–human systems to reveal its spatial and temporal patterns, which
systematically integrates the objective and subjective attributes of the soundscape. This ten-
dency implies that the soundscape story is far beyond the acoustic elements, but also the sur-
rounding context; in the case of the human habitat—the coupled natural–human systems.

In this sense, it is critical to deconstruct the complexity of human habitats. Many case
studies have analyzed the correlation between soundscape and diverse spatial influence
factors. The investigated influence factors broadly include different geospatial elements; to
name just a few, Brambilla et al. [13] carried out an experiment in urban squares to assess
the soundscape on the foundation of two environmental features, that is “chaotic/calm”
and “open/enclosed”, which are obtained from LAeq, loudness, roughness, sharpness
and the geometry of the square (S/H ratio) through the principal component analysis
(PCA), and the result shows a good correlation between physical parameters and subjective
ratings. Liu et al. [14] verified the close relationships between soundscape perception
and landscape composition indicators including the density of construction (CD), main
roads (RD), and vegetation greenness (NDVI), as well as landscape configuration indicators
including landscape shape index (LSI) and distance to constructions (DTC) and main roads
(DTR), among which NDVI and LSI are two most important. Hong et al. [15] explored the
relationship between spatiotemporal characteristics of soundscape and acoustic indicators,
including LAeq, LCeq-Aeq, L10–90, and sharpness, as well as urban morphological indicators
relating to buildings, roads, open public spaces, and water feature components in the
multifunctional urban areas. Results indicate that the application of a combination of
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these two factors could be a promising approach for developing soundscape prediction
models. Zhao et al. [16] constructed a structural equation model for the influence of urban
contextual factors (namely, urban management, natural and urban conditions, and the
physical environment) on soundscape evaluation (including pleasantness and eventfulness)
based on the positive relationship being found. However, the previous researches are
restricted to a single or small-scale study area, and the limited influence factors impede
the application and promotion of conclusions. What is now necessary is the further
development and integration of this knowledge in a larger-scale context, as well as a more
comprehensive potential data set of explanatory variables.

This paper combines the ISO definition of soundscape and the conceptual framework
of soundscape ecology, mainly regarding subjective soundscape quality as the dependent
variable and objective geospatial factors as independent variables. Hereby, we can integrate
soundscape into a systematic coupled natural–human system and draw a clear-cut picture
of it. The main object is to strive for an appropriate approach to predict soundscape quality
which can handle a large set of explanatory variables and sample data generated from
urban environment. To this end, random forest as a potential effective machine learning
method is utilized to build the classification model of soundscape perception, identify the
importance of variables, and uncover the nonlinearities influence of those variables on
the soundscape perception, as well as the interaction mechanism among variables. Our
research will contribute to providing an exploratory methodology of the random forest
model committing to soundscape quality classification and prediction, as well as the results
with practical significance to reveal the hidden variables behind high-quality soundscape
based on our empirical study.

2. Materials and Methods
2.1. The Participatory Soundscape Sensing System and the Soundscape Quality Proxy

The PSS system [17] is a worldwide soundscape investigation and evaluation project
initially initiated in 2011 and fully upgraded in 2016. The concept of Participatory Sensing
(PS) is the process whereby individuals and communities use the increasingly convenient
mobile phones and cloud services to collect, analyze, and contribute sensory information
for use in discovery [18]. For this, PSS encourages citizens worldwide to participate in
standardized data collection and calculation tasks with the aid of SPL Meter and mobile
networks. The data is collected in the means of automatic acquisition from mobile phones
and questionnaire user surveys, including Sound Pressure Level (SPL) calculation, location,
spatial attribution, subjective evaluation, individual characteristics, and other supplemen-
tary elements. All the measurements can be stored on mobile phones or shared with the
PSS server.

Specifically, using a 5-point score scale, the questionnaire survey collects the subjective
evaluation in terms of sound level, sound comfort level, sound harmonious level, and iden-
tified sound source. Given the comprehensibility of the perception indices, the public has a
common understanding about the sound comfort levels and thus higher data reliability
is observed, while sound harmonious level, which was originally designed to evaluate
the harmony between visual landscape and auditory soundscape, seems to cause misun-
derstanding. For instance, the subjects may consider the industrial noise in an industrial
area as disharmonious, which is actually harmonious in such a context. Therefore, we take
sound comfort level to indicate the soundscape perception information and as the proxy of
soundscape quality, with the degree from very uncomfortable to very comfortable, ranking
the score from −2 to 2.

Given the data availability of all influence factors, we take the Pearl River Delta of
China as the research area in our case study. The Pearl River Delta, named as Southern
Gate of China, covers an area of 56 thousand km2, and houses about 78.01 million people
(the 7th national population census), occupying one third of and 61.9% of the total value of
Guangdong province, respectively. Together with Hong Kong and Macao, the Pearl River
Delta with nine main cities can expand to the Greater Bay Area, which is one of the top four
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bay areas in the world, as well as one of the largest mega-urban agglomerations worldwide.
After removing invalid data with null values or valueless inquiries, such as the records
with incompletely filled out inquiries, incorrectly acquired acoustic measurements, and
duplicate records at the same location, 614 complete records from the PSS project remain
(see Figure 1).

Figure 1. Distribution of recording sites.

