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Abstract: Finding the optimal balance between end-user’s comfort, lifestyle preferences and the cost
of the heating, ventilation and air conditioning (HVAC) system, which requires intelligent decision
making and control. This paper proposes a heating control method for HVAC based on dynamic
programming. The method first selects the most suitable modeling approach for the controlled
building among three machine learning modeling techniques by means of statistical performance
metrics, after which the control of the HVAC system is described as a constrained optimization
problem, and the action of the controller is given by solving the optimization problem through
dynamic programming. In this paper, the variable ‘thermal energy storage in building’ is introduced
to solve the problem that dynamic programming is difficult to obtain the historical state of the
building due to the requirement of no aftereffect, while the room temperature and the remaining
start hours of the Primary Air Unit are selected to describe the system state through theoretical
analysis and trial and error. The results of the TRNSYS/Python co-simulation show that the proposed
method can maintain better indoor thermal environment with less energy consumption compared
to carefully reviewed expert rules. Compared with expert rule set ‘baseline-20 ◦C’, which keeps the
room temperature at the minimum comfort level, the proposed control algorithm can save energy
and reduce emissions by 35.1% with acceptable comfort violation.

Keywords: HVAC system; nearly zero energy building; competitive learning; dynamic programming;
model predictive control; simulation

1. Introduction

With the gradual extension of people’s living and working hours in buildings, the
requirements on the healthier and better thermal comfort indoor environment lead to
increasing energy consumptions of the building sector. According to the forecast of the
International Energy Agency [1], the world energy structure is undergoing tremendous
changes, and a new form of global energy is emerging. The new form of energy described in
the Net Zero Emissions by 2050 Scenario (NZE) is a cooperative economy in which countries
work together to achieve emissions reductions where necessary. One important measure to
achieve emissions reduction is to focus on energy efficiency and adjust the energy service
demand through behavioral change [2]. The building sector is responsible for 33% of global
CO2 emissions, and HVAC systems are the crucial energy consumer in buildings with the
largest share [3]. Nearly zero energy buildings (NZEB) offer a significant opportunity for
both energy use and emissions reduction [4]. NZEBs have high performance envelopes
where the thermal storage capacity of the building itself and its facilities (i.e., floors, ceilings,
walls and furniture) can be fully utilized, providing the potential to improve the overall
control performance of its HVAC systems. This energy-saving potential of HVAC systems
can be tapped through smart control [5]. A model-based method, such as model predictive
control (MPC), is an online optimization method whose basic idea is to use the model of
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the system under study to predict the future state and minimize a certain cost function
within the forecast period. This method is a real-time rolling optimization process, and its
optimization results depend on the prediction accuracy of the model used.

1.1. Building Energy Simulation and Modeling

The thermal response model of the building is crucial for the intelligent control of
the HVAC system. The thermal response model provides key indicators, such as the
energy demand and temperature of buildings. Simulation tools are used to provide data
for the development of energy and environment models of buildings. The widely used
building energy simulation tools include TRNSYS [6], EnergyPlus [7] and IES<VE> [8].
A comparison of the simulation tools can be found in [9]. Most of the building and
equipment models used by simulation tools are first principle models, which require
correct description of the component following physical laws and precise input parameters
under the descriptive structure. However, the detailed and precise information of the
specific equipment at certain working conditions are hard to acquire.

On the other hand, data-driven methods do not require precise physical information
of the building and equipment. They mainly rely on the regression and summarization of
historical data to predict required information [10–12]. Two commonly used data-driven
methods for the discussed topic are statistical methods and supervised machine learning
method [13–15]. Although statistical methods are relatively easy to implement, they are
more difficult to handle complex nonlinear relationships, while the thermal behavior of
buildings is usually complex and nonlinear. The most widely used data-driven models
include support vector machine (SVM), artificial neural network (ANN) and multivariate
polynomial regression (MPR) [16–20].

Each building has a unique load due to differences in function, location and eco-
nomic conditions. A modeling technique that performs well in one building may not
perform as well in other buildings. Until a comprehensive, integrated and generally ac-
cepted data set is available, it is necessary to select modeling techniques independently for
different buildings.

1.2. Dynamic Programming Applied to HVAC

MPC describes the control of an HVAC system as a constrained optimization prob-
lem in which the future state is predicted by a model of the system under study, and the
controller action is given by solving the optimization problem. Models of building and
HVAC equipment usually involve physical principles of heat transfer, thermodynamics
and fluid dynamics including nonlinearity and nonconvexity, so the biggest challenge for
developing controllers based on optimization (e.g., MPC) is the solution of nonconvex
problems. The common solutions to optimization problems are traditional mathemat-
ical methods (e.g., Newton–Raphson method [21] and interior-point method [22]) and
heuristic algorithms (e.g., genetic algorithms [23], ant colony algorithms [24], particle
swarm algorithms [25], etc.). Mathematical methods are logical and precise models, but
the required objective function expressions are difficult to abstract in many optimization
scenarios and cannot be applied effectively. Heuristic methods have good performance and
are applicable to most optimization problems, but usually the solutions of optimization
problems obtained by these methods are locally optimal rather than globally optimal, and
the robustness of these methods is poor due to the lack of rigorous mathematical proofs.
Except for nonconvexity, the optimization problem of HVAC system must dynamically
consider the interrelationship between the before and after decisions. For example, the
energy consumption of an HVAC system depends on the current temperature setting of the
room and the previous thermal storage state of the room. The dynamic programming algo-
rithm is based on Bellman’s optimization principle, which decomposes the optimization
problem into a number of interrelated subproblems and solves the subproblems iteratively
to obtain the solution of the original optimization problem [26]. The dynamic program-
ming algorithm is suitable for solving such multistep decision, nonconvex problems. The
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stability and robustness of dynamic programming algorithm have been demonstrated in
related works [27].

