Sensitivity Analysis of Biome-BGC for Gross Primary Production of a Rubber Plantation Ecosystem: A Case Study of Hainan Island, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Biome-BGC Model
2.2.1. Model Parameterization
2.2.2. Model Calibration
2.2.3. Process
2.3. Sensitivity Analysis Experiment
3. Results
3.1. Sensitivity Analysis Results
3.2. Model Optimization and Validation
3.3. Factor Analysis of Ecosystem Carbon Flux
4. Discussion
4.1. Ecophysiological Parameters Affecting Carbon Flux in the Rubber Plantation
4.2. Applicability of the Biome-BGC Model to the Rubber Plantation in the Study Area
4.3. Response of Rubber Plantation Ecosystem GPP to Meteorological Factors
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Biome-BGC | Biome-BioGeochemical Cycles |
eFAST | Extended Fourier amplitude sensitivity test |
FAST | Fourier amplitude sensitivity test |
PEST | Model-independent parameter estimation |
GPP | Gross primary production |
NEE | Net ecosystem exchange |
LAI | Leaf area index |
VPD | Vapor pressure deficit |
R2 | Coefficient of determination |
RMSE | Root-mean-square error |
pcc | Pearson’s correlation coefficient |
References
- IPCC. Climate Change 2013: The Physical Science Basis; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Wang, J.; Feng, L.; Palmer, P.I.; Liu, Y.; Fang, S.; Bösch, H.; O’Dell, C.W.; Tang, X.; Yang, D.; Liu, L.; et al. Large Chinese land carbon sink estimated from atmospheric carbon dioxide data. Nature 2020, 586, 720–723. [Google Scholar] [CrossRef]
- Chen, B.; Xiao, X.; Wu, Z.; Yun, T.; Kou, W.; Ye, H.; Lin, Q.; Doughty, R.; Dong, J.; Ma, J.; et al. Identifying establishment year and pre-conversion land cover of rubber plantations on Hainan Island, China using landsat data during 1987–2015. Remote Sens. 2018, 10, 1240. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.; Yun, T.; Ma, J.; Kou, W.; Li, H.; Yang, C.; Xiao, X.; Zhang, X.; Sun, R.; Xie, G.; et al. High-Precision Stand Age Data Facilitate the Estimation of Rubber Plantation Biomass: A Case Study of Hainan Island, China. Remote Sens. 2020, 12, 3853. [Google Scholar] [CrossRef]
- Yan, M.; Tian, X.; Li, Z.; Chen, E.; Li, C.; Fan, W. A long-term simulation of forest carbon fluxes over the Qilian Mountains. Int. J. Appl. Earth Obs. Geoinf. 2016, 52, 515–526. [Google Scholar] [CrossRef] [Green Version]
- Brilli, L.; Chiesi, M.; Maselli, F.; Moriondo, M.; Gioli, B.; Toscano, P.; Zaldei, A.; Bindi, M. Simulation of olive grove gross primary production by the combination of ground and multi-sensor satellite data. Int. J. Appl. Earth Obs. 2013, 23, 29–36. [Google Scholar] [CrossRef]
- Zhu, X.; Pei, Y.; Zheng, Z.; Dong, J.; Zhang, Y.; Wang, J.; Chen, L.; Doughty, R.B.; Zhang, G.; Xiao, X. Underestimates of grassland gross primary production in MODIS standard products. Remote Sens. 2018, 10, 1771. [Google Scholar] [CrossRef] [Green Version]
- Schaefer, K.; Schwalm, C.R.; Williams, C.; Arain, M.A.; Barr, A.; Chen, J.M.; Davis, K.J.; Dimitrov, D.; Hilton, T.W.; Hollinger, D.Y.; et al. A model-data comparison of gross primary productivity: Results from the North American Carbon Program site synthesis. J. Geophys. Res. Biogeosci. 2012, 117, 15. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Sun, R.; Peng, C.; Zhou, G.; Wang, C.; Zhu, Q.; Yang, Y. Integrating a model with remote sensing observations by a data assimilation approach to improve the model simulation accuracy of carbon flux and evapotranspiration at two flux sites. Sci. China Earth Sci. 2016, 59, 337–348. [Google Scholar] [CrossRef]
- Sun, Q.; Li, B.; Zhang, T.; Yuan, Y.; Gao, X.; Ge, J.; Li, F.; Zhang, Z. An improved Biome-BGC model for estimating net primary productivity of alpine meadow on the Qinghai-Tibet Plateau. Ecol. Modell. 2017, 350, 55–68. [Google Scholar] [CrossRef]
- Ren, H.; Zhang, L.; Yan, M.; Tian, X.; Zheng, X. Sensitivity analysis of Biome-BGCMuSo for gross and net primary productivity of typical forests in China. For. Ecosyst. 2022, 9, 100011. [Google Scholar] [CrossRef]
- Running, S.W.; Hunt, E.R. Generalization of a Forest Ecosystem Process Model for Other Biomes, BIOME-BGC, and an Application for Global-Scale Models. In Scaling Physiological Processes; Ehleringer, J.R., Field, C.B., Eds.; Academic Press: San Diego, CA, USA, 1993; pp. 141–158. [Google Scholar]
- Mao, F.; Li, P.; Zhou, G.; Du, H.; Xu, X.; Shi, Y.; Mo, L.; Zhou, Y.; Tu, G. Development of the BIOME-BGC model for the simulation of managed Moso bamboo forest ecosystems. J. Environ. Manag. 2016, 172, 29–39. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Han, Q.; Xu, W. Contribution of Climate Change and Grazing on Carbon Dynamics in Central Asian Pasturelands. Remote Sens. 2022, 14, 1210. [Google Scholar] [CrossRef]
- Zheng, L.; Qi, Y.; Wang, Y.; Peng, J.; Qin, Z. Calibration and validation of phenological models for Biome-BGCMuSo in the grasslands of Tibetan Plateau using remote sensing data. Agric. For. Meteorol. 2022, 322, 109001. [Google Scholar] [CrossRef]
- Huang, B.; Yang, Y.; Li, R.; Zheng, H.; Wang, X.; Wang, X.; Zhang, Y. Integrating Remotely Sensed Leaf Area Index with Biome-BGC to Quantify the Impact of Land Use/Land Cover Change on Water Retention in Beijing. Remote Sens. 2022, 14, 743. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, W.; Li, S.; Xie, B.; Shi, F.; Zhao, J. Spatial Distribution of Optimal Plant Cover and Its Influencing Factors for Populus simonii Carr. on the Bashang Plateau, China. Land 2022, 11, 890. [Google Scholar] [CrossRef]
- White, M.A.; Thornton, P.E.; Running, S.W.; Nemani, R.R. Parameterization and sensitivity analysis of the BIOME–BGC terrestrial ecosystem model: Net primary production controls. Earth Interact. 2000, 4, 1–85. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, T.; Du, M.; Gao, H.; Zhang, Q.; Sun, R. A better carbon-water flux simulation in multiple vegetation types by data assimilation. For. Ecosyst. 2022, 9, 100013. [Google Scholar] [CrossRef]
- Ma, H.; Ma, C.; Li, X.; Yuan, W.; Liu, Z.; Zhu, G. Sensitivity and uncertainty analyses of flux-based ecosystem model towards improvement of forest GPP simulation. Sustainability 2020, 12, 2584. [Google Scholar] [CrossRef] [Green Version]
- Raj, R.; Hamm, N.A.; van der Tol, C.; Stein, A. Variance-based sensitivity analysis of BIOME-BGC for gross and net primary production. Ecol. Modell. 2014, 292, 26–36. [Google Scholar] [CrossRef]
- Tatarinov, F.A.; Cienciala, E. Application of BIOME-BGC model to managed forests: 1. Sensitivity analysis. For. Ecol. Manag. 2006, 237, 267–279. [Google Scholar] [CrossRef]
- Vazquez-Cruz, M.A.; Guzman-Cruz, R.; Lopez-Cruz, I.L.; Cornejo-Perez, O.; Torres-Pacheco, I.; Guevara-Gonzalez, R.G. Global sensitivity analysis by means of EFAST and Sobol’methods and calibration of reduced state-variable TOMGRO model using genetic algorithms. Comput. Electron. Agric. 2014, 100, 1–12. [Google Scholar] [CrossRef]
- Wu, Z.; Guan, L.; Chen, B.; Yang, C.; Lan, G.; Xie, G.; Zhou, Z. Components of soil respiration and its monthly dynamics in rubber plantation ecosystems. In Proceedings of the 4th International Conference on Digital Manufacturing and Automation (ICDMA), Shinan, China, 29–30 June 2013; pp. 361–369. [Google Scholar]
- Yu, G.; Wen, X.; Sun, X.; Tanner, B.D.; Lee, X.; Chen, J. Overview of ChinaFLUX and evaluation of its eddy covariance measurement. Agric. For. Meteorol. 2006, 137, 125–137. [Google Scholar] [CrossRef]
- Wu, Z.; Tao, Z.; Lan, G.; Wang, J.; Xie, G.; Zhou, Z. The Net Ecosystem Carbon Exchange and Its Environmental Factors in a Tropical Rubber Plantation Ecosystem in Hainan Island. Chin. J. Trop. Crop. 2014, 35, 2099. [Google Scholar]
- Running, S.W.; Gower, S.T. FOREST-BGC, a general model of forest ecosystem processes for regional applications. II. Dynamic carbon allocation and nitrogen budgets. Tree Physiol. 1991, 9, 147–160. [Google Scholar] [CrossRef] [Green Version]
- Doherty, J.; Johnston, J.M. Methodologies for calibration and predictive analysis of a watershed model. J. Am. Water Resour. Assoc. 2003, 39, 251–265. [Google Scholar] [CrossRef]
- Saltelli, A.; Ratto, M.; Andres, T.; Campolongo, F.; Cariboni, J.; Gatelli, D.; Saisana, M.; Tarantola, S. Global Sensitivity Analysis: The Primer; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Wen, D.; Wei, P.; Kong, G.; Ye, W. Production and turnover rate of fine roots in two lower subtropical forest sites at Dinghushan. Chin. J. Plant Ecol. 1999, 23, 361. [Google Scholar]
- Zhao, X.; Ouyang, L.; Zhao, P.; Zhang, C. Effects of size and microclimate on whole-tree water use and hydraulic regulation in Schima superba trees. PeerJ 2018, 6, e5164. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Li, Y.; Xu, L.; Chen, Z.; He, N. Variation in leaf morphological, stomatal, and anatomical traits and their relationships in temperate and subtropical forests. Sci. Rep. 2019, 9, 5803. [Google Scholar] [CrossRef] [Green Version]
- Aber, J.D.; Federer, C.A. A generalized, lumped-parameter model of photosynthesis, evapotranspiration and net primary production in temperate and boreal forest ecosystems. Oecologia 1992, 92, 463–474. [Google Scholar] [CrossRef]
- Waring, R.H.; Running, S.W. Forest Ecosystems: Analysis at Multiple Scales; Elsevier: Amsterdam, The Netherlands, 2010. [Google Scholar]
- He, K.; Huang, Z. Rubber Culture in the Northern Part of Tropical Area; Guangdong Science and Technology Press: Guangzhou, China, 1987. [Google Scholar]
- Jung, M.; Vetter, M.; Herold, M.; Churkina, G.; Reichstein, M.; Zaehle, S.; Ciais, P.; Viovy, N.; Bondeau, A.; Chen, Y.; et al. Uncertainties of modeling gross primary productivity over Europe: A systematic study on the effects of using different drivers and terrestrial biosphere models. Glob. Biogeochem. Cycles 2007, 21. [Google Scholar] [CrossRef]
- Kavanagh, T.; Kellman, M. Seasonal pattern of fine root proliferation in a tropical dry forest. Biotropica 1992, 24, 157–165. [Google Scholar] [CrossRef]
Parameters | Unit | Value |
---|---|---|
Effective soil depth | cm | 100 |
Soil silt percentage | % | 19 |
Soil sand percentage | % | 52 |
Soil clay percentage | % | 29 |
Elevation | m | 144 |
Latitude | degree | 19.51 |
Shortwave albedo | - | 0.2 |
CO2 concentration | ppm | 407.8 |
Atmospheric nitrogen deposition | g N m−2 a−1 | 1.71 |
Parameters | Abbreviation | Range | Reference |
---|---|---|---|
Annual leaf and fine root turnover fraction | LFRT | [0.5, 0.828] | [30] |
Annual live wood turnover fraction | LWT | [0.56, 0.9] | [18] |
New fine root C: new leaf C | FRC: LC | [0.545, 1.59] | [18] |
New stem C: new leaf C | SC: LC | [0.84, 1.56] | [18] |
New live wood C: new total wood C | LWC: TWC | [0.096, 0.279] | [18] |
New root C: new stem C | CRC: SC | [0.077, 0.563] | [18] |
C: N of leaves | C: Nleaf | [8.96, 13.44] | Measured |
C: N of leaf litter | C: Nlit | [32.88, 49.32] | [11] |
C: N of fine roots | C: Nfr | [37.92, 56.88] | [11] |
C: N of dead wood | C: Ndw | [240, 360] | [11] |
Canopy water interception coefficient | Wint | [0.0328, 0.0492] | [31] |
Canopy light extinction coefficient | k | [0.56, 0.8] | [11] |
All-sided–projected leaf area ratio | LAIall:proj | [1.71, 2.29] | [18] |
Canopy average specific leaf area | SLA | [13, 26.4] | [18] |
Ratio of shaded SLA: sunlit SLA | SLAshd: sun | [1.6, 2.2] | [18] |
Fraction of leaf N in RuBisCO | FLNR | [0.048, 0.072] | [11] |
Maximum stomatal conductance | gsmax | [0.004, 0.006] | [32] |
Leaf water potential: complete | LWPf | [−3.9, −1.5] | [18] |
Vapor pressure deficit: complete | VPDf | [2300, 4700] | [18] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Wu, Z.; Yang, S.; Yang, C. Sensitivity Analysis of Biome-BGC for Gross Primary Production of a Rubber Plantation Ecosystem: A Case Study of Hainan Island, China. Int. J. Environ. Res. Public Health 2022, 19, 14068. https://doi.org/10.3390/ijerph192114068
Liu J, Wu Z, Yang S, Yang C. Sensitivity Analysis of Biome-BGC for Gross Primary Production of a Rubber Plantation Ecosystem: A Case Study of Hainan Island, China. International Journal of Environmental Research and Public Health. 2022; 19(21):14068. https://doi.org/10.3390/ijerph192114068
Chicago/Turabian StyleLiu, Junyi, Zhixiang Wu, Siqi Yang, and Chuan Yang. 2022. "Sensitivity Analysis of Biome-BGC for Gross Primary Production of a Rubber Plantation Ecosystem: A Case Study of Hainan Island, China" International Journal of Environmental Research and Public Health 19, no. 21: 14068. https://doi.org/10.3390/ijerph192114068
APA StyleLiu, J., Wu, Z., Yang, S., & Yang, C. (2022). Sensitivity Analysis of Biome-BGC for Gross Primary Production of a Rubber Plantation Ecosystem: A Case Study of Hainan Island, China. International Journal of Environmental Research and Public Health, 19(21), 14068. https://doi.org/10.3390/ijerph192114068