2.2. Multi-Source Geospatial Data and Explanatory Variables

Geospatial data with location coordinates in a spatial referencing system describes
objects and things in relation to geographic space [19]. Longitude and latitude provide
the basic information of geospatial position. Several anthropogenic elements in the built
environment including roads, buildings, POI (points of interest), and land use type can
reflect urban development intensity and human disturbance from the perspective of geospa-
tial function, while the land cover and its configuration characteristics measured by the
landscape index can depict the landscape surface from the perspective of geospatial con-
figuration. Finally, nighttime light value can provide a comprehensive understanding of
social-economic development on the different geospatial scales.

We adopted multiple data sources to maximize data availability including Global
NPP-VIIRS-like Nighttime Light Data, GlobeLand 30, and major map service providers
in China including Amap and Baidu Map. Global NPP-VIIRS-like Nighttime Light Data
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is a new flourishing data set with a spatial resolution of 15 arcsec (~500 m) which has
been verified to show a similar spatial pattern as the composited NPP-VIIRS NTL data.
It is built through a new cross-sensor calibration from DMSP-OLS NTL data (2000–2012)
and a composition of monthly NPP-VIIRS NTL data (2013–2018). It can be better used
to evaluate and analyze the dynamics of demographic and socioeconomic characteristics
during urbanization [20]. GlobeLand 30, the 30 m resolution global land cover data product,
was developed by China. It adopts the WGS-84 coordinate system and includes ten land
cover classes: cultivated land, forest, grassland, shrub land, wetland, water bodies, tundra,
artificial surface, bare land, perennial snow, and ice. The total accuracy of land cover
classification is 85.72%, and the Kappa coefficient is 0.82 [21].

We finally organize 36 potential explanatory variables based on the principles to
better reflect the capacity of the biological habitat, the intensity of human activities, the
spatial configuration of an urban area, and the overall vitality of the social economy.
The corresponding evaluation indices and their formulas for these variables are listed
in Table 1. In addition, we defined an analytical unit (AU), which is a 1 km diameter
circular buffer with the recording site as the center (0.7854 km2 exactly), to calculate the
indices effectively.

Table 1. Potential explanatory variables.

Variable Type Variable Description or Evaluation Indices Units

Geospatial factors

Built environment

RdAll Road density, sum of road lengths (all roads) divided by AU. km/km2

RdWeighted
RdWeighted =

L1 ×W1 + L2 ×W2 + . . . + Ln ×Wn

A
,

where RdWeighted means the road density of each AU, A is the total
area of AU, Ln refers to the length of each road within per AU, and Wn
is the weight coefficients of the corresponding road hierarchy

km/km2

RdMajor Road density, sum of road lengths (major roads only) divided by AU km/km2

RdExpress Road density, sum of road lengths (express roads only) divided by AU km/km2

DisRdAll Distance to the nearest road (all roads) m

DisRdMajor Distance to the nearest road (major roads only) m

DisRdExpress Distance to the nearest road (express roads only) m

BldStructure

GB =
∑n

i=1

(
Hn
Sn

)
n

,

where GB means the average three-dimensional building structure
indices of each AU, Hn and Sn are the floor number and area of each
building, n is the number of buildings in each AU. A higher value of
BldStructure may cause larger acoustic energy due to the stronger
reverberation between buildings with more floors and the less
resistance of buildings with a smaller floor area

floor/km2

POIEntropy
POIEntropy = −∑n

i=1 Pi ln(Pi),

where POIEntropy means the functional entropy of POI in each AU, Pi
refers to the percentage of number for type i of POI within each AU,
and n is the total number of POI types in each AU

/

NLValue nighttime light value Nw cm−2 sr−1

Landuse_site
The land use type of the recording site (1: residential; 2: business; 3:
industrial; 4: public administration and service; 5: transportation; 6:
green space and scenic spot; 8: farmland and wasteland)

/
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Table 1. Cont.

Variable Type Variable Description or Evaluation Indices Units

Landuse_context

The overall land use type in the AU, divided into three main categories:
single functional area with certain land use type dominating, double
functional area with two dominating land use type, and mixed
functional area with comprehensive land use (1: residential; 2: business;
3: industrial; 4: public administration and service; 5: transportation; 6:
green space or scenic spot; 7: mixed functional area; 8: farmland or
wasteland; 9: residential–industrial; 10: residential–public
administration and service; 11: residential–transportation; 12:
residential–green space and scenic spot; 13: business–industrial; 14:
business–public administration and service; 15:
business–transportation; 16: business–green space and scenic spot; 17:
industrial–public administration and service; 18:
industrial–transportation; 19: industrial–green space and scenic spot; 20:
business–farmland and wasteland; 21: public administration and
service-green space and scenic spot; 22: transportation–farmland and
wasteland; 23: residential–business)

/

Urban location The location of the recording site (1: downtown; 0: suburban). /

Land cover

LUCC_site The land cover type of the survey site (10: cultivated land; 20: forest; 30:
grassland; 40: shrub land; 60: water bodies; 80: artificial surface) /

Artificial surface Proportion of artificial surface %

Cultivated land Proportion of cultivated land %

Grassland Proportion of grassland %

Forest Proportion of forest %

Shrub land Proportion of shrub land %

Water bodies Proportion of water bodies %

Landscape Index *

PD Patch density, PD = N
A n/100 ha

ED Edge density, ED = E
A 106 m/ha

AREA_MN Mean patch size, MPS = A
N 10−6 ha

LPI Largest patch index, LPI =
max(aij)

n
j=1

A (100) %

CONTAG

Degree of contagion of land cover,

CONTAG =

[
1 +

m

∑
i=1

n

∑
j=1

Pij ln
(
Pij
)

2 ln(m)

]
Pij = PiP j

i

P j
i
=

mij

mi

/

LSI Landscape shape index, LSI = 0.25E√
A

/

SHDI Shannon’s diversity index, SHDI = −
m
∑

i=1
[pi ln(pi)]

/

PR Patch richness, PR = m /

Acoustic factors

Source_nature Percentage of natural sound sources based on subjective evaluation
(including wind; water; rain, insects, animal, and birds) %

Source_human Percentage of sound sources from humans based on subjective
evaluation (including speech, playing, and footstep) %

Source_artificial
Percentage of sound sources from artificial events based on subjective
evaluation (including traffic, construction, music, machine,
and airplane)

%

LAeq SPL calculation: A-weighted equivalent continuous sound level dB
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Table 1. Cont.

Variable Type Variable Description or Evaluation Indices Units

Demographic factors
Age

Age group (1: younger than 12; 2: age between 12–18; 3: age between 19
and 20; 4: age between 31 and 40; 5: age between 41 and 50; 6: age
between 51 and 60; 7: older than 60)

/

Gender Gender (1: men, 0: women) /

Temporal factors
Diurnal Dawn (1: 4 a.m. to 8 a.m.), diurnal (2: 8 a.m. to 4 p.m.), dusk (3: 4 p.m.

to 8 p.m.), or nocturnal (4: 8 p.m. to 4 a.m.) /

Seasonal Spring (1), summer (2), autumn (3), or winter (4) /

* the detailed descriptions can be referenced in https://doi.org/10.2737/PNW-GTR-351, accessed on 10
August 2022.

(1) Road density and relative distance

Road, accompanied by traffic noise, is the primary source of anthropogenic noise. Road
density and distance between objective and road are the classical indices to estimate the
traffic intensity and influence. Nonetheless, they neglect the distinction of traffic capacity
among different road hierarchies. However, research has shown that road traffic flow can
cause different soundscapes [22]. Thus, we further considered the road class as the weight
and separately discussed the impact of major roads and express roads on the soundscape.
The attribution of road class can be obtained from OSM with 27 classes in total, which are
reclassified into four classes for more convenient analysis, including major road, minor
road, express road, and other roads. According to the different hierarchies of road classes,
the weighted scores of the express roads, major roads, minor roads, and other roads are
given as 0.4, 0.3, 0.2, and 0.1, respectively.

(2) Three-dimensional building structure

Buildings are the major artificial constructions in the human habitat, and their existence
can impact population density and human activity intensity. Human constructions could
further result in a fragmented and diverse landscape, both of which can significantly affect
soundscape patterns and experience. Moreover, three-dimensional elements such as roof
types, ground properties, wind flow, and turbulence also affect sound propagation [23].
Given the data availability, we used the floor number of the building divided by floor area
to characterize its three-dimensional structure which affects the sound transmission from
the external environment and finally forms a specific local soundscape pattern.

(3) Type of land use and functional entropy of POI

The anthropogenic portion of soundscape is increasingly considered a kind of distur-
bance, resulting in the acoustic signal alteration in birds and amphibians and changes in
reproductive behavior [24]. Researchers have discussed the correlation between sound-
scape and characteristics of land use such as the landscape development intensity indices
and have drawn a statistically significant result [25]. In addition, spaces with plentiful POI
and high-intensity human activities can intrinsically emanate soundscape with a larger
proportion of anthrophony. We manually identified the land use type of the recording site
and that of the context in the AU based on Google satellite remote sensing maps to point
out how humans develop land and what functions the spaces provide. Meanwhile, based
on the POI data, we constructed an entropy index to describe the disorder of land use and
spatial function.

(4) Nighttime light value

Nighttime light remote sensing data can detect the artificial lights from cities, towns,
and industrial areas through the sensors’ recordings [26] and have demonstrated good per-
formance in representing human socioeconomic activity and human development [27,28].
Therefore, we utilized the NPP-VIIRS-like NTL data (version 2016-version 2020) as a
comprehensive reference to reflect the overall development level in the built environment.

https://doi.org/10.2737/PNW-GTR-351
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(5) Proportion of different land cover

Forests, trees, shrubs, tall grass prairie or other grasslands, and other vegetation types
are proved to be beneficial for noise attenuation and useful as sound barriers for urban plan-
ning [29]. Researchers have evaluated the effect of water sounds on soundscape in urban
areas, and the results found that water sounds from water features like fountains, streams,
water sculptures, or waterfalls with relatively greater energy in low-frequency ranges were
effective for masking noise caused by road traffic [30]. In addition, the distribution of bird
species is significantly related to the proportion of different land cover types [31], indicating
that the green and blue spaces can provide habitats and activity places for organisms and
humans, respectively, which can produce biophony, geophony, and anthrophony of the
soundscape. Thus, we adopted the data from GlobeLand 30 (version 2020) to explore the
hidden soundscape on the base map of different land cover types, including artificial
surfaces, cultivated land, grassland, forest, shrub land, and water bodies. The types of
bare land, wetlands, tundra, as well as glaciers and perennial snow were left out due to
especially small sample sizes.

(6) Landscape index

Many studies have suggested a close relationship between soundscape and landscape
perception in terms of aural–visual interaction [32–35]. On the other hand, research has
also proved that landscape can affect the perception of certain sounds to a different extent,
mainly through landscape features like normalized difference vegetation index (NDVI),
landscape shape index (LSI), patch density (PD) and Shannon diversity index (SHDI) [14].
Here, we selected several classical landscape indexes to indicate landscape features from
three major aspects: landscape fragmentation or connectivity (including PD, ED, MPS,
LPI, CONT), landscape structure complexity (LSI), and landscape diversity or richness
(including SHDI and PR) [36].

In addition to the above-mentioned geospatial factors, we also listed the selected data
types collected by the PSS system as the potential explanatory variables. Acoustic factors,
including a subjective evaluation of sound source and objective measurement of SPL, are
selected to discuss the relationship between acoustics emphasizing the physical aspect and
soundscape emphasizing the perceptive aspect. Demographic factors, including age and
gender, are used to explore whether discrimination against soundscape experience exists
among the different groups. Finally, we divided the recordings from the PSS system accord-
ing to diurnal and seasonal periods to better describe the subtle difference in soundscape
experience based on a temporal scale.

2.3. Method of Random Forest Model

The development of machine learning promotes the maturity of techniques in terms of
nominal predictive power, interpretability, tunable parameters, robustness, and capacity to
deal with mixed data types and potentially irrelevant inputs. Random forest (RF), a machine
learning method based on an ensemble of many individual decision trees, performs well
in handling a very large number of explanatory variables [37]. The RF algorithm applies
the idea of bootstrap aggregating (Bagging) methods to the classification and regression
tree (CART) algorithm by creating new training sets with random sampling (bootstrap
sample). Each classification tree of RF is generated by resampling the original records with
replacement, in which process one third of the data will be left out to naturally form a
comparison data set serving as cross-validation. This unused subset of bootstrap sample is
called out-of-bag data (OOB); as an unbiased estimation of prediction error, the OOB error
is used for model accuracy evaluation. Compared to multiple linear regression, spatial
auto-correlation, geographically weighted regression (GWR), Bayesian regression, and
artificial neural networks (ANN), random forests have a lower computation without losing
prediction accuracy, a higher tolerance to outliers and noise, a faster-operating rate to deal
with high-dimensional data and can effectively avoid overfitting. Moreover, there are



Int. J. Environ. Res. Public Health 2022, 19, 13913 9 of 23

no requirements for the prior information about the form of relationship and interaction
among variables [38].

Mennitt et al. [39] presented a geospatial based on a random forest model that predicts
acoustical measurements using various geospatial features across the contiguous United
States, and the preliminary results suggested that tree-based methods, including random
forest, had more promise than linear models, generalized additive models and support
vector machines.

According to the previous study, we utilize the randomForest and rfPermute algo-
rithm in R to establish the potential classification model of the aforementioned sound-
scape data and the multi-source geospatial data and provide the evaluation results of the
model performance.

The randomForest algorithm implements Breiman’s forest algorithm for classification
and regression. The rfPermute packages the randomForest algorithm while it can further
provide estimated significance of importance metrics for a random forest model by per-
muting the response variable. By setting the parameter of num.rep, the response variable is
then permuted according to the set times, with a new random forest model built for each
permutation step. We combined both algorithms to acquire the necessary information. The
model construction process included three stages: tuning the optimized model parameters,
assessing the model accuracy, and ordering the variables’ importance. It is critical to note
that the first two steps should be a circular and repeating process.

(1) Tuning the model parameters and constructing the rudimentary model

Several parameters regulate the structure of a random forest model [40]: the number of
variables randomly sampled as candidates at each split (mtry), the number of trees to grow
(ntree), the sample size presented to each tree (sampsize), and the minimum size of terminal
nodes (nodesize). To solve the data imbalance, we merged the comfort score into three
levels: uncomfortable (scores of “−2” and “−1”), moderate (score of “0”), and comfortable
(scores of “1” and “2”), which has a sample size of 313, 232, and 69, respectively.

(2) Assessing the accuracy of the rudimentary model and re-tuning the model parameters
until acquiring the optimal model

However, due to the still-existing imbalance, the estimation of OOB error can be
misleading, which will manifest as an overall lower OOB error with a low recall rate of a
certain level. We thus defined an average F1 score based on the confusion matrix calculation,
which can take an integrated consideration of both the overall OOB error and recall rate
of each three levels, and finally used to assist with the parameter setting and to evaluate
the model performance. Moreover, by artificially making class priors equal and setting a
unified sampsize, the random forest model will repeatedly draw the same sample size from
all three strata, which is the third strategy to solve data imbalance [41]. The next step is to
tune the four major parameters according to the performance of F1 scores.

(3) Ordering the variables’ importance

The relative importance and the significance of the explanatory variables can be
acquired by rfPermute algorithm. There are two evaluation indicators: Mean Decrease
Accuracy (MDA) and Mean Decrease Gini. The mean decrease accuracy expresses how
much accuracy the model losses by excluding each variable. The more the accuracy suffers,
the more important the variable is for the successful classification. The mean decrease in
the Gini coefficient is a measure of how each variable contributes to the homogeneity of the
nodes and leaves in the resulting random forest [42].

2.4. Method of Partial Dependence Analysis

While determining predictor importance is a crucial task for supervised learning
problems, ranking variables can only tell part of the story, and once a subset of features is
identified based on relative importance, it is necessary to assess the relationship between
them and the response. In the realm of machine learning, particularly for black box models
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like random forests and support vector machines, the Partial Dependence Plots (PDPs)
is an effective way to visualize the relationship between a subset of the features and the
response. Specifically, it shows how the average response varies with a given predictor
while the values of all other predictors are fixed at their base levels [43,44]. For a prediction
model with a feature set X, we consider an interest set Zs ⊂ X and the complement subset
Zc = X\Zs. For each x ∈ X, ŷ(x) is the response of the model, which is the random forest
model in our case. Given any certain permuted value of zs ∈ Zs, the partial dependence
function ŷ(zs) is the average response of the model over all of the available training data
for permuted values of Zc. The ŷ(zs) can be computed through formula (1).

ŷ(zs) =
1
|Zc|∑zc∈Zc

ŷ (zs, zc).zs ∈ Zs. (1)

In this study, we sought to tackle a three-categories classification problem. For each
category, we calculate the partial dependence function ŷi(zs), i = 1, 2, 3. The influence of
the predictor Zs can be quantified by specifying a sequence of zs ∈ Zs and calculating ŷi(zs)
for each, which is reflected as the color in the plots of the partial dependence function. In
other words, the color of the PDP plots shows how the average response varies with a
given predictor Zs while the values of all other predictors, Zc, are fixed at their base levels.
To conduct a marginal effect of single predictor, Zs consists of one certain variable, while
in the case of joint effect and interactions among predictors the subset Zs is allowed to
include multiple variables. It should be further noted that none of the causal relationship
can be claimed.

3. Results
3.1. Model Construction and Importance Ranking of Variables

According to the above procedures of model construction, we acquired the optimal
random forest model by repeatedly combing model accuracy assessing and model parame-
ter tuning. Result shows that the random forest model is optimized when mtry is 14, ntree
is 800, and sampsize is 63, while nodesize seems to have a marginal impact on F1 which is
finally set as the default value. The F1 score of the final random forest model is 0.64.

Then, we estimated the relative importance and the significance of 36 explanatory
variables using the rfPermute algorithm, and selected the Mean Decrease Accuracy as the
relative importance indicator. Results show that, excluding the variable of urban location,
all the explanatory variables appear to be significantly important for successfully predicting
soundscape comfort. As shown in Figure 2, the sequence of variables is ordered by their
categories and then the relative importance, among which the importance value of acoustic
factors is the highest (average of 17.45), then the built environment (average of 11.28),
temporal factors (average of 9.59), demographic factors (average of 9.14), landscape index
(average of 8.60), and land cover (average of 7.71) in sequence.

A separate subset of variables’ importance is listed in Table 2 for each level of comfort
score. As the most important variable of the overall comfort score, acoustic factors have
different impacts on the three levels. The proportion of natural sound sources is essential to
successful identification of the comfortable soundscape, while in comparison the proportion
of artificial sound sources can effectively judge whether the soundscape is uncomfortable.
This indicates that a soundscape with wind, water, rain, insects, or birds can bring an
enjoyable perception, while a soundscape with traffic, construction, or machine tends to
cause a terrible soundscape impression. Across the top ten important variables, nighttime
light value is the only geospatial factor that maintains high relative importance among all
three comfort levels, yet other subclasses of geospatial factors differentiate slightly, which
implies that nighttime light may be a valuable composite indicator to comprehensively
reflect the general social-economic condition of the specific context.
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Figure 2. The relative importance and their corresponding significance of the explanatory variables
for the overall soundscape comfort (**: p-value ≤ 0.01, *: p-value ≤ 0.05, ns: p > 0.05).

Table 2. A subset of the explanatory variables for the three levels of comfort score ranked by relative
importance. The most important variable is in the first line and subordinate ones are subsequently
following in the decreasing order.

Uncomfortable Moderate Comfortable

1 Source_artificial ** Age ** Source_nature **
2 LAeq ** BldStructure ** Source_artificial **
3 Source_nature ** Source_human ** LAeq **
4 Source_human ** Landuse_context ** Landuse_context **
5 RdAll ** DisRdMajor ** DisRdExpress **
6 NLValue* Cultivated land ** NLValue **
7 AREA_MN ** LAeq ** RdWeighted **
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Table 2. Cont.

Uncomfortable Moderate Comfortable

8 Cultivated land ** NLValue ** Landuse_site *
9 RdWeighted ** RdMajor ** RdAll **

10 Age ** POIEntropy ** Seasonal **
11 POIEntropy ** Shrub land ** PD **
12 DisRdExpress* DisRdExpress ** AREA_MN **
13 CONTAG ** RdWeighted ** Forest **
14 Diurnal ** Landuse_site ** DisRdAll *
15 Landuse_context (ns) Seasonal ** RdMajor **
16 PD ** Forest ** Cultivated land **
17 SHDI ** Artificial surfaces ** RdExpress *
18 RdExpress * Source_artificial ** BldStructure *
19 DisRdAll (ns) Diunal ** LPI **
20 Shrub land ** RdAll* Artificial Surfaces **
21 Landuse_site * DisRdAll * CONTAG*
22 Seasonal * LPI ** Grassland **
23 RdMajor (ns) Urban location ** SHDI **
24 BldStructure (ns) Gender ** DisRdMajor *
25 ED * SHDI ** POIEntropy (ns)
26 Grassland (ns) Grassland * Age (ns)
27 Forest (ns) ED ** Diunal (ns)
28 LSI (ns) PD * LSI *
29 DisRdMajor (ns) CONTAG (ns) ED (ns)
30 Artificial surfaces (ns) LUCC_site * Shrub land (ns)
31 Gender (ns) PR. ** PR. (ns)
32 Water bodies (ns) LSI * Source_human (ns)
33 PR (ns) Water bodies (ns) Urban location (ns)
34 LPI (ns) AREA_MN (ns) Gender (ns)
35 LUCC_site (ns) RdExpress (ns) Water_bodies (ns)
36 Urban location Source_nature (ns) LUCC_type (ns)

**: p-value ≤ 0.01, *: p-value ≤ 0.05, ns: p > 0.05.

3.2. Optimal Variable Sets and the Optimized Random Forest Model

Although the method of random forests is relatively insensitive to superfluous vari-
ables, unnecessary variables are not beneficial to enhancing the predictive power of models,
and redundant variables are a burden for data accessibility and index calculation. In ad-
dition, a simple and clear subset of variables can be more feasible to interpret and more
convenient to take into the application.

To determine the specific number of variables for an optimal model with great predic-
tive ability, a ten-fold Cross-Validation (CV) was implemented, and the result shows that
the CV error tends to maintain stability after the number of variables reaches twenty-four
(see Figure 3).

Therefore, we selected the top 24 variables according to the relative importance mea-
sured by mean decrease accuracy as the optimal variable set, which contains eleven built
environment factors (including land use of context, NLValue, RdAll, RdWeighted, BldStruc-
ture, DisRdExpress, POIEntropy, RdMajor, land use of the recording site, DisRdMajor, and
DisRdAll), four landscape indices (including AREA_MN, PD, CONTAG, and SHDI), two
land cover factors (including the proportion of cultivated land and that of forest), all of the
four acoustic factors, all of the two temporal factors, and one demographic factor (age).

The model parameters are tuned again through the aforementioned process, and the
final parameters are 8 of mtry, 800 of ntree, and 60 of sampsize. The new random forest
model achieved the F1 score of 0.61. Despite the slight decrease, the elimination of twelve
insignificant and unnecessary variables out of the original subset of thirty-six can largely
simplify the prediction of soundscape comfort at a new site.
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Figure 3. Determining the optimal variable set for the soundscape comfortable model based on
CV error.

3.3. The Influence Mechanism between Explanatory Variables and the Soundscape

To explore the influence mechanism between explanatory variables and the sound-
scape, we utilize a general R package, PDP, to conveniently implement partial dependence
analysis, and help understand the outcomes of the random forests model. Hereby we se-
lected numbers of variables which are comprehensible for urban planning, and conducted
the partial dependence analysis of the response on a single predictor, as well as the joint
effect of several pairs of variables.

(1) The marginal effect of a single predictor on soundscape comfort evaluation

Acoustic factors most directly influence soundscape perception, mainly through the
way of the content and the intensity of the sound. As shown in Figure A1 (in Appendix A),
after the proportion of the natural sound source reaches 0.6, it will be more likely to lead
to a comfortable perception while the probability to be recognized as an uncomfortable
soundscape stably remains the lowest. Both the influence tendency of the proportion of
artificial sound sources and the A-weighted equivalent continuous sound level (LAeq) on
discriminating between comfortable and uncomfortable soundscapes take a symmetri-
cal form, which shows that a higher proportion of artificial sound or a higher LAeq will
gradually cause a lower probability of comfortable perception and a higher probability of
uncomfortable perception. In contrast with these three measurements, the proportion of hu-
man sound sources does not appear a prominent and consistent preference for soundscape
perception. However, it is reasonable to conclude that in the case of human sound taking
up the percentage of 0.2 to 0.6 the probability of comfortable soundscape will increase and
that of uncomfortable will decrease, which indicates that it is more appropriate to maintain
a moderate proportion of human sound.

Geospatial factors have a more complex influence on soundscape perception, incor-
porating aspects of indirect ways and direct ways. These factors primarily provide the
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context of soundscape, which largely determine the underlying and overall impression of
soundscape perception. Meanwhile, it defines the sound contents, that is, sound sources
and their intricacy level, through the way of sound generation and sound propagation.
Furthermore, it can directly change the sound intensity, such as in the case of the distance
to the roads. In each AU, if the road density is higher than 15 km/km2, or the weighted
road density with consideration of different road hierarchies is higher than 2 km/km2, the
soundscape will tend to be increasingly uncomfortable (see Figure A2). The difference
value of 13 km/km2 here implies that people’s soundscape perception may be less tolerant
to the existence of roads with greater weight such as the express roads and the major roads.

Both the entropy of POI and the type of land use can reflect the land context, and
results show that to create a comfortable soundscape, POI entropy in each AU must stay
below the level of 0.4. The land use type of a double functional area with residential
combined with green space and the scenic spot is preferred for a comfortable soundscape,
or it is also enjoyable if the person is located in a public administration and service (mostly
college in our data set). In contrast, locations in an industrial area or a transportation area
will significantly end up with uncomfortable soundscapes (see Figure A3).

Unlike the factors of the built environment, factors of land cover and landscape index
have a slighter and unclear impact on soundscape perception. To name just one sample for
each, a higher proportion of forest up to 40 percent or a higher value of Shannon’s diversity
index up to 1.0 in the AU are more likely to indirectly form a comfortable soundscape
(see Figure A4). In terms of other reference factors, teenagers between 12 to 18 are the
most likely group to make a positive evaluation, while the elderly older than 60 are most
likely to recognize the soundscapes as negative ones. However, the temporal scale fails to
demonstrate any obvious dissimilarity among different seasons and hours (see Figure A5).

(2) The joint effect of paired predictors on soundscape comfort evaluation

Among the identified important variables, several paired predictors can be further
selected to discuss the joint effects and the interaction mechanisms between them and the
soundscape comfort evaluation. The mutual inhibition between sound sources is one of
the interesting stories. Results show that in the condition of a low proportion of natural
sounds (below 0.5) the probability of an uncomfortable soundscape will increase after
the proportion of artificial sounds reaches 0.5, and vice versa: on the premise of a low
proportion of artificial sound sources (less than 0.15), the soundscape tends to be more
comfortable when the proportion of natural sound sources are closer to 1 (see Figure 4a). As
for sound intensity and sound sources, the LAeq level higher than 65 dB and the proportion
of artificial sound sources larger than 0.6 lead to the maximum probability of uncomfortable
soundscape, while the LAeq level lower than 60 dB with the proportion of artificial sound
sources lesser than 0.15 lead to the maximum probability of comfortable soundscape
inversely (see Figure 4b).

The appropriate range of weighted road density in each AU is 1 to 2.5 km/km2, which
is most unlikely to cause an uncomfortable soundscape. At the same time, its value below
2 km/km2 with a farther distance to the nearest road up to 100 m is preferred to create a
comfortable soundscape (see Figure 4c).

The interaction between factors of the built environment and factors of landscape
index can uncover the mutual influence of landscape substrate characteristics and its above
human social-economic activities on soundscape perception. For instance, a low Shannon’s
diversity index below 0.75 accompanied by a higher entropy of POI in each AU up to
0.75 can essentially result in an uncomfortable soundscape, while a low entropy of POI
below 0.3 on the base of a high Shannon’s diversity index up to 1.0 can form the comfortable
soundscape, indicating that urban planning should maintain a limited and well-organized
land use structure with diverse land cover patches (see Figure 4d).
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Figure 4. Partial dependence plot to understand the joint effect of paired predictors on model
prediction outcomes.

The interaction within landscape indexes can also produce clues about how the dif-
ferent dimensions of landscape substrate characteristics indirectly act upon soundscape
perception. The plot shows that even with a high contagion up to 60 in each AU, a low
Shannon’s diversity index below 0.75 may lead to an uncomfortable soundscape, while
only in the case of both high contagion (up to 75) and high Shannon’s diversity (up to 1.0)
the landscape context for a comfortable soundscape tends to be created (see Figure 4e).

4. Discussion

The conceptional implementations of Participatory Sensing through smartphone appli-
cation programs can maximize the randomness of questionnaire inquiry and the diversity
of the sample data. In our study, the PSS system recording sites scatter different downtown
or suburban locations, providing various contexts for the soundscape which guarantees the
precondition of the research engaging in unraveling the relationship between soundscape
quality and diversified explanatory variables. We used a realistic case study of soundscape
perception data in the Pearl River Delta of China to analyze its latent influence factors and
mechanisms by organizing a large set of variables with 36 features. Following our model
constructing process, we built an effective random forest model to predict the classification
of soundscape perception quality, taking comfort as the proxy. By providing the order of
variable importance for the overall soundscape comfort and a separate sequence set for
each of the three comfort levels, we can observe how the 36 explanatory variables perform
differently among these four perspectives of soundscape comfort. Furthermore, to enhance
the feasibility of the random forest model when extensively applied in predicting the
soundscape quality of new sites, we reorganized an optimal variable set with the 24 most
important variables. Finally, through the implementation of partial dependence analysis,
we explored the marginal effect of several single predictors and the joint effect of couples
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of paired predictors on model prediction outcomes, which can provide a deep insight into
how the soundscape comfort responds to the subset of the features.

Compared to the previous work mentioned in the introduction section, we conducted
a larger temporal–spatial scale of the study which can provide a diversified context with
heterogeneous elements concerning people, activity, and place in space and time. More-
over, we have established an explanatory variable set with more abundant information
extensively containing geospatial factors (including built environment elements, land cover
elements, and landscape index), acoustic factors, demographic factors, and temporal factors,
which can better depict a complete description of how the variables make up the certain
context, as well as how they influence sounds and the acoustic environment through the
context. Furthermore, the response we are concerned about is the soundscape comfort in
comparison with the work by Mennitt et al., taking sound pressure level as the response [39].
We directly focus on the perception of soundscape, which can better obtain the perception or
experience or understanding of soundscape from a humanistic perspective. In general, the
constructed model strives for an approach to successfully predict the soundscape quality
based on the optimized data set of 24 explanatory variables. Urban planners can utilize this
model to evaluate the citizens’ soundscape perception in advance, and adjust the urban
planning at the very beginning of the planning stage. Urban managements can also rapidly
assess the citizens’ soundscape evaluation simply based on the 24 variables which can be
regarded as the supplementary reference of the field questionnaires.

Some limitations in the current study should be highlighted. Though we have articu-
lated in which underlying way the explanatory variables play their roles in the soundscape,
we still found some difficulties in explaining the response for a few variables, especially for
the two less important factors—landscape index and types of land cover. We speculated
that this is because of the insufficient background information within the inquiry, and
thus, the subjects’ perception and answers towards comfort may largely be affected by the
instantaneous sound events or even their temporal emotions rather than the macroscopical
and static features of landscape and land cover.

Given the aforementioned shortcomings and challenges, we also explored several
directions for future work. In the aspects of participatory sensing, the questionnaire inquiry
can be designed to focus on more dimensions of response in addition to soundscape
comfort. In addition, we can construct the user’s profile as the complement variable sets
containing socio-cultural factors through cluster analysis, which can help to prove the
importance of socio-cultural factors in the interpretation of the acoustic environment [45].
Above all, we can provide more background information in the inquiry and guide the
subjects to consider the imperative but overlooked surrounding context, which is essential
for exploring the influence of geospatial factors on soundscape quality. As for the aspects
of selecting explanatory variables, to improve the interpretability, it is necessary to exploit
more data sources to ensure the effectiveness of the variable measurements and make
them more intuitive and convenient when applied in the soundscape planning practice.
Through these improvements, we believe that our model will have greater potential and
provide more valuable references for urban planning and landscape management from the
perspective of auditory and soundscape perception quality.

5. Conclusions

Sound is a fundamental aspect of nature and can be drastically affected by a variety of
human activities. Thus, setting the soundscape and its hidden influence factors together
in the framework of coupled natural–human systems can help to clarify what constitutes
a high-quality soundscape in human habitats. The random forest model has confirmed
its validity as a classification tool for soundscape quality (F1 score = 0.61) and has proven
its ability to handle a large set of various explanatory variables and randomly collected
sample data. Despite the failure to perform a significantly high prediction accuracy, overall,
our methodology is sound and appears to have a heuristic value for similar research by
providing an empirical case study.
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Results of random forest model show that the acoustic factors are the most important
factors for successfully classifying soundscape comfort, subsequently ranking by built
environment elements, temporal factors, and demographic factors; landscape index and
land cover type seem to have unclear importance. In addition, the results of the influence
mechanisms point out several referable thresholds which can indicate the appropriate
category, value, or range of those geospatial and acoustic factors to maintain a perceived
comfortable and high-quality soundscape. The valuable references and refined keypoints
for soundscape management and urban planning can be concluded as follows:

• more natural sound sources (>60%);
• a moderate proportion of human sound (20–60%);
• fewer artificial sound sources with as low sound level as possible;
• combination of more natural sounds (>60%) with fewer artificial sounds (<15%) or

less artificial sounds (<15%) based on lower sound level (<60 dB);
• a lower road density (<15 km/km2) or a lower weighted road density (<2 km/km2);
• combination of a lower weighted road density (<2 km/km2) with a farther distance of

human activity spaces from the nearest roads (>100 m);
• a limited POI entropy (<0.4);
• more green spaces, scenic spots, and accessible public administration and service

spaces rather than industrial or transportation areas;
• combination of a higher Shannon’s diversity index (>1.0) with lower POI entropy (<0.3);
• combination of a high Shannon’s diversity concerning heterogeneous patches and a

high contagion among homogeneous patches.

Our success demonstrates that the random forest model soundscape perception quality
is well poised to integrate with diversified variables like geospatial factors, acoustic factors,
demographic factors, and temporal factors. It can be utilized to act as an innovative
indicator metric and pragmatic tool, and assist landscape and urban planners to build a
more livable human habitat based on a humanistic consideration for human environment
perception. In the future, we plan to extend the research to the worldwide range, as well
as making the comparison among study areas with different characteristics, and finally
propose the specific environmental planning and management of public health related to
soundscape quality for the different types of human habitats.
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Appendix A

In these groups of graphs, the x-axis represents the value or the categories of the
variable annotated below, and the y-axis represents the probability to be classified into the
uncomfortable soundscape (left column) or the comfortable soundscape (right column).
The probability values are standardized to around zero, whereas we should not concern
about the specific value, rather than focus on the tendency of the curve. The upward curve
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means the greater probability to be classified into the corresponding soundscape. The
downward curve represents a decreasing tendency reversely. The hush marks at the bottom
of each plot indicate the data distribution.

Figure A1. Partial dependence plot to understand the marginal effect of a single predictor on model
prediction outcomes.
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Figure A2. Partial dependence plot to understand the marginal effect of a single predictor on model
prediction outcomes.

Figure A3. Cont.
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Figure A3. Partial dependence plot to understand the marginal effect of a single predictor on model
prediction outcomes.

Figure A4. Partial dependence plot to understand the marginal effect of a single predictor on model
prediction outcomes.
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Figure A5. Partial dependence plot to understand the marginal effect of a single predictor on model
prediction outcomes.
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