Justified Concerns? An Exploration of the Leg Tuck in a Tactical Population
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Procedures
2.3. Illinois Agility Test
2.4. Metronome Push-Ups
2.5. Pull-Ups
2.6. Leg Tucks
2.7. Estimated Maximal Aerobic Capacity (V̇O2max)
2.8. Backwards Overhead Medicine Ball Throw (BOMBT)
2.9. 10-Repetition Maximum (10RM) Deadlift
2.10. Farmer’s Carry
2.11. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Escamilla, R.F.; Babb, E.; DeWitt, R.; Jew, P.; Kelleher, P.; Burnham, T.; Busch, J.; D’Anna, K.; Mowbray, R.; Imamura, R.T. Electromyographic analysis of traditional and nontraditional abdominal exercises: Implications for rehabilitation and training. Phys. Ther. 2006, 86, 656–671. [Google Scholar] [CrossRef]
- United States Army Center for Initial Military Training. Army Combat Fitness Test. Available online: https://www.army.mil/acft/ (accessed on 14 March 2022).
- McGuire, M.B.; Lockie, R.G. Motor skill, movement competency, and physical fitness assessments for Reserve Officers’ Training Corps cadets. Strength Cond. J. 2021, 43, 75–83. [Google Scholar] [CrossRef]
- Novak, K.A. A Critical Review of the Baseline Soldier Physical Readiness Requirements Study. arXiv 2021, arXiv:2110.03062. [Google Scholar]
- Ryan, M. Senators Urge Pentagon to Suspend Implementation of Army’s New Fitness Test. Available online: https://www.washingtonpost.com/national-security/army-new-fitness-test/2020/10/20/d46660bc-12da-11eb-82af-864652063d61_story.html (accessed on 10 March 2022).
- Hardison, C.M.; Mayberry, P.W.; Krull, H.; Messan Setodji, C.; Panis, C.; Madison, R.; Simpson, M.; Avriette, M.; Totten, M.E.; Wong, J. Independent Review of the Army Combat Fitness Test: Summary of Key Findings and Recommendations; RAND Corporation: Santa Monica, CA, USA, 2022. [Google Scholar]
- Department of the Army. FM 7–22: Holistic Health and Fitness. Available online: https://armypubs.army.mil/epubs/DR_pubs/DR_a/ARN30714-FM_7-22-000-WEB-1.pdf (accessed on 14 March 2022).
- United States Army Center for Initial Military Training. Why the ACFT and Why Now? Available online: https://www.army.mil/acft/#faq (accessed on 14 March 2022).
- Winkie, D. Army Combat Fitness Test Debuts with Major Changes to Scoring. 1 April. Available online: https://www.armytimes.com/news/your-army/2022/03/23/army-combat-fitness-test-debuts-with-major-changes-to-scoring-april-1/ (accessed on 8 April 2022).
- Kong, Y.S.; Park, S.; Kweon, M.G.; Park, J.W. Change in trunk muscle activities with prone bridge exercise in patients with chronic low back pain. J. Phys. Ther. Sci. 2016, 28, 264–268. [Google Scholar] [CrossRef] [Green Version]
- Strand, S.L.; Hjelm, J.; Shoepe, T.C.; Fajardo, M.A. Norms for an isometric muscle endurance test. J. Hum. Kinet. 2014, 40, 93–102. [Google Scholar] [CrossRef] [Green Version]
- Axler, C.T.; McGill, S.M. Low back loads over a variety of abdominal exercises: Searching for the safest abdominal challenge. Med. Sci. Sports Exerc 1997, 29, 804–811. [Google Scholar] [CrossRef]
- East, W.; Muraca-Grabowski, S.; McGurk, M.; Degroot, D.; Hauret, K.; Greer, T.; Sharp, M.; Foulis, S.; Redmond, J. Baseline soldier physical readiness requirements study. J. Sci. Med. Sport 2017, 20, S24–S25. [Google Scholar] [CrossRef]
- Lockie, R.G.; Dawes, J.J.; Balfany, K.; Gonzales, C.E.; Beitzel, M.M.; Dulla, J.M.; Orr, R.M. Physical fitness characteristics that relate to Work Sample Test Battery performance in law enforcement recruits. Int. J. Environ. Res. Public Health 2018, 15, 2477. [Google Scholar] [CrossRef] [Green Version]