In recent years, researchers have conducted studies on the application of dynamic
programming algorithms to the HVAC system. Chen et al. established an optimization anal-
ysis method for ice thermal storage air conditioning system that optimize the performance
of the ice storage tank and the life cycle cost using dynamic programming approach [28].
The optimal chiller and ice storage tank capacity were obtained from the simulation results.
Pombeiro et al. used dynamic programming with simplified thermal model and genetic
algorithm with EnergyPlus to optimize the control of the HVAC system. The optimization
performance of the two algorithms were compared [29]. Since the simplified thermody-
namic model used by the dynamic programming algorithm cannot reflect the thermal
inertia of the building, the optimization effect of the dynamic programming algorithm is
not as good as the genetic algorithm.

Although some progress has been made in the application of dynamic programming
algorithms, there are still issues that need to be addressed. First, the dynamic programming
algorithm has difficulties in obtaining the historical state of the building due to the no
aftereffect requirement. Most of the existing research introduce some simplifications or
some unrealistic assumptions during the controller design, which limit the generality of
the proposed approach. For example, De Ridder et al. [30] used a very simple first-order
model to predict the state of the system. However, the simplified model has difficulty in
reflecting the thermal inertia, which has a very negative impact on the final optimization.
Second, the control objects of the existing dynamic programming controllers are mostly
limited to air conditioning equipment and have not explored the potentials of operation of
the buildings. To further investigate these two aspects, and hence facilitate the use of MPC
in buildings, this research herein presents a model predictive controller using dynamic
programming based on data-driven models.

1.3. Research Gap and Objective

This paper uses a nearly zero energy residential building as the case to demonstrate
applicability and benefits of using dynamic programming in buildings. The building is
modeled using TRNSYS, a transient system energy modeling software designed to solve
complex energy system problems [31]. Detailed verifications of TRNSYS can be found
in [32,33]. The output data of TRNSYS are used to generate MLR, SVR and ANN models for
building temperature and HVAC system energy consumption. The four indicators of Mean
Square Error (MSE), Mean Absolute Error (MAE), Mean Absolute Percent Error (MAPE)
and Coefficient of Determination (R2) are used to evaluate and select the most suitable
model for the MPC controller. On this basis, using the indoor state as input, a multistep
predictive optimization control method for nearly zero energy residential buildings is
established based on a dynamic programming algorithm.

The goal of this paper is to propose an automated controller that can combine build-
ing thermodynamics with HVAC systems. It automatically finds optimal working mode
of HVAC system and make use of the natural cooling and natural heating. The con-
troller explores the energy-saving potential of HVAC systems without sacrificing the
required thermal comfort and IAQ. To this end, this paper attempts to explore further in
the following areas:

(1) Three model identification techniques are implemented in parallel, with algorithms
for automatic training and selection of potential models to ensure the prediction
accuracy of the models on different data sets.

(2) The introduction of ‘thermal energy storage in building‘ solves the problem that,
using dynamic programming, it is difficult to obtain the historical state of the building
due to there being no aftereffect requirement.

(3) Problem formulation, including the definitions of decision, state, stage, state transition
rules and cost function for dynamic programming, is carefully designed to ensure
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that the controller can adapt to the complex thermal dynamics and environmental
uncertainties involved in HVAC control.

(4) With a case study of a nearly zero energy building, a systematic analysis of the
controller’s performance in terms of thermal comfort and energy consumption is made
to demonstrate the applicability and benefits of dynamic programming in buildings.

2. Basics of Three Data-Driven Models
2.1. Multivariate Linear Regression

The multiple linear regression method is a modeling technique used to describe the
influence of variables as independent data on the prediction target of the model using
linear representations. This method maintains the fast performance of linear methods while
allowing them to fit a wider range of data. The data of HVAC energy consumption and
building thermal behavior are not strictly of a linear relationship. The approach is to use
the nonlinear function (basis function) of each dimension feature as a secondary variable,
and then perform linear regression analysis on the updated variable set.

By using the linear fitting in the high-dimensional space constructed by these basis
functions, the model can flexibly fit a wider range of data. After the model form is decided,
the coefficients can be solved by the least square method.

2.2. Support Vector Regression

The support vector machine technique was originally developed by Vapnik et al. [34],
which is one of the most widely used machine learning techniques for classification, esti-
mation and nonlinear regression problems. The basic idea of support vector machine is to
transform the input space into high-dimensional feature space through transformation and
extract the information and regularity contained in the data [35].

Given a data set with N elements
{
(xi, yi) i = 1, 2, . . . , N

}
, N represents the number

of samples in the training data set, and xi is the i-th element in the N-dimensional vector.
SVM approximates the regression function by mapping the training data xi into a high
one-dimensional feature space. The feature space forms an optimized hyperplane that
characterizes the nonlinear relationship between the input (independent variable) and the
output data (dependent variable):

f (x) = ωφ(x) + b (1)

where f (x) represents the forecasting values, x is the input parameter, φ(x) is a mapping
function that maps x to a high one-dimensional feature space, ω is the weight coefficient
and b is the adjustable factor.

The ε insensitive loss function is defined as Equation (6).

Lε(yi, f (xi)) = max(0, |y− f (x)|−ε) (2)

The values of ω and b can be estimated by minimizing the regularized risk function:

1
2
||ω||2 + C

1
n

n

∑
i=1

Lε(yi, f (xi)) (3)

where ||ω||2 represents the regularized term. Minimizing the value of this term can make
the function as flat as possible. C represents the regularization constant, and ε is the

threshold of the support vector machine. The term 1
n

n
∑

i=1
Lε(yi, f (xi)) is the empirical error

of the insensitive loss function measurement.
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By introducing a positive slack variable ζi* and Langrangian multipliers, such as αi
and αi*, the SVR regression equation can finally be written as Equation (4) [36]:

f (x) =
n

∑
i=1

(αi − α∗i )K(xi, x) + b (4)

where K(xi, x) is called the kernel function, which can nonlinearly map the training data to
a high-dimensional space. Radial Basis Functions (RBFs, in our case, Gaussian), as well
as Polynomial, Linear and Sigmoid functions, are generally used as kernels. The choice of
kernel function should be selected according to its evaluation criteria [37].

2.3. Artificial Neural Networks

Artificial Neural Networks (ANN) are universal approximators. Multi-layer-perceptons
(MLPs) are a widely used ANN form for MPC [38]. MLPs can approximate nonlinear static
mapping between input and output variables.

The training of ANN usually needs to go through two stages. The first stage is the
forward propagation of the signal, from the input layer to the hidden layer, and finally
to the output layer. The inputs from the previous layer are multiplied by the weights,
summed up and added with a bias. The calculation result of the previous layer is passed
to the next layer through the activation function in the hidden layer. In general, vector X
is composed of M input variables and N neurons, and vector Y is composed of L output
variables. The calculation formula of the neural network is:

y = σ(xwT + b0)θ + b1 s.t. w ∈ RN×M, b0 ∈ R1×N , θ ∈ RN×1, b1 ∈ R1×1 (5)

Here, σ() is the activation function; ω, b0, θ and b1 are variables of the neural network
itself. Neural network training means to “fit” these variables with the training data.

The second stage is the back propagation of errors, from the output layer to the hidden
layer, and finally to the input layer. The weights and biases from the hidden layer to
the output layer and the weights and biases from the input layer to the hidden layer are
adjusted in turn. Common training algorithms include the back-propagation algorithm [39],
Levenberg–Marquardt (LM) algorithm [34,40], Bayesian regularization algorithm [22,41]
and Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm [25]. According to the above
algorithm, a large amount of data can be used to solve the iterative design process; these
data are divided into several groups, some of which are used for training, and some are
used to verify the solution. This research uses the back-propagation algorithm to train the
ANN model. The back-propagation algorithm has two elements, in simple terms: the error
function is calculated in the forward direction, and the gradient descent is derived in the
reverse direction [39].

2.4. Evaluation Criteria

Four accuracy metrics are used to evaluate the performance of three data-driven
models [19]. The first is the predictive coefficient of determination (R2), which indicates
how close the predicted value is to the actual value. The larger the R2, the better the model.
R2 can be calculated according to Equation (6):

R2 =

n
∑

i=1
[ypredicted − yobserved]

2

n
∑

i=1
[yobserved − yobserved]

2
i = 1, 2, . . . , n (6)

where yobserved is the observed values, yobserved is the average of the observed values,
ypredicted is the predicted values, and n stands for the total number of observations.
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The second evaluation index is the Mean Square Error (MSE), which is used to evaluate
the error between the observed value and the predicted value. The smaller the MSE, the
better the model. MSE can be described by Equation (7):

MSE =

n
∑

i=1
[yobserved − ypredicted]

2

n
, ∈ [0,+∞), i = 1, 2, . . . , n (7)

The last two accuracy indicators are Mean Absolute Error (MAE) and Mean Absolute
Percent Error (MAPE). MAE is used to measure the average absolute error between the
predicted value and the true value. The smaller the MAE, the better the model. Its definition
is as follows:

MAE =

n
∑

i=1

∣∣∣∣∣∣yobserved − ypredicted

∣∣∣∣∣∣
n

, ∈ [0,+∞), i = 1, 2, . . . , n (8)

Mean Absolute Percent Error (MAPE) is similar to MAE, except that it is standardized
on the basis of MAE. The percentage error has the advantage of being independent of
the scale, so it is often used to compare the performance between different models. The
definition of MAPE is as follows:

MAPE =
100%

n

n

∑
i=1

∥∥∥∥yobserved − ypredicted

yobserved

∥∥∥∥ , ∈ [o,+∞) , i = 1, 2, . . . , n (9)

The best model is a model that collects the minimum values of error metrics (i.e., MSE,
MAE, MAPE) and the maximum value of predictive R2.

3. Methodology
3.1. Model Validation

In order to demonstrate the applicability of the proposed discrete-time dynamic
programming algorithm to the indoor climate control, this research tests the idea on a
nearly zero energy residential building using TRNSYS as the simulation environment.

3.1.1. Building and TRNSYS model

The simulated residential building is a part of the Future Building Laboratory (FBL)
of the Chinese Academy of Building Research (CABR) in Beijing, China. The FBL is a
full-scale experiment facility used for the study of the innovative energy and environment
technologies in residential buildings. The FBL includes six similar apartments with different
envelope and energy systems.

This study selects two apartments as the simulation targets. The apartments use an
Air-Sourced Heat Pump (ASHP) to provide heating air using duct and Primary Air Unit
(PAU) with heat recovery, as shown in Figure 1.

Each apartment includes three bedrooms, a living room, a dining room, a kitchen and
two bathrooms. The main parameters of building envelope, ASHP and PAU are given in
Table 1. The occupation rate, lighting utilization rate and equipment utilization rate of
each room are set in accordance with the “Design Standard for Energy Conservation of
Residential Buildings in Severe Cold and Cold Areas” JGJ26-2018 standard, as shown in
Figure 2. The lighting density value of each room is set according to the target value of
“Architectural Lighting Design Standard” GB 50034-2013 standard. The power density of
each room equipment is set according to the function of the room, and the heat dissipation
of the human body is set in accordance with ISO7730. For the specific settings, see Table 2.
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Table 1. Main input parameters of the model.

Parameters Values

Envelope Residential Unit Experimental Unit

External wall heat transfer coefficient (W/(m2· K)) 0.2 0.15
External wall solar radiation absorption coefficient (−) 0.7 0.7

Inner wall solar radiation absorption coefficient (−) 0.4 0.4
Heat transfer coefficient of outer window (W/(m2· K)) 0.8 0.8

Shading coefficient of exterior window (−) 0.5 0.5
Outer door heat transfer coefficient (W/(m2· K)) 0.8–1.0 0.8–1.0

Cold wind penetration (1/h) 0.1 0.1
Primary Air Unit

Fresh air volume (m3/h) 150
Power (W) 45

Heat recovery efficiency (enthalpy efficiency) 75%
Air-Sourced Heat Pump bedroom living room

Rated cooling capacity (Kw) 2.36 2.6
Cooling power (Kw) 0.717 0.8

Rated heating capacity (Kw) 2.65 2.86
Heating power (Kw) 0.683 0.81
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Table 2. Internal heat source parameters.

Room Lighting Power
Density Value (W/m2)

Equipment Power
(W)

Human Body Heat
Dissipation (W/Person)

bedroom 5 50 60
living room 5 150 75
bathroom 5 50 75

kitchen 5 250 75

The HVAC system of the selected apartments in TRNSYS environment are given in
Figure 3. The HVAC system of the selected apartment consists of three main subsystems:
air conditioning system, fresh air system and shading system. The air conditioning system
consists of a five-stage thermostat controller (Type 108), an air-source heat pump model
(Type 954), a start–stop controller and a personnel-in-room schedule, which turns on the
AHSP when the room is occupied and the temperature meets the temperature control
requirements. The fresh air system consists of air mixing valve (Type 648), variable air
volume fan (Type 147), heat recovery unit (Type 667b) and controller, which controls the
start–stop function of the fan and heat recovery unit according to the enthalpy difference
between indoor and outdoor air (the fresh air system is in heat recovery mode when all
equipment is on, and in bypass mode when only the fan is on). Shading control is achieved
by an on/off differential controller (Type2). The differential controller allows for setting a
certain value interval when the outdoor solar radiation is higher than this interval to turn
on the shading and lower than this interval to turn off the shading; otherwise, it does not
change the device status.
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The TRNSYS simulation model was validated using historical operational data of the
building in 2021, as shown in Figure 4. Figure 4a shows the TRNSYS simulated value
of room temperature compared with the measured value (taking the master bedroom of
the right household as an example), and Figure 4b shows the TRNSYS simulated value of
HVAC system energy consumption compared with the measured value.
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3.1.2. Simulation Date

A whole year simulation is carried out. In parameter identification, the system inputs
include: (1) outdoor weather conditions, including outdoor air temperature, outdoor air
enthalpy, outdoor air relative humidity, solar horizontal radiation and southward solar
radiation; (2) internal gain (SIn,gain

k ), including lighting load, equipment load and human
body heat dissipation; (3) the heating and cooling output of the air conditioning equipment
(Qk), which is calculated from the volume of the circulated air flow and the temperature
difference between the supply and return air. The system outputs include: (1) room air tem-
perature of the main zone and (2) the energy consumption of air conditioning equipment.

The data generated by the TRNSYS simulation program that cover most of the state-
actions conditions is used to train the prediction model, as shown in Table 3.

Table 3. Description of simulation conditions.

Day Night
Shading Control

Temperature
Setting

(◦C)ASHP On/Off PAU On/Off ASHP On/Off PAU On/Off

0 0 0 0 0/0.5 −
0 0 1 0 0/0.5 18/20/22/24
0 1 0 1 0/0.5 18/20/22/24
0 1 1 1 0/0.5 18/20/22/24
1 0 0 0 0/0.5 18/20/22/24
1 0 1 0 0/0.5 18/20/22/24
1 1 0 1 0/0.5 18/20/22/24
1 1 1 1 0/0.5 18/20/22/24

random 0 random 0 0/0.5 18/20/22/24
random 1 random 1 0/0.5 18/20/22/24

Note: 0 means off, 1 means on, 0.5 means blocking 50% of solar radiation.

3.1.3. Model Regression

The three data-driven methods used in this research are implemented in the Python
3.8 environment with the help of Scikit-learn library. The setting of hyperparameters has
a great influence on the accuracy of the model and training efficiency. In this research,
an automatic adjustment mechanism of hyperparameters was established to reduce the
dependence of the know-hows to find optimal hyperparameters. For the MLR model,
regression models with the highest degree of 1–5 are tested, respectively, and the one with
the highest precision is selected by the algorithm. For the ANN model, this paper uses an
algorithm called Best Network after Multiple Iterations (BNMI) to determine the optimal
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parameters of the ANN (number of hidden layers, number of nodes, node interconnection
weights and bias) [42]. For the SVR model, this paper uses a grid search algorithm to
automatically adjust the parameters [43].

The thermal energy storage in building This
k is used to characterize the historical state of

the building. This
k is determined by the average temperature at 4 h before each optimization

cycle; see Table 4. The input variables of the model are shown in Table 5.

Table 4. Thermal energy storage in building.

Room Temperature Warm and Cold Level Variable

T ≤ 17 ◦C Very cold −2
17 ◦C ≤ T ≤ 19 ◦C Cold −1
19 ◦C ≤ T ≤ 1 ◦C Medium 0
21 ◦C ≤ T ≤ 23 ◦C Warm +1

T ≥ 23 ◦C Very warm +2

Table 5. Data-driven model input.

Room Temperature Prediction Model

time This
k Sout,T

k Sout,Rh
k SG,hor

k SMAU,mode
k SMAU,speed

k Sin,T
k Qk

ASHP energy consumption model
time This

k Sout,T
k Sout,Rh

k SG,hor
k SMAU,mode

k SMAU,speed
k Sin,T

k SAHU,mode
k Sin,T

k+1 Din,T
k,k+1

Note: Q means ASHP cooling capacity; D means ASHP energy consumption.

The structure and accuracy indicators of different models are shown in Table 6. The
ANN model has the best accuracy. The coupling of the room temperature model with the
equipment energy consumption model is divided into two cases: (1) When the ASHP is
off, the temperature model directly calculates the room temperature at the next time step,
and the equipment energy consumption is zero. (2) When the ASHP is on, the temperature
model calculates the maximum temperature (ASHP running at maximum power, PAU off,
shading off) and the minimum temperature (ASHP off, PAU on, shading on) that the room
can reach at the next time step. If the set temperature is in the possible temperature range
or above the maximum temperature, the energy consumption is calculated by the energy
consumption model according to the equipment state setting; otherwise, the equipment
energy consumption is zero.

Table 6. The selected models and their accuracy.

Model Name Model Structure R2 MAE MSE MAPE

Temperature
MLR Highest term: 5 0.9231 0.0285 0.0014 8.66%
SVR Kernel function: Gaussian 0.9154 0.0315 0.0015 9.53%

ANN Relu(150,50) 0.9574 0.0513 0.0023 5.52%

Consumption
MLR Highest term: 4 0.8643 0.0323 0.0024 9.73%
SVR Kernel function: Gaussian 0.9126 0.0299 0.0015 8.97%

ANN Relu(150,250) 0.9548 0.0136 0.0007 7.65%
Note: Relu(150,50) indicates that the ANN activation function is Relu, with two hidden layers: 150 nodes in the
first layer, and 50 nodes in the second layer.

In order to verify the models, this study used the same settings in the TRNSYS
simulation platform and simulated both the models provided by the TRNSYS and the
identified models on the same day. The results are shown in Figure 5. The identified models
have good accuracy and can support the development of subsequent control algorithms.
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3.2. Control Method

The purpose of this research is to find the best balance between user’s comfort, lifestyle
preferences and energy costs of HVAC systems. This problem can be regarded as a com-
plex multistage decision problem, in which the interrelationship of decisions obtained
by previous and subsequent iteration steps must be considered dynamically. For exam-
ple, the energy consumption of the HVAC system is dependent on the room temperature
setting and the previous room heat storage status. For this multistage decision problem,
discrete-time dynamic programming is a suitable framework.

3.2.1. Dynamic Programming Method

Based on Bellman’s principle of optimality [25], dynamic programming (DP) decom-
poses the original problem into several interrelated subproblems and obtains the solution
of the original multistage decision-making problem by solving the sub-problems iteratively.
Dynamic programming is particularly well suited for situations where decisions need to
be made in stages. The outcome of each decision may not be completely predictable, but
it can be anticipated to some extent before the next decision is made. The objective is to
minimize a certain cost. DP algorithm considerably reduces the complexity of multistage
decision problems. In discrete-time dynamic programming, there are five main concepts:
decisions, states, stages, state transition and strategies.

A DP problem involves a discrete-time dynamical system of the form:

xk+1 = fk(xk, uk), k = 0, 1 . . . , N − 1 (10)

where k represents the stage index; xk represents the state of the system; uk represents the
decision variable, selected at time k from some given set Uk(xk) that depends on xk; f k
represents a function of (xk, uk), describing the mechanism by which the state is updated
from time k to time k+1; N represents the number of times the control is applied.
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This problem also involves an additive cost function, that is, the cost incurred at stage
k, denoted by gk(xk, uk), accumulates over time:

J(x0; u0, . . . , uN−1) = gN(xN) +
N−1

∑
K=0

gK(xk, uk) (11)

Figure 6 shows the description of DP for the specific problem discussed in this paper. X
represents the combination of the indoor temperature and the remaining fresh air opening
time. The first subscript represents the time, and m is the length of the time series. The
second subscript of each state number is the number of states, assuming there are k states.
In this research, one day is divided into 24 stages with time step of one hour, m = 24.
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DP obtains the optimal value by minimizing the cost over all sequences {u0, . . . , uN−1}
that satisfy the control constraints:

J∗k(xk) = min
uk∈Uk(xk)

[gk(xk, uk) + J∗(xk+1; uk+1, . . . , uN−1)], f or all xk (12)

where ‘*’ represents the optimal solution of all states and their decisions in the kth stage, and
J∗k represents the lowest cost from stage k to stage m. Note that at stage k, the calculation in
Equation (12) must be done for all states xk before proceeding to stage k−1.

Once the function
{

J∗0 , . . . , J∗N
}

has been obtained, the algorithm can construct the op-
timal control sequence

{
u∗0 , . . . , u∗m−1

}
and the corresponding state trajectory

{
x∗1 , . . . , x∗m

}
for the given initial state x0 in the following way:

u∗i ∈ arg min
u∈U(x∗i )

[
g∗i to i+1 + J∗i+1(xi+1)

]
(13)

3.2.2. DP-Based Description Control Model

When the dimensionality of the state variables increases, the computational complexity
of dynamic programming problems increases exponentially. Therefore, the selection of
state variables should be as streamlined as possible. The state in this study is defined
as the current temperature of the room (Sin,T

k ) and the remaining start hours of the PAU
(SPAU,times

k ) in the simulated day because of the following: (1) Sin,T
k is not only an essential

variable affecting the operation of HVAC system, but also an essential variable reflecting
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indoor comfort; (2) converting the minimum fresh air volume into the minimum fresh air
opening hours can reduce the computational cost of the algorithm and meet the constraints.

xk =
[
Sin,T

k , SPAU,times
k

]T
(14)

The decision variable is the mode of devices in the system, including the on/off
function of the ASHP, the setting of the room temperature, the on/off function of the PAU,
the working mode of the PAU (bypass or heat recovery) and percentage of solar radiation
blocked by shading equipment (0%, 10%, 20%, . . . , 100%).

Uk =
[
SASHP,on/o f f

k , SSet,T
k , SPAU,on/o f f

k , SPAU,mode
k , SShading

k

]T
(15)

From time k to time k+1, the state transition must meet the constraints. Firstly, the
room temperature should be higher than the lower limit temperature when the ASHP is off
and the PAU is in bypass mode. The room temperature should be lower than the higher
limit temperature when the ASHP is on and PAU is off. The specific value can be calculated
by the previously established room temperature model. Secondly, the remaining fresh air
opening time should be equal to or one less than the previous stage.{

Sin,T
k+1,min

≤ Sin,T
k+1
≤ Sin,T

k+1,max

SPAU,times
k+1 = SPAU,times

k or SPAU,times
k+1 = SPAU,times

k − 1
(16)

The algorithm minimizes cost function by finding the optimal state trajectory given
the 24 h weather forecast information. The algorithm calculates the discomfort penalty
from the temperature model and the energy cost from the energy consumption model.

gk(xk, uk, SWeather
k ) = λcm f Ccm f

k + λcstCcst
k + λon/o f f Con/o f f

k (17)

where, λcmf, λcst and λon/off respectively represent the weighting coefficient of the discomfort
cost, energy cost and ASHP on/off cost. One of the purposes of setting the weighting
coefficient is to keep the three cost terms in the same order of magnitude, so λcmf is set
in the range 1–10, λcst is set in the range 50–150 and λon/off is generally set to 10. Another
purpose is for adjusting the user’s usage preferences between energy efficiency and thermal
comfort. Functions Ccm f

k , Ccst
k and Con/o f f

k respectively represent the discomfort cost, energy
cost and ASHP on/off cost of stage k. Ccst

k can be calculated by the energy consumption

model proposed in the previous chapter. Ccm f
k and Con/o f f

k are given by the following
Equations (18)–(19).

Ccm f
k =


5× (Sindoor,T

k − 20)
2
+ 0.5 Sindoor,T

k < 20◦C

0.5× (Sindoor,T
k − 21)

2
20◦C ≤ Sindoor,T

k ≤ 22◦C

3× (Sindoor,T
k − 22

)2
+0.5 Sindoor,T

k > 22◦C

(18)

Con/o f f
k =

∣∣∣SAHU,on/o f f
k−1 − SAHU,on/o f f

k

∣∣∣ s.t. SAHU,on/o f f = 0, 1 (19)

3.2.3. Optimal Control Method

Based on the above considerations, a multistep predictive optimization control method
for nearly zero energy residential buildings is proposed, and the control system is simplified
as shown in Figure 7.
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First, the model identification unit implements three data-driven models (MLP, MPR
and SVR) in parallel using historical building operation data, and selects the highest
accuracy based on statistical performance metrics. After that, according to the current
state of the system and the weather forecast, the state and control paths of the system
satisfying the constraint (Equation (16): the room temperature is in the temperature range
that may be reached in the previous state, and the remaining start hours of PAU are not
greater than the previous state) in the next 24 h are calculated by the time-by-time model.
In this case, a directed graph like Figure 6 can be obtained, where the nodes represent the
system states and the weights of the links between the nodes represent the cost of the state
transfer. Finally, according to the principle of dynamic programming algorithm, the lowest
cost is calculated in the reverse direction, the optimal control path is found using this cost
in the forward direction and then the time-by-time control parameters for the next 24 h
are obtained.

3.3. Building Operational Carbon Emissions

From the cradle to the grave, the life cycle of a building is divided into four main
phases: construction, operation, demolition and recycling [44]. Energy consumption during
the operation phase of the building is the main source of carbon emissions throughout the
life cycle and is related to the energy used to operate the building, i.e., the total electricity
and natural gas to meet the energy demand. This study reduces the electricity demand
during the operation phase of the building by optimizing the control of the HVAC system,
thus achieving building emission reduction.
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The Intergovernmental Panel on Climate Change (IPCC) developed a model for
calculating carbon emissions from the operational phase of buildings, which combines
activity-level data and emission factors [45]:

CE = BFS× CEI (20)

CEI = ∑
s
(EUIs × CEFs) (21)

Among them, CE is the building carbon emission, in kgCO2; BFS is the building floor
space, in m2; CEI is the carbon emission intensity, in kgCO2/m2; EUI is the energy use
intensity, in kWh/m2 for electricity; CEF is the carbon emission factor, in kgCO2/kWh
for electricity; the angular scale s refers to the type of energy. Referring to the Guidance
on Greenhouse Gas Accounting and Reporting of China, the carbon emission factor of
electricity in this study is 0.5839 kgCO2/kWh [46].

4. Influence of Thermal Energy Storage in Building

Equation (12) can calculate the minimum cost of the system from state Xm−2,i to stage
m; this cost has nothing to do with what state the system is in before stage m−2 (the system
is transferred from state Xm−3,1 to state Xm−2,i or state Xm−3,n to state Xm−2,i), and this
step does not need to calculate the optimal path from state Xm−2,i to stage m (what is
Xm−2, i-Xm−1,3-Xm,4 or Xm−2,i-Xm−1,1-Xm,2). This is the requirement of no aftereffect of the
dynamic programming algorithm: the state of its previous stages cannot directly affect its
future decision making.

The optimal path will only be solved by Equation (13) after the function
{

J∗0 , . . . , J∗N
}

is solved. This makes the algorithm only need to calculate the state transition cost between
two adjacent stages in each calculation step, which allows one to solve different types of
problems in time O(n2) or O(n3) for which a naive approach would take exponential time,
but at the same time, it increases the difficulty for the algorithm to obtain the historical
state of the building. The historical state can provide the algorithm with important addi-
tional information that can help its decision making. For example, it can determine if the
temperature has been rising in the last few hours and take actions accordingly. Therefore,
this paper introduces the variable of thermal energy storage in building. Its definition is
shown in Table 4.

The Pearson correlation coefficient is used to reflect the linear correlation between
two variables. It can also measure the sensitivity of the nonlinear relationship between
the two to a certain extent. Table 7 shows the calculation results of the Pearson correlation
coefficients of “thermal energy storage in building” and related parameters. The calculation
results show that the “thermal energy storage in building” have a greater impact on the
prediction accuracy of the room temperature model and can be used as the historical
information input of the room temperature model. It has a small impact on the prediction
accuracy of the equipment energy consumption model.

Table 7. Pearson correlation coefficient calculation results between “thermal energy storage in
building” and related variables.

Related Variables
“Thermal Energy Storage

in Building” and
Room Temperature

“Thermal Energy Storage in
Building” and ASHP
Energy Consumption

Pearson correlation coefficients 0.77 0.04

Under the same conditions (sunny day, 12:00, outdoor−3 ◦C, ASHP runs at maximum
power for one hour), the predicted value of the room temperature changes with the “thermal
energy storage in building” as shown in Figure 8. In Figure 8, the X-axis is the thermal
energy storage in building, the Y-axis is the initial room temperature and the Z-axis is the
room temperature after the ASHP runs at maximum power for one hour. It can be seen
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from the figure that the thermal energy storage in building will affect the room temperature
at the next time in the same initial state, and the lower the initial room temperature, the
greater the impact.
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The influence of ‘thermal energy storage in building’ on the dynamic program-
ming algorithm is directly reflected in the following two aspects: (1) the temperature
at which the room reaches a new steady state when the ambient temperature changes
and (2) the time step required for the room to reach a new steady state when the ambient
temperature changes.

In addition, when the solar radiation is greater than 250 W/m2, the “thermal energy
storage in building” level of the room should be increased by one level due to the heat gain
from the solar radiation.

5. Comparison Baseline

A rule-based control strategy is applied as the baseline case to verify the effectiveness
of the DP-based HVAC control strategy. The rules used by baseline controller are as follows:

(1) Shading Control: Zhang et al. proposed three shading control strategies based on
China’s meteorological conditions [47]. When the solar radiation intensity (southward
radiation) received by the facade is higher than 140 W/m2, the shading starts to take
effect and block 50% of the direct solar radiation. When the shading equipment is
activated and the solar radiation intensity is lower than 120 W/m2, the shading device
closes.

(2) HVAC control: In residential buildings, most of the air conditioning equipment is
controlled according to constant set temperature, which is used as the baseline of the
control strategy. The on/off control is set according to the personnel presence rate
described in Chapter 2.2 (Figure 2). For the sake of comparison, three set temperatures
of 18 ◦C, 20 ◦C and 22 ◦C are used in winter. Taking the case that uses 22 ◦C as the
set point as an example, the specific settings are as follows: In winter, when the room
temperature is lower than 21 ◦C and occupation exists, the ASHP starts to operate in
heating mode. When the room temperature reaches 23 ◦C, the ASHP is turned off;
that is, the room temperature is controlled at 22 ◦C ± 1 ◦C. In summer, when the room
temperature is higher than 27 ◦C and occupation exists, the ASHP cooling mode is
activated. When the room temperature drops below 25 ◦C, the ASHP is turned off;
that is, the room temperature is controlled at 26 ± 1 ◦C.
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(3) PAU Control: Considering the influence of latent heat, the PAU is controlled according
to the enthalpy difference between indoor and outdoor air. A trade-off between the
energy consumption of the PAU and the amount of heat recovery decides the on/off
strategy of the PAU. When the outdoor temperature is 22–26 ◦C, the fan is off and the
natural ventilation mode is chosen. The number of the air exchange rate is considered
to be 5 times/h. When the outdoor temperature is lower than 22 ◦C or higher than
26 ◦C, the PAU is turned on, and its heat recovery device is controlled according to the
following rules: (1) Winter: when the indoor air enthalpy is greater than the outdoor
air enthalpy by 13 kj/kg, the PAU operates at the heat recovery mode. (2) Summer:
when the outdoor air enthalpy is greater than the indoor air enthalpy by 2 kj/kg, the
PAU operates at the heat recovery mode. (3) Transition season: the PAU operates
continuously in bypass mode.

Figure 9 shows the annual simulation results of the baseline simulation when the
set temperature is 22 ◦C in winter and 26 ◦C in summer. From top to bottom are solar
irradiance, heating/cooling effect, outdoor temperature and indoor temperature.
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6. Results and Discussion

The research is carried out for the winter condition designated building. The proposed
control method (the discomfort cost weighting is 1, and the energy cost weighting is 130)
was used to optimize the master bedroom for a heating season (from 16 November to
28 February of the following year, 2497 h) for verification. Figure 10 shows the temperature
value set by the dynamic programming algorithm and the simulated temperature from
TRNSYS simulation program. Using the proposed algorithm, the energy consumption of the
heating season is 96.47 kW·h, and the overall cost is 23,465. The baseline energy consume
is 183.37 kW·h, and the overall cost is 26,515. The overall cost is calculated according to
Equations (18) and (19), including energy consumption and discomfort penalty item. The
algorithm sacrifices a small amount of comfort (causes the room to be 1–2 ◦C below the
comfortable temperature 37% of the time), but it can reduce energy consumption by 47.49%.

To further observe the performance of the algorithm, this simulation’s results in the
last five days of December are discussed in detail. Figure 11 shows the specific weather data
for these five days. The weather conditions in the first three days were more complicated.
The first day was cloudy, the second and third days were cloudy and clear and the next
two days were sunny with excellent weather conditions.
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The initial temperature and relative humidity of the room were set to 20 ◦C and 30%,
respectively. The minimum number of opening hours of fresh air in a room during an
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optimization period was set to 12 h, which means the fresh air in the room should be
turned on for at least 12 h every day. The minimum ventilation hour guarantees enough
ventilation to maintain healthy and comfort IAQ environment. Table 8 shows the optimal
control output results of the DP algorithm on the first day.

Table 8. The output value of the first day of the dynamic programming algorithm.

Time Temperature
Setting/Predicted Value

PAU Minimum Open
Hours Remaining ASHP On/Off PAU On/Off Shade State

0 20.00 11 1 1 0
1 22.00 10 0 1 0
2 20.00 10 1 0 0
3 22.00 9 0 1 0
4 20.00 9 1 0 0
5 21.50 8 0 1 0
6 20.00 8 0 0 0
7 19.50 8 1 0 0
8 20.00 7 1 1 0
9 21.00 7 0 0 0
10 20.00 6 0 1 0
11 20.50 5 0 1 0
12 21.50 4 0 1 0
13 21.50 3 0 1 0
14 21.50 3 0 0 0
15 21.50 2 0 1 0
16 21.00 2 0 0 0
17 20.50 1 0 1 0
18 20.00 1 0 0 0
19 19.50 0 1 1 0
20 21.00 0 0 0 0
21 20.50 0 0 0 0
22 20.00 0 0 0 0
23 19.00 0 0 0 0

6.1. Influence of the Weighting Coefficient

By adjusting the weight coefficient of the discomfort cost and energy cost in the cost
function (Equation 17), the user’s lifestyle preference can be adjusted. Increasing the
discomfort cost weight or decreasing the energy cost weight can make the controller more
focused on thermal comfort and decreasing the discomfort cost weight or increasing the
energy cost weight, which can make the controller more focused on energy saving. To make
the discomfort cost and energy cost have the same order of magnitude, the discomfort
cost weight is set in the range of 1–10, and the energy cost weight is set in the range
of 50–150. The objective function of the controller in finding the optimal control path
is the lowest overall cost of discomfort cost and energy cost, so the user can find the
optimal balance between comfort and energy consumption at any lifestyle preferences
(weighting coefficient). Furthermore, the group that makes the lowest overall cost among
all combinations of weighting coefficients allows for the controller to find the optimal
balance between comfort, lifestyle preferences and energy cost.

Figure 12 shows the influence of the weighting coefficient on the overall cost, using
the simulation results from 26 November to 30 November. The overall cost increases
monotonically with the increase of the discomfort cost weight, and first decreases and then
increases slightly with the increase of the energy cost weight. When the discomfort cost
weight is 1 and the energy cost weight is 150, the system obtains the maximum energy
saving with the energy consumption of 4.2 kW·h, discomfort cost of 741.36 and overall
cost of 1161.36. When the discomfort cost weight is 3 and the energy cost weight is 60,
the system obtains the best thermal comfort with the energy consumption of 15.1 kW·h,
discomfort cost of 486.89 and overall cost of 1996.89. When the discomfort cost weight is
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1 and the energy cost weight is 130, the system achieves the best optimization with the
energy consumption of 5.72 kW·h, discomfort cost of 542.54 and the overall cost of 1114.54.
In addition, if the weight coefficients are set unreasonably (e.g., the discomfort cost weight
is set too high), the controller based on the dynamic programming does not obtain better
optimization results than the baseline.
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6.2. Performance of Thermal Comfort

Figure 13 shows the predicted temperature from the ANN model and the simulated
temperature from TRNSYS simulation program over five days. The results show that the
proposed algorithm can effectively use the thermal inertia of the building and select the
appropriate time to preheat the building according to the outdoor weather. For example,
the algorithm will intelligently choose an opportunity to increase the room temperature
between 17:00 and 20:00 to make full use of heat intake by solar radiation and reduce the
duration of the use of ASHP at night. For another example, in the second or third day of
cloudy to fine weather, the algorithm turns on the ASHP intermittently on cloudy days
and sets a suitable temperature to maintain the heat in the room, so that the ASHP avoids
working when the sky is clear.

The identified room temperature model is the basis of the proposed method. In some
cases, the accuracy of the model needs to be improved: (1) The time step of the control
scheme should be flexibly set according to the case requirement. The time step used in
this research is one hour, which is the most commonly used period in practice. For the
cases where the weather condition changes rapidly and constantly, a shorter time step may
be appropriate. The inaccuracy of the room temperature prediction in Figure 13a is due
to outdoor weather fluctuations. At the 38th hour, the southward solar radiation value is
553.55 W/m2, so the temperature model predicts that the room temperature will continue
to rise, while the actual weather quickly turns cloudy, and the room temperature drops.
(2) The temperature model cannot correctly reflect the influence of the internal heat source
on the indoor temperature precisely. The slight rise in room temperature in Figure 13b
is due to the electrical appliances and lights in the room being turned on, and the room
temperature model does not reflect this change. (3) Limited by the data set used for model
training, when the southward radiation is greater than 600 W/m2, the predicted indoor
temperature rise rate is slightly lower than the actual value, as shown in Figure 13c.
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The comfortable temperature range of the room is set at 20–22 ◦C. During the five days
of optimal control using dynamic programming, the room was at an uncomfortable tem-
perature 47.0% of the time. Among them, the room temperature was 19–20 ◦C 20.8% of the
time, the room temperature was 18–20 ◦C 9.1% of the time and the room temperature more
than 22 ◦C 16.6% of the time. The low temperature mostly occurs in the early morning, and
the high temperature mostly occurs at noon. Using the dynamic programming algorithm
for control, the calculation result of discomfort penalty item is 542.54, and baseline-20 ◦C
is 363.75.

6.3. Performance of Energy Saving and Emission Reduction

Based on the above results, our data are meaningful for further research on the energy
saving and emission reduction potential of dynamic programming algorithms. Figure 14
shows the results of the energy consumption. Figure 14a gives the energy consumption
when using the proposed method and the predicted energy consumption of the identified
energy model. Figure 14b gives the energy consumption when using baseline control
strategy of fixed set temperature of 18 ◦C, 20 ◦C and 22 ◦C. At the set temperature of 18 ◦C,
there is no energy consumption on the first day because the initial room temperature is set
to 20 ◦C.

In Figure 14a, the red line is the predicted energy consumption value calculated by
the energy consumption model, and the green line is the TRNSYS simulation value. Since
dynamic programming has no aftereffect requirements, the algorithm cannot obtain the his-
torical on/off status of the ASHP. This will cause the predicted energy consumption of the
ASHP to be lower than the TRNSYS simulation value when it is turned on after a long-term
shutdown. Setting the continuous on/off time of the ASHP as the state information of the
dynamic programming algorithm may solve this problem. However, as mentioned earlier,
when the dimensionality of the state variables increases, the computational complexity of
dynamic programming problems grows exponentially.
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Compared to the baseline-20 ◦C, the dynamic programming algorithm has 35.1%
energy saving and emission reduction. The reason is that, during periods of high outdoor
temperature, the baseline control strategy keeps the setpoints at 20 ◦C, which leaves the
ASHP in ‘on’ status for an unnecessarily long time and brings excessive energy consump-
tion. By comparison, dynamic programming algorithms coordinate the temperature setting
with weather factors and building thermal inertia, resulting in a more economical control
strategy. For example, the algorithm chooses to turn on the ASHP for a short time in the
early morning (00:00–09:00) according to the weather of the day and the heat storage state
of the building to provide heat to the controlled building; it turns off the ASHP during the
day and evening (09:00–20:00) with suitable weather conditions to make full use of the free
natural heat; at night (20:00–24:00), the ASHP is turned on at an appropriate time to main-
tain the thermal comfort of the building. Compared with the traditional rule-based control
strategy, the proposed algorithm actively responds to the outdoor environment change and
reduces the energy consumption without sacrificing the indoor thermal comfort.

6.4. Trade-Off between Thermal Comfort and Energy Saving

There is a trade-off between thermal comfort and energy consumption, and the dy-
namic programming algorithm trades off some thermal comfort for energy savings. The
results in Table 9 gives the energy cost, discomfort cost, uncomfortable hours and overall
cost. Energy cost is the energy consumption value multiplied by 100; the discomfort cost
is calculated by Equation 18, which is a quadratic function. Its discomfort cost increases
with departure from the comfort zone (20–22 ◦C) and has a higher cost at low temperatures.
Uncomfortable hours are times when the room temperature is outside the comfort zone.
The overall cost is the sum of the energy cost and the discomfort cost.

Table 9. Results for the cost function.

Control
Strategy

Energy Cost
(−) Discomfