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Abstract: Growing up in a family environment characterized by neglectful parenting, overt conflict,
and unsupportive relationships is associated with poor health in adulthood. A risky early family
environment may also be associated with obesity in adulthood, likely through the activation of the
HPA axis. Likewise, the GABAergic (gamma-aminobutyric acid) T>C single nucleotide polymor-
phism in the 1519 nucleotide position of the GABAAα6 receptor subunit gene has been associated
with a predisposition to a higher body mass index and a larger waist circumference. Participants
(n = 213, Mage = 30.13 years, SD = 10.85; 57.7% men) from the Pittsburgh Cold Study 3 completed a
demographic questionnaire, the Risky Families Questionnaire (RFQ) and had their height, weight,
and waist circumference measured during a physical exam. Participant DNA was recovered from
buccal swabs and genotyped for the various allelic types of the SNP according to published protocols.
In secondary data analyses, we tested the hypothesis that early family environment and GABRA6
would be positively associated with body mass index and waist circumference. We also examined di-
urnal cortisol as a mechanism linking both early risky family environment and GABRA6 to metabolic
outcomes. The findings provide evidence that a risky early family environment may exert more
influence than genetic predisposition when determining the indices of metabolic health in adulthood.

Keywords: early risky family environment; genetic; body mass index; waist circumference

1. Introduction

Obesity is on the rise in the United States, with around 42% of the adult population
being classified as obese [1]. Obesity is a risk factor for several types of cancer, type II
diabetes, heart disease, and all-cause mortality [2–4]. Additionally, these adverse health
outcomes have a staggeringly negative economic effect, costing the U.S. alone billions
of dollars a year on obesity-related medical care [5]. The role of genetics and stressful
psychosocial experiences in childhood are factors associated with the development of
obesity later in life. Identifying risk factors and how they are related to obesity is an
important step toward preventing obesity and the associated negative physical health and
financial outcomes.

Specific types of severe adverse childhood experiences have been linked to obesity and
obesity-related diseases in adulthood [6]. For example, both physical abuse and experienc-
ing domestic violence have shown a positive association with larger waist circumference
(WC) and higher body mass index (BMI) [7,8]. Additionally, a meta-analysis revealed that
childhood maltreatment was associated with an elevated risk of obesity over the course
of life, and that this association remained after accounting for both adult and childhood
socioeconomic status, alcohol intake, and physical activity [6]. However, less is known
about whether milder, less severe forms of stress during childhood, such as growing up in
an unsupportive, emotionally cold, and harsh family environment, also confer the risk for
obesity in adulthood.
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There is some evidence to suggest that growing up in an unsupportive, emotionally
cold, and harsh family may be an important contributing factor to a higher BMI and a
larger waist circumference, both of which are metabolic risk outcomes [9–12]. For example,
growing up in an unsupportive, emotionally cold, and harsh, early family environment
was directly associated with metabolic functioning in adulthood in a large epidemiological
study [13]. A 1992 study supports this assertion, noting that a high-conflict family environ-
ment was associated with high cholesterol in males. Even when controlling for childhood
BMI and sex, children who grew up with non-supportive parents were found to have an
elevated risk of obesity in early adulthood [13].

According to theoretical models linking childhood stress and family dysfunction to
adult health, children frequently exposed to a family environment characterized by conflict,
aggression, and cold and unsupportive relationships may lead to adverse alterations
in biological systems culminating in increased rates of a variety of health problems in
adulthood [14]. In particular, children who grow up in “risky families” may experience
an overactivation of the hypothalamic–pituitary–adrenal (HPA) axis [14]. During times
of acute stress, HPA axis activation serves a protective function and promotes increased
cardiovascular tone, respiratory rate, and metabolism, while constraining non-essential
functions such as digestion, growth, and immunity [15]. However, prolonged activation of
the HPA axis dysregulates these processes and contributes to negative health outcomes,
such as insulin resistance and an increased propensity for abdominal obesity [16]. Thus,
emerging evidence suggests that repeated exposure to stress during childhood may lead
to prolonged activation of the HPA axis and, in turn, contribute to poor physical health in
adulthood [17]. Direct tests of this hypothesis suggest that activation of the HPA axis may
serve as a pathway linking more severe forms of childhood maltreatment, such as abuse
and neglect, to BMI in adulthood, and this may generalize to less severe forms of family
dysfunction as well [9,18].

However, environmental factors are not the sole contributors to obesity and obesity-
related diseases, as genetic influences also play a significant role in their development.
Obesity is now widely characterized as a complex disease controlled mostly by minor con-
tributions from several genes interacting in tandem [19]. Therefore, a promising direction
in the field of metabolic health research involves examining the contributing effects that
single nucleotide polymorphisms (SNPs) have on the pathogenesis of obesity. SNPs are
the most common genetic differences in humans, by some estimates accounting for 90% of
all genetic variability [20]. SNPs are often studied through the candidate gene approach
(CGA), which allows for a selective exploration of a gene or genomic regions of interest for
a trait or disease risk based on a priori hypotheses. An integral advantage of this technique,
when compared with studies with untargeted screenings (such as genome-wide association
studies or GWAS), is their relative inexpensiveness and rapidity, and their emphasis on
genes that have previously related to the disease. CGA studies are particularly useful in
situations where allele frequencies are low, effect sizes are small, or the study population of
interest is limited or unique [21]. CGA studies are also valuable for validating previous
reports of genetic associations with the disease in different populations [21,22]. Nonethe-
less, this approach does have some limitations, including obstructing the discovery of new
biological pathways, the reliance on previous knowledge about a gene, and its limited
ability to include all possible causative genes [23–25].

The GABRA6 gene is a member of the GABAergic receptor family that responds to
GABA, the main inhibitory neurotransmitter of the central nervous system. A T>C poly-
morphism at nucleotide 1519 in the non-coding region of the GABAAα6 receptor subunit
gene means that there are several allelic variants of the GABRA6 gene. GABRA6 has been
denoted as a polymorphism associated with hypercortisolism and abdominal fat deposition,
establishing risk factors for morbidity and mortality attributable to obesity [26,27]. Carriers
of the homozygous T/T or heterozygous T/C genotypes have been shown to exhibit a high
waist-to-hip ratio (WHR), high abdominal sagittal diameter, as well as elevated diurnal
cortisol secretion when compared to homozygous C/C carriers [28]. Excess concentrations
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of cortisol can also lead to elevated blood glucose levels, which over prolonged periods can
cause insulin resistance, both of which have been linked to obesity [29].

The current study is a secondary data analysis of the Pittsburgh Cold Study 3, a
quarantine study that examined factors for common cold susceptibility. One novel feature
of the Pittsburgh Cold Study 3 was that it obtained retrospective measures of early family
environmental stress along with genes that regulate target cell responsiveness to cortisol.
In the present study, we examined the independent effects of growing up in a risky early
family environment and GABRA6 on BMI and WC in a community sample. We also
examined diurnal cortisol secretion as a possible mechanism linking GABRA6 and an early
risky family environment to BMI and WC. Given that GABRA6 (like all SNPs) remains
stable across generations and that nearly half of the nation’s children have been found
to have experienced at least one or more types of adversity, the current study provides
novel insight into potential risk factors for metabolic dysregulation provided by less severe
forms of childhood stressful experiences [30–32]. Thus, the purpose of this study is to test
the hypothesis that an early risky family environment and GABRA6 would be positively
associated with BMI and WC and that these associations would be mediated through
diurnal cortisol secretion.

2. Methods
2.1. Participants

Participants were recruited from the Pittsburgh, Pennsylvania greater metropolitan
area through the use of newspaper advertisements. Informed consent was obtained from
all participants prior to the start of the study (University of Pittsburgh IRB# 0701092). Six to
eight weeks before the start of the study, participants were required to complete a telephone
interview and undergo a physical examination to assess their health status. Participants
were excluded if they had a previous nasal or otologic surgery; tested positive for the Hu-
man Immunodeficiency Virus (HIV); presented an abnormal profile of urinalysis, complete
blood count, or blood enzyme levels; were pregnant or lactating; had a history of chronic
illness (such as respiratory disorders, diabetes, or cardiovascular disease); or took certain
types of medication regularly (such as antidepressants, sleeping pills, or tranquilizers).
They were also excluded if they had been treated for a psychiatric illness the previous year
or hospitalized for a psychiatric illness within the past five years. A total of 213 participants,
123 men and 90 women between the ages of 18 and 55 (Mage = 30.13 years, SD = 10.85;
57.7% men, 42.3% women), were evaluated and judged to be in good health. Upon the
completion of the study, each participant was compensated for her or his participation.
The data were collected by the Laboratory for the Study of Stress, Immunity, and Disease
at Carnegie Mellon University under the directorship of Sheldon Cohen, PhD; and were
accessed via the Common Cold Project website (www.commoncoldproject.com, accessed
on 6 August 2020; grant number NCCIH ATOO6694).

2.2. Procedures
2.2.1. Pre-Quarantine

Participants were interviewed in the evening over the phone consecutively over
14 days (10 weekdays and 4 weekend days) prior to viral exposure to obtain a daily
assessment of their social interactions, mood, health behaviors, and physical symptoms.
Multiple affective traits were assessed during the daily interviews, including depressive
symptoms. The interviews lasted approximately 15 min, during which interviewers asked
participants to rate, using a 5-point scale and a set of mood adjectives, how they had felt
since awakening that day.

Genotyping. Approximately 7 to 8 weeks prior to quarantine, a sample collection
was done via a buccal swab procedure on the inner check using a sterilized cytobrush
(Histobrush, Hardwood Products Company, Guilford, ME, USA). Buccal cells were isolated
by placing the swabs in a cryovial of 500 µL of 0.9% physiological saline and agitated. Sub-
sequently, the swabs were pressed against a wall to release liquid and then removed from

www.commoncoldproject.com
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the tube [33]. This procedure was repeated three times in each cheek for each participant.
The vials were stored at −80 ◦C until they were assayed for extraction of genomic DNA.
A QIAamp DNA Mini Kit (QIAGEN, Valencia, CA, USA) was used for the extraction, a
QIAGEN Repli-g Whole Genome Amplification Kit (GIAGEN) was used for amplification,
and a Quant-iT™ PicoGreen® dsDNA Assay Kit (Invitrogen, Carlsbad, CA, USA) was used
for quantification [33]. Assaying was focused on the expression of the GABRA6, rs3219151
(1519 T>C, 3′-UTR) SNP.

Salivary Cortisol. Salivary cortisol samples were collected across multiple time points
during the waking period of three non-consecutive days [34]. Six-to-one week prior to
quarantine there was a 2-day repeated salivary cortisol collection in the participant’s
natural environments (home, work, etc.). There was a 1-day repeated salivary cortisol
collection during quarantine day 0 (baseline, prior to viral inoculation). For collection
purposes, participants were provided with a plastic collection tube containing cotton rolls
(Salivettes®; Sarstedt AG & Co., Nümbrecht, Germany). They were instructed to place
the cotton in their mouth to saturate it with saliva then deposit the cotton back into the
tube and reseal it. Participants were provided with written instructions and a handheld
computer to signal collection times. The handheld computer provided a unique code for
each collection, which participants were instructed to write on each sealed tube (along with
the exact time and date of collection) and place it in their refrigerator. Participants were
instructed to bring the tubes to their baseline study session to be collected by staff.

2.2.2. During Quarantine

Participants were asked to complete self-report measures including the Risky Families
Questionnaire (RFQ) during quarantine and after viral inoculation [35].

2.3. Measures

BMI and WC. Anthropometric data were assessed prior to the start of the two stress
reactivity sessions. One session took place four to two weeks prior to quarantine, and the
other session took place 4–6 weeks after the study. Measurements of height and weight
were taken without the use of shoes or overgarments. Height was recorded to the nearest
half-inch or half-centimeter, and weight was recorded to the nearest half-pound or half-
kilogram. All English units were converted to metric. These data were used to calculate a
participant’s body BMI using the following formula: weight (kg)/height (m)2. Waists were
measured over a participant’s garments at the level of the navel. These data were used to
calculate a participant’s waist/hip ratio with this formula: WC (cm)/hip circumference
(cm). BMI and WC were averaged across the two reactivity sessions to increase reliability.
Average values were used in all statistical analyses.

Risky Families Questionnaire (RFQ). Early family environment was measured by
using a thirteen-item version of the RFQ to retrospectively capture the respondent’s family
environment before they were 18 years of age [35]. The questionnaire employs a 5-point
Likert scale, with each item ranging from 1 (not at all) to 5 (very often). Sample items
include “Would you say the household you grew up in was chaotic and disorganized?”
and “Would you say you were neglected while you were growing up, left on your own to
fend for yourself?” Response options vary from 1 (indicating “rarely or none of the time”)
to 5 (indicating “most or all of the time”). The RFQ has been validated against clinical
interviews of childhood adverse experiences and demonstrated good internal consistency
(Cronbach’s α ranges from 0.77–0.85) [35,36]. Previous research analyzing the PCS3 data
have reported Cronbach’s α = 0.72 [37]. For the purposes of this study, higher total RFQ
scores will be considered to reflect more stressful, less supportive early environments.

GABRA6. The GABRA6 gene has an associated SNP involving a T to C substitution
which results in several alleles: the homozygous C/C allele, the homozygous T/T allele, and
the heterozygous T/C allele. Individuals carrying the T allele variants (either T/T or T/C
alleles) are more likely to have higher BMI and WC along with excessive cortisol secretion.
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Diurnal Cortisol. Salivary cortisol was measured seven times daily (1, 2, 4, 6, 8,
12, and 14 h after waking) during pre-quarantine days, and eight times during day 0 of
quarantine (0, 1, 2, 4, 5, 7, 9, and 14 h after waking). Cortisol samples were assayed at
the laboratory facilities of Dr. Clemens Kirschbaum in Dresden, Germany [34]. Cortisol
concentrations were established through time-resolved fluorescence immunoassays using a
cortisol-biotin conjugate as a tracer [38]. Only samples that were collected within ±45 min
of the scheduled collection time were included for analysis; any samples collected outside
of this time frame were treated as missing. The actual time rather than the expected time
the participant provided for each cortisol sample was used to calculate both area under the
curve (AUC) and slopes [39]. To calculate average diurnal cortisol levels, the AUC for each
day was computed for individuals with sufficient data, which was defined as not having
missed collection of any of the first three samples of the day (for steep diurnal rhythm)
or missing more than two of the day’s remaining samples (for flat diurnal rhythm). The
average total diurnal cortisol levels were calculated for participants who had data for a
minimum of two of the three collection days by averaging total concentrations from all
days with sufficient data [39]. Cortisol samples across the three study days were used to
demonstrate participants’ typical diurnal cortisol secretion.

Covariates. Age, sex, race, and educational attainment (measured by total years of
school completed) were obtained via self-report questionnaires and included as covariates.

Depressed Affect. The depressed affect was assessed using the depression subscale of
the Negative Affect 2 component of the Daily Interview. Items for depressive symptoms
include “sad” and “unhappy.”, The scale was created by calculating a mean score across
the items for each of the 14 interview days. A 5-point scale was used to score the responses
(0 = you have not felt that way at all today to 4 = you felt that way a lot today).

2.4. Overview of Analyses

Bivariate correlations were conducted to examine associations among study vari-
ables. Prior to conducting multiple linear regressions, preliminary analyses revealed no
multicollinearity or issues with the independence of residuals but some departures from
normality. Logarithmic transformations were applied to the outcome variables to correct
violations of normality. Analyses were performed with and without transformed out-
come variables. All models displayed a medium effect size prior to and subsequent to
transformation (R2 = ~0.20). As the direction and significance of the associations did not
change, analyses were conducted with untransformed variables to aid in the interpretation
of the results.

A post hoc power analysis for multiple regression was conducted in G*power 3.1.9.7 to
determine the detectable effect size of our results given our sample size. There was a total of
seven predictors in the analyses for the first two hypotheses: early family environment and
GABRA6, and the covariates: age, sex, race, and depression. Hypothesis three had a total
of nine predictor variables: the first-order predictors and covariates, and the interaction
between GABRA6 and early family environment. In order to detect a small effect, the alpha
was set to 0.05, power was set to 0.80, and Cohen’s f2 was set to 0.02 [40,41]. The power
analysis indicated that a sample size of 725 participants would be required to detect a
small effect. To determine a medium effect, the alpha was set to 0.05, the power was set
to 0.80, and Cohen’s f2 was set to 0.15 [40,41]. The power analysis indicated that a sample
size of 103 participants would be necessary to detect a medium effect. This study has a
total of 213 participants, which allows us to detect a medium effect; however, the study is
underpowered for detecting a small effect.

R version x64 3.4.3 was utilized to assess post hoc power for the mediation aim. The
analysis was conducted using the powerMediation. VSMc function from the powerMedia-
tion package [42,43]. The sample size was designated as n and was set at 213 for all analyses.
The b2 function indicates the regression coefficient for the mediator in the regression, the
sigma.m function denotes the standard deviation of the mediator, the sigma.e function
specifies the standard deviation of the random error term in the regression, and the corr.xm
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function represents the correlation between the specified predictor and the mediator. Alpha
was set at 0.05 for all analyses. For the mediation with GABRA6 as the predictor and BMI
as the outcome, b2 was set at 0.0027, sigma.m was set at 215.8985, sigma.e was set at 5.9644,
and corr.xm was set at −0.017. The resulting power for this mediation analysis was 0.2971.
For the mediation with GABRA6 as the predictor and WC as the outcome, b2 was set at
0.0082, sigma.m was set at 215.8985, sigma.e was set at 13.8464, and corr.xm was set at
−0.017. The resulting power for this mediation analysis was 0.4625. For the mediation with
the early family environment as the predictor and BMI as the outcome, b2 was set at 0.0030,
sigma.m was set at 215.8985, sigma.e was set at 5.9086, and corr.xm was set at −0.072. The
resulting power for this mediation analysis was 0.3581. For the mediation with GABRA6 as
the predictor and BMI as the outcome, b2 was set at 0.0087, sigma.m was set at 215.8985,
sigma.e was set at 13.8576, and corr.xm was set at −0.072. The resulting power for this
mediation analysis was 0.5053. None of the power analyses reached a power level of 0.8 or
greater, indicating the mediation analyses were underpowered.

Multiple linear regressions were used to test associations among an early risky family
environment and GABRA6 with BMI and WC. The regression equations included GABRA6
and early family environment as predictors, along with age, race, sex, and depressed
affect as covariates. As GABRA6 is a categorical variable, it was dummy coded to allow
for inclusion in the regression analyses. The alleles for GABRA6 were dummy coded as
C/C = 0, T/C and C/C = 1. C/C was chosen as the reference category based on the higher
incidence of hypercortisolism of the T/T and T/C carriers compared to C/C carriers [28].

For the mediation analyses, GABRA6 was entered as a single multicategorical variable,
as the PROCESS macro automatically creates dummy variables through its multicategorical
option. Two separate mediation analyses were run: a heterozygous TC alleles comparison
(comparing CC compared to TC) and a homozygous TT alleles comparison (CC compared
to TT). The PROCESS macro, Model 4, for SPSS was used to investigate four separate
hypotheses: (1) diurnal cortisol secretion will statistically mediate the association between
early family environment and BMI; (2) diurnal cortisol secretion will statistically mediate
the association between early family environment and WC; (3) diurnal cortisol secretion
will statistically mediate the association between GABRA6 and BMI; and (4) diurnal cortisol
secretion will statistically mediate the association between GABRA6 and WC [44].

The indirect effects were estimated through bias-corrected bootstrapped confidence
intervals with 5000 iterations. This bootstrapping procedure uses the available sample
and repeatedly resamples with replacements to create an empirical representation of the
data [44]. This method estimates the indirect effects from the product of the a and b
pathways 5000 times, orders them, and uses the lower 2.5% and upper 2.5% of these results
as the boundaries of the 95% confidence interval. An indirect effect is achieved when the
confidence intervals do not cross through zero.

3. Results
3.1. Correlation Analyses

Means, standard deviations, and correlations among study variables are presented
in Table 1. As displayed in Table 1, age was significantly positively associated with
both body mass index and waist circumference. Risky early family environment was
significantly negatively associated with GABRA6 and significantly positively associated
with depressed affect.

3.2. Regression Analyses

As displayed in Table 2, controlling for age, sex, race, and depressed affect, a risky early
family environment was significantly positively associated with BMI and WC, such that a
more stressful, less supportive environment was associated with a higher BMI (β = 0.174,
SE = 0.042, t = 2.637, p = 0.01) and a larger WC (β = 0.150, SE = 0.099, t = 2.335, p = 0.02). In
regression analyses controlling for age, sex, race, and depressed affect, GABRA6 was not
significantly associated with either BMI (β = −0.105, SE = 0.587, t = −1.622 p = 0.11) or WC
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(β = −0.066, SE = 1.374, t =−1.051 p = 0.30). As displayed in Table 3, when a risky early family
environment and GABRA6, along with age, sex, race, and depressed affect, were entered into
the same model, a risky early family environment remained a significant predictor of BMI,
(β = 0.166, SE = 0.042, t = 2.532, p = 0.01) WC (β = 0.1545, SE = 0.099, t = 2.260, p = 0.03), and
GABRA6 was not significantly associated with either BMI (β = −0.125, SE = 0.936, t = −1.968,
p = 0.05) or WC (β = −0.076, SE = 2.217, t = −1.215, p = 0.23).

Table 1. Means, standard deviations, and zero-order correlations among study variables.

Variable 1 2 3 4 5 6 7

1. Age (years) −0.114 −0.007 0.332 ** 0.342 ** −0.108 0.055
2. Risky Early Family
Environment −0.168 * 0.108 0.083 0.306 ** −0.080

3. GABRA6 −0.118 −0.099 0.121 0.068
4. Body Mass Index (kg/m2) 0.894 ** −0.112 −0.082
5. Waist Circumference (cm) −0.111 −0.017
6. Depressed Affect −0.153 *
7. Diurnal Cortisol (nmol/L)

Mean 30.13 28.23 7.28 27.46 88.93 0.957 3.70
Standard Deviation 10.85 10.24 1.82 6.49 15.72 1.07 0.181

Note: ** = p < 0.01; * = p < 0.05; Diurnal cortisol is expressed in log10 units for ease of interpretation.

Table 2. Summary of multiple regression analyses.

Outcome Variable
BMI β (SE) t p-Value

Model 1: Risky Early
Family Environment 0.174 (0.042) 2.637 0.01

Age 0.307 (0.038) 4.814 0.00
Race −0.160 (0.875) −2.519 0.01
Sex 0.151 (0.823) 2.406 0.02

Depressed Affect 0.139 (0.399) −2.118 0.04

Model 2: GABRA6 −0.066 (1.374) −1.051 0.30
Age 0.413 (0.090) 6.606 0.00
Race −0.144 (2.091) −2.270 0.02
Sex −0.098 (1.961) −1.574 0.12

Depressed Affect −0.041 (0.912) −0.657 0.51

Outcome Variable
WC

Model 1: Risky Early
Family Environment 0.150 (0.099) 2.335 0.02

Age 0.420 (0.090) 6.778 0.00
Race −0.134 (2.063) −2.163 0.03
Sex −0.102 (1.939) −1.672 0.10

Depressed Affect −0.101 (0.941) −1.570 0.12

Model 2: GABRA6 −0.105 (0.587) −1.622 0.11
Age 0.295 (0.038) 4.582 0.00
Race −0.165 (0.893) −2.524 0.01
Sex 0.158 (0.837) 2.473 0.01

Depressed Affect −0.072 (0.389) −1.117 0.27
Note: BMI = Body Mass Index; WC = Waist Circumference; GABRA6 = Gamma-Aminobutyric Acid Type A
Receptor Alpha6 Subunit.
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Table 3. Summary of multiple regression analysis with both a risky family environment and GABRA6.

Outcome Variable
BMI β (SE) t p

Risky Early Family
Environment 0.166 (0.042) 2.532 0.01

GABRA6 −0.125 (0.936) −1.968 0.05
Age 0.308 (0.038) 4.869 0.00
Race 0.142 (0.879) 2.223 0.03
Sex 0.164 (0.822) 2.615 0.00

Depressed Affect −0.120 (0.401) −1.807 0.07

Outcome Variable
WC

Risky Early Family
Environment 0.145 (0.099) 2.260 0.03

GABRA6 −0.076 (2.217) −1.215 0.23
Age 0.421 (0.090) 4.921 0.00
Race 0.123 (2.082) 1.966 0.05
Sex −0.094 (1.94) −1.539 0.13

Depressed Affect −0.089 (0.951) −1.368 0.17
Note: BMI = Body Mass Index; WC = Waist Circumference; GABRA6 = Gamma-Aminobutyric Acid Type A
Receptor Alpha6 Subunit.

3.3. Mediation Analyses

The results of the mediation analyses are presented in Figures 1–6. For mediation
analyses including GABRA6 as a predictor variable, the reference category (the homozygous
C/C allele) was compared against the homozygous T/T allele and the heterozygous
T/C allele.
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Risky Early Family Environment. When BMI was entered as the outcome variable,
there were no significant direct effects of a risky early family environment on diurnal cortisol
secretion (β =−1.526, SE = 1.542, p = 0.32) (Figure 1). There were no significant direct effects of
diurnal cortisol secretion on BMI (β = 0.003, SE = 0.002, p = 0.18). However, significant direct
effects were observed from a risky early family environment to BMI (β = 0.106, SE = 0.043,
p = 0.02). Congruent with the regression analyses, a risky early family environment was
statistically significant for the total effect path (β = 0.102, SE = 0.043, p = 0.02).

When WC was entered as the outcome variable, there were no significant direct effects
of a risky early family environment on diurnal cortisol secretion (β = −1.527, SE = 1.543,
p = 0.34) (Figure 2). Furthermore, there were no significant direct effects of diurnal cortisol
secretion on WC (β = 0.008, SE = 0.005, p = 0.06). There were significant direct effects
between a risky early family environment and WC (β = 0.231, SE = 0.101, p = 0.02). For the
total effect model, a risky early family environment was statistically significant (β = 0.22,
SE = 0.101, p = 0.03). Again, the mediation analyses did not indicate a significant indirect
effect of a risky early family environment on WC through the pathway of diurnal cortisol
secretion, indicating mediation had not occurred.

GABRA6 When BMI was entered as the outcome variable, there were no significant
direct effects of the heterozygous T/C alleles comparison on diurnal cortisol secretion
(β = −9.154, SE = 37.901, p = 0.81) (Figure 3). The homozygous T/T alleles comparison was
also not significantly associated with diurnal cortisol secretion (β = −0.944, SE = 42.716,
p = 0.98) (Figure 4). Furthermore, there were no significant direct effects of diurnal cortisol
secretion on BMI (β = 0.003, SE = 0.002, p = 0.18). The heterozygous T/C alleles comparison
did not have any significant direct effects on BMI (β = −1.675, SE = 1.060, p = 0.12) nor
did the homozygous T/T alleles comparison (β = −1.849, SE = 1.195, p = 0.123). For
the total effect model, the heterozygous T/C alleles comparison did not show significant
effects (β= −1.696, SE = 1.062, p = 0.11), nor did the homozygous T/T alleles comparison
(β = −1.852, SE = 1.197, p = 0.12).

When WC was entered as the outcome variable, there were no significant direct effects
of the heterozygous T/C alleles comparison on diurnal cortisol secretion (β = −9.154,
SE = 37.901, p = 0.81) (Figure 5). Similar outcomes were observed for the homozygous T/T
alleles comparison on diurnal cortisol secretion (β =−0.944, SE = 42.716, p = 0.98) (Figure 6).
Furthermore, there were no significant direct effects of diurnal cortisol secretion on WC
(β = 0.008, SE = 0.005, p = 0.08). The heterozygous T/C alleles comparison did not have any
significant direct effects on WC (β = −1.676, SE = 2.461, p = 0.50) nor did the homozygous
T/T alleles comparison (β = −2.568, SE = 2.774, p = 0.36). For the total effect model, the het-
erozygous T/C alleles comparison did not show significant effects (β = −1.751, SE = 2.475,
p = 0.48), nor did the homozygous T/T alleles comparison (β = −2.576, SE = 2.789, p = 0.36).
The mediation analyses did not indicate a significant indirect effect of GABRA6 on BMI and
WC through the pathway of diurnal cortisol secretion.

4. Discussion

The aims of the current study were to assess the contributions of GABRA6 and a risky
early family environment on BMI and WC in a community sample and to explore diurnal
cortisol secretion as a pathway linking the association between GABRA6 and a risky early
family environment to BMI and WC.

Based on previous findings, it was hypothesized that a risky early family environment
would be associated with BMI and WC [7,13,16]. After controlling for age, sex, race,
and depression, the hypothesis was supported, as a risky early family environment was
positively associated with both BMI and WC. Although prior work delineated the health
consequences of severe family dysfunction, this study provided evidence that even milder
forms of negative childhood exposures, including being raised in an unsupportive family
environment that lacks parental warmth can be associated with adverse metabolic outcomes
in adulthood.
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Based on empirical evidence, it was hypothesized that those individuals with the T
allele carriers of GABRA6 would show positive and statistically significant associations
with BMI and WC [26,28,45]. When controlling for age, sex, race, and depression, the
hypothesis was not supported, as no significant association was found with any allele
variant of GABRA6. The lack of support for the contribution of a single SNP for metabolic
dysregulation, although surprising given previous research, is nonetheless congruent with
the commonly accepted credence in genetic research that individual susceptibility to many
diseases—including metabolic dysregulation—is a cumulative consequence derived from
numerous low-penetrating genetic variables.

Although GABRA6 has previously been linked with risk for metabolic dysregulation,
making it an ideal gene to study under the CGA, the lack of significant associations with
both BMI and WC could be explained by limitations inherent in the CGA, such as a
relatively small sample size, low power, and low replicability [23,46]. As outlined by the
power analyses, the study’s mediation analyses were underpowered and the regression
analyses were unable to detect small effects, indicating that a larger sample size may
be needed to detect significant effects. This is congruent with previous research, which
has generally found that candidate–gene studies investigating different traits have been
wanting. For example, an exhaustive review by Alghamdi and Padmanabhan (2014)
found that only 6 out of 166 assumed associations were reliably replicated. The candidate
gene approach has also been criticized for its inability to recognize additional functional
variants due to complexity caused by phenotypic and locus heterogeneity and population
stratification (differences in allele frequencies in a homogenous population) [47]. An
unfortunate consequence of such a limitation is obtaining a potentially incomplete picture
of disease pathology and precluding the discovery of new biological pathways [23,46].

Lastly, it was hypothesized that diurnal cortisol secretion would mediate the relation-
ship between GABRA6 alleles/early family environment and BMI/WC. When controlling
for age, race, sex, and depression, the hypothesis was not supported. Mediation analyses
indicated non-significant indirect effects of both GABRA6 and a risky early family envi-
ronment on BMI and WC through the pathway of diurnal cortisol secretion. Although
previous work has found an association between diurnal cortisol secretion and markers of
obesity the overall literature still shows mixed results between the link in diurnal cortisol
profile and anthropomorphic measures of adiposity [18,45,48,49]. Clearly, more research is
needed in this area to clarify this association.

Limitations and Future Research

The results of this study must be viewed in the context of limitations that may inform
future research. The sample size, although sufficiently large to detect psychosocial effects
such as growing up in a risky early family environment, may be underpowered to detect
genetic contributions from single SNPs, particularly those with low penetrance. Future
studies seeking to assess genetic contributions from single SNPs may wish to employ a
larger participant pool. As only one buccal swab was obtained from the participants, we
are limited to analyzing only a single instance in time of the participant’s health, which may
not be indicative of the participant’s fluctuating phenotypic profile with regard to potential
epigenetic modifications impacting GABRA6. Due to retrospective reporting on the risky
family questionnaire, there are inherent memory-related biases which call into question
the reliability and validity of the participant’s long-term recall. In the future, researchers
should consider replicating this study utilizing a longitudinal design in order to address
this limitation. As the risky family questionnaire was completed after inoculation with
the cold virus and during quarantine, the participant’s normative mood might have been
altered, potentially impacting their memory recollection. Additionally, the generalizability
of these findings is limited as the sample had relatively high education levels and lacked
geographical diversity. Moving forward, it should be determined if these findings are
similar in other samples, including clinical populations.
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These limitations notwithstanding, the current study has several strengths. Impor-
tantly, this study adds to a growing literature demonstrating that growing up in a risky
family can have negative implications for health. Specifically, this study examined body
mass index and waist circumference, outcomes that are easy to obtain and associated
with poor health such as cardiovascular disease, diabetes, and certain types of cancer.
Despite not finding support for our mediator, cortisol was collected multiple times per
day and averaged to increase the reliability of this measure. Moreover, we were able to
demonstrate associations between a risky early family environment with WC and BMI in a
healthy younger sample, removing any possible confounds that accompany older age and
poor health.

5. Conclusions

In conclusion, we found that growing up in a risky early family environment was
associated with higher BMI and WC during adulthood. These findings are important, as
they clearly point to the importance of positive family relationships throughout childhood
for health later in life [9]. Thus, it is likely that interventions, such as family therapy and
parent–child interaction therapy, may not only be important for mental health, but for
physical health outcomes as well. Future studies should examine how these interventions
and others impact the physical health of at-risk children and their families.

The current findings suggest that developing an effective health improvement program
requires a protracted, multilayered approach which includes interventions designed to
help people change, implement, and maintain behaviors aimed at promoting a healthy
family environment. Such interventions would ideally help parents identify the kinds of
behaviors that have detrimental effects on a child’s behavioral and self-regulatory skills, or
that are known to cause repeated incidences of stress.
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