- Lockie, R.G.; Moreno, M.R.; Rodas, K.A.; Dulla, J.M.; Orr, R.M.; Dawes, J.J. With great power comes great ability: Extending research on fitness characteristics that influence Work Sample Test Battery performance in law enforcement recruits. Work 2021, 68, 1069–1080. [Google Scholar] [CrossRef]
- Rhea, M.R.; Alvar, B.A.; Gray, R. Physical fitness and job performance of firefighters. J. Strength Cond. Res. 2004, 18, 348–352. [Google Scholar]
- Sheaff, A.K.; Bennett, A.; Hanson, E.D.; Kim, Y.S.; Hsu, J.; Shim, J.K.; Edwards, S.T.; Hurley, B.F. Physiological determinants of the Candidate Physical Ability Test in firefighters. J. Strength Cond. Res. 2010, 24, 3112–3122. [Google Scholar] [CrossRef] [Green Version]
- Fyock-Martin, M.B.; Erickson, E.K.; Hautz, A.H.; Sell, K.M.; Turnbaugh, B.L.; Caswell, S.V.; Martin, J.R. What do firefighting ability tests tell us about firefighter physical fitness? A systematic review of the current evidence. J. Strength Cond. Res. 2020, 34, 2093–2103. [Google Scholar] [CrossRef]
- Michaelides, M.A.; Parpa, K.M.; Henry, L.J.; Thompson, G.B.; Brown, B.S. Assessment of physical fitness aspects and their relationship to firefighters’ job abilities. J. Strength Cond. Res. 2011, 25, 956–965. [Google Scholar] [CrossRef]
- Tofari, P.J.; Treloar, A.K.L.; Silk, A.J. A quantification of the physiological demands of the Army Emergency Responder in the Australian Army. Mil. Med. 2013, 178, 487–494. [Google Scholar] [CrossRef] [Green Version]
- Sharp, M.A.; Cohen, B.S.; Boye, M.W.; Foulis, S.A.; Redmond, J.E.; Larcom, K.; Hydren, J.R.; Gebhardt, D.L.; Canino, M.C.; Warr, B.J.; et al. U.S. Army physical demands study: Identification and validation of the physically demanding tasks of combat arms occupations. J. Sci. Med. Sport 2017, 20 (Suppl. S4), S62–S67. [Google Scholar] [CrossRef]
- Foulis, S.A.; Redmond, J.E.; Frykman, P.N.; Warr, B.J.; Zambraski, E.J.; Sharp, M.A. U.S. Army physical demands study: Reliability of simulations of physically demanding tasks performed by combat arms soldiers. J. Strength Cond. Res. 2017, 31, 3245–3252. [Google Scholar] [CrossRef]
- Canino, M.C.; Foulis, S.A.; Zambraski, E.J.; Cohen, B.S.; Redmond, J.E.; Hauret, K.G.; Frykman, P.N.; Sharp, M.A. U.S. Army physical demands study: Differences in physical fitness and occupational task performance between trainees and active duty soldiers. J. Strength Cond. Res. 2019, 33, 1864–1870. [Google Scholar] [CrossRef]
- U.S. Army. Firefighter. Available online: https://www.goarmy.com/careers-and-jobs/career-match/support-logistics/safety-order-legal/12m-firefighter.html (accessed on 8 April 2022).
- Orr, R.; Pope, R.; Peterson, S.; Hinton, B.; Stierli, M. Leg power as an indicator of risk of injury or illness in police recruits. Int. J. Environ. Res. Public Health 2016, 13, 237. [Google Scholar] [CrossRef]
- Butler, R.J.; Contreras, M.; Burton, L.C.; Plisky, P.J.; Goode, A.; Kiesel, K. Modifiable risk factors predict injuries in firefighters during training academies. Work 2013, 46, 11–17. [Google Scholar]
- Lockie, R.G.; Orr, R.M.; Montes, F.; Ruvalcaba, T.J.; Dawes, J.J. Differences in fitness between firefighter trainee academy classes and normative percentile rankings. Sustainability 2022, 14, 6548. [Google Scholar] [CrossRef]
- Los Angeles County Fire Department. Your Path to Becoming a Firefighter. Available online: http://fire.lacounty.gov/wp-content/uploads/2019/08/fire-fighter-trainee.pdf (accessed on 12 February 2021).
- Bloodgood, A.M.; Moreno, M.R.; Cesario, K.A.; McGuire, M.B.; Lockie, R.G. An investigation of seasonal variations in the fitness test performance of law enforcement recruits. FU Phys. Ed. Sport 2020, 18, 271–282. [Google Scholar] [CrossRef]
- World Medical Association. World Medical Association Declaration of Helsinki. Recommendations guiding physicians in biomedical research involving human subjects. JAMA 1997, 277, 925–926. [Google Scholar] [CrossRef]
- McGuigan, M.R. Principles of Test Selection and Administration. In Essentials of Strength Training and Conditioning, 4th ed.; Haff, G.G., Triplett, N.T., Eds.; Human Kinetics: Champaign, IL, USA, 2015; pp. 249–258. [Google Scholar]
- Post, B.K.; Dawes, J.J.; Lockie, R.G. Relationships between tests of strength, power, and speed and the 75-yard pursuit run. J. Strength Cond. Res. 2022, 36, 99–105. [Google Scholar] [CrossRef]
- Stewart, P.F.; Turner, A.N.; Miller, S.C. Reliability, factorial validity, and interrelationships of five commonly used change of direction speed tests. Scand. J. Med. Sci. Sports 2014, 24, 500–506. [Google Scholar] [CrossRef]
- Foulis, S.A.; Sharp, M.A.; Redmond, J.E.; Frykman, P.N.; Warr, B.J.; Gebhardt, D.L.; Baker, T.A.; Canino, M.C.; Zambraski, E.J. U.S. Army Physical Demands Study: Development of the Occupational Physical Assessment Test for Combat Arms soldiers. J. Sci. Med. Sport 2017, 20, S74–S78. [Google Scholar] [CrossRef]
- Orr, R.M.; Kukić, F.; Čvorović, A.; Koropanovski, N.; Janković, R.; Dawes, J.; Lockie, R. Associations between fitness measures and change of direction speeds with and without occupational loads in female police officers. Int. J. Environ. Res. Public Health 2019, 16, 1947. [Google Scholar] [CrossRef] [Green Version]
- Raya, M.A.; Gailey, R.S.; Gaunaurd, I.A.; Jayne, D.M.; Campbell, S.M.; Gagne, E.; Manrique, P.G.; Muller, D.G.; Tucker, C. Comparison of three agility tests with male servicemembers: Edgren Side Step Test, T-Test, and Illinois Agility Test. J. Rehabil. Res. Dev. 2013, 50, 951–960. [Google Scholar] [CrossRef]
- Hetzler, R.K.; Stickley, C.D.; Lundquist, K.M.; Kimura, I.F. Reliability and accuracy of handheld stopwatches compared with electronic timing in measuring sprint performance. J. Strength Cond. Res. 2008, 22, 1969–1976. [Google Scholar] [CrossRef]
- Lockie, R.G.; Dawes, J.J.; Dulla, J.M.; Orr, R.M.; Hernandez, E. Physical fitness, sex considerations, and academy graduation for law enforcement recruits. J. Strength Cond. Res. 2020, 34, 3356–3363. [Google Scholar] [CrossRef]
- Lockie, R.G.; Orr, R.M.; Stierli, M.; Cesario, K.A.; Moreno, M.R.; Bloodgood, A.M.; Dulla, J.M.; Dawes, J.J. The physical characteristics by sex and age for custody assistants from a law enforcement agency. J. Strength Cond. Res. 2019, 33, 2223–2232. [Google Scholar] [CrossRef] [Green Version]
- Sanchez-Moreno, M.; Pareja-Blanco, F.; Diaz-Cueli, D.; González-Badillo, J.J. Determinant factors of pull-up performance in trained athletes. J. Sports Med. Phys. Fit. 2016, 56, 825–833. [Google Scholar]
- Lisman, P.; O’Connor, F.G.; Deuster, P.A.; Knapik, J.J. Functional movement screen and aerobic fitness predict injuries in military training. Med. Sci. Sports Exerc. 2013, 45, 636–643. [Google Scholar] [CrossRef] [Green Version]
- Orr, R.M.; Caust, E.; Hinton, B.; Pope, R. Selecting the best of the best: Associations between anthropometric and fitness assessment results and success in police specialist selection. Int. J. Exerc. Sci. 2018, 11, 785–796. [Google Scholar]
- Williford, H.N.; Duey, W.J.; Olson, M.S.; Howard, R.; Wang, N. Relationship between fire fighting suppression tasks and physical fitness. Ergonomics 1999, 42, 1179–1186. [Google Scholar] [CrossRef]
- Ramsbottom, R.; Brewer, J.; Williams, C. A progressive shuttle run test to estimate maximal oxygen uptake. Br. J. Sports Med. 1988, 22, 141–144. [Google Scholar] [CrossRef]
- Stockbrugger, B.A.; Haennel, R.G. Contributing factors to performance of a medicine ball explosive power test: A comparison between jump and nonjump athletes. J. Strength Cond. Res. 2003, 17, 768–774. [Google Scholar] [CrossRef]
- Stockbrugger, B.A.; Haennel, R.G. Validity and reliability of a medicine ball explosive power test. J. Strength Cond. Res. 2001, 15, 431–438. [Google Scholar]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Earlbaum Associates: Hillsdale, NJ, USA, 1988. [Google Scholar]
- Hopkins, W.G. How to interpret changes in an athletic performance test. Sportscience 2004, 8, 1–7. [Google Scholar]
- Hopkins, W.G. A Scale of Magnitudes for Effect Statistics. Available online: http://www.sportsci.org/resource/stats/effectmag.html (accessed on 18 January 2022).
- Jones, B.H.; Bovee, M.W.; Harris, J.M., 3rd; Cowan, D.N. Intrinsic risk factors for exercise-related injuries among male and female army trainees. Am. J. Sports Med. 1993, 21, 705–710. [Google Scholar] [CrossRef]
- Yanovich, R.; Evans, R.; Israeli, E.; Constantini, N.; Sharvit, N.; Merkel, D.; Epstein, Y.; Moran, D.S. Differences in physical fitness of male and female recruits in gender-integrated army basic training. Med. Sci. Sports Exerc. 2008, 40, S654–S659. [Google Scholar] [CrossRef]
- Bloodgood, A.M.; Dawes, J.J.; Orr, R.M.; Stierli, M.; Cesario, K.A.; Moreno, M.R.; Dulla, J.M.; Lockie, R.G. Effects of sex and age on physical testing performance for law enforcement agency candidates: Implications for academy training. J. Strength Cond. Res. 2021, 35, 2629–2635. [Google Scholar] [CrossRef] [PubMed]
- Cesario, K.A.; Dulla, J.M.; Moreno, M.R.; Bloodgood, A.M.; Dawes, J.J.; Lockie, R.G. Relationships between assessments in a physical ability test for law enforcement: Is there redundancy in certain assessments? Int. J. Exerc. Sci. 2018, 11, 1063–1073. [Google Scholar]
- Lockie, R.G.; Dawes, J.J.; Orr, R.M.; Stierli, M.; Dulla, J.M.; Orjalo, A.J. An analysis of the effects of sex and age on upper- and lower-body power for law enforcement agency recruits prior to academy training. J. Strength Cond. Res. 2018, 32, 1968–1974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fryar, C.D.; Gu, Q.; Ogden, C.L.; Flegal, K.M. Anthropometric reference data for children and adults: United States, 2011–2014. Vital Health Stat. 2016, 3, 1–46. [Google Scholar]
- Janssen, I.; Heymsfield, S.B.; Wang, Z.; Ross, R. Skeletal muscle mass and distribution in 468 men and women aged 18–88 yr. J. Appl. Physiol. 2000, 89, 81–88. [Google Scholar] [CrossRef] [Green Version]
- Lockie, R.G.; Moreno, M.R.; Dawes, J.J.; Orr, R.M.; Rodas, K.A.; Dulla, J.M. An analysis of the body drag test in law enforcement recruits with consideration to current population demographics. Int. J. Exerc. Sci. 2022, 15, 276–288. [Google Scholar]
- Nazari, G.; MacDermid, J.C.; Sinden, K.E.; Overend, T.J. The relationship between physical fitness and simulated firefighting task performance. Rehabil. Res. Pract. 2018, 2018, 3234176. [Google Scholar] [CrossRef] [Green Version]
- Firefighter Candidate Testing Center. Candidate Physical Ability Test. Available online: https://www.fctconline.org/departments/about-cpat/ (accessed on 3 March 2021).
- Mala, J.; Szivak, T.K.; Flanagan, S.D.; Comstock, B.A.; Laferrier, J.Z.; Maresh, C.M.; Kraemer, W.J. The role of strength and power during performance of high intensity military tasks under heavy load carriage. US Army Med. Dep. J. 2015, 3–11. [Google Scholar]
- Stevenson, R.D.; Siddall, A.G.; Turner, P.F.; Bilzon, J.L. Physical employment standards for UK firefighters: Minimum muscular strength and endurance requirements. J. Occup. Environ. Med. 2017, 59, 74–79. [Google Scholar] [CrossRef] [Green Version]
- Collins, K.S.; Christensen, B.; Orr, R.M.; Dulla, J.M.; Dawes, J.J.; Lockie, R.G. Analysis of total and segmental body composition relative to fitness performance measures in law enforcement recruits. Int. J. Exerc. Sci. 2022, 15, 245–260. [Google Scholar]
- Beck, A.Q.; Clasey, J.L.; Yates, J.W.; Koebke, N.C.; Palmer, T.G.; Abel, M.G. Relationship of physical fitness measures vs. occupational physical ability in campus law enforcement officers. J. Strength Cond. Res. 2015, 29, 2340–2350. [Google Scholar] [CrossRef] [PubMed]
- U.S. Fire Administration. Emerging Health and Safety Issues among Women in the Fire Service. Available online: https://www.usfa.fema.gov/downloads/pdf/publications/emerging_health_safety_issues_women_fire_service.pdf (accessed on 4 March 2021).
- Pihlainen, K.; Santtila, M.; Hakkinen, K.; Kyrolainen, H. Associations of physical fitness and body composition characteristics with simulated military task performance. J. Strength Cond. Res. 2018, 32, 1089–1098. [Google Scholar] [CrossRef] [PubMed]
Tests | Overall (N = 305) | Males (n = 274) | Females (n = 31) | p | d | d Strength |
---|---|---|---|---|---|---|
IAT (s) | 18.44 ± 1.42 | 18.31 ± 1.40 | 19.60 ± 1.00 * | <0.001 | 1.06 | Moderate |
Push-ups (no.) | 61.88 ± 23.08 | 63.20 ± 22.73 | 50.32 ± 23.28 * | 0.003 | 0.56 | Small |
Pull-ups (no.) | 11.70 ± 6.39 | 12.45 ± 6.13 | 5.10 ± 4.68 * | <0.001 | 1.35 | Large |
BOMBT (m) | 9.53 ± 1.71 | 9.87 ± 1.41 | 6.56 ± 1.13 * | <0.001 | 2.59 | Very Large |
Leg Tuck (no.) | 11.95 ± 5.81 | 12.64 ± 5.49 | 5.90 ± 5.01 * | <0.001 | 1.28 | Large |
Estimated V̇O2max (mL·kg−1·min−1) | 46.00 ± 5.90 | 46.49 ± 5.80 | 41.61 ± 4.87 * | <0.001 | 0.91 | Moderate |
10RM Deadlift (kg) | 143.53 ± 15.17 | 145.75 ± 12.74 | 123.72 ± 20.24 * | <0.001 | 1.30 | Large |
Farmer’s Carry (s) | 28.90 ± 4.15 | 28.46 ± 4.03 | 32.67 ± 3.13 * | <0.001 | 1.17 | Moderate |
Test | Leg Tuck | |
---|---|---|
r | p | |
IAT | −0.267 * | <0.001 |
Push-ups | 0.553 * | <0.001 |
Pull-ups | 0.790 * | <0.001 |
BOMBT | 0.070 | 0.231 |
Estimated V̇O2max | 0.465 * | <0.001 |
10RM Deadlift | −0.198 * | <0.001 |
Farmer’s Carry | 0.053 | 0.368 |
Variables | r | r2 | Adjusted r2 |
---|---|---|---|
Sex | 0.353 | 0.124 | 0.121 |
Sex, Pull-ups | 0.819 | 0.668 | 0.668 |
Sex, Pull-ups, Push-ups | 0.823 | 0.674 | 0.674 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lockie, R.G.; Orr, R.M.; Dawes, J.J. Justified Concerns? An Exploration of the Leg Tuck in a Tactical Population. Int. J. Environ. Res. Public Health 2022, 19, 13918. https://doi.org/10.3390/ijerph192113918
Lockie RG, Orr RM, Dawes JJ. Justified Concerns? An Exploration of the Leg Tuck in a Tactical Population. International Journal of Environmental Research and Public Health. 2022; 19(21):13918. https://doi.org/10.3390/ijerph192113918
Chicago/Turabian StyleLockie, Robert G., Robin M. Orr, and J. Jay Dawes. 2022. "Justified Concerns? An Exploration of the Leg Tuck in a Tactical Population" International Journal of Environmental Research and Public Health 19, no. 21: 13918. https://doi.org/10.3390/ijerph192113918
APA StyleLockie, R. G., Orr, R. M., & Dawes, J. J. (2022). Justified Concerns? An Exploration of the Leg Tuck in a Tactical Population. International Journal of Environmental Research and Public Health, 19(21), 13918. https://doi.org/10.3390/ijerph192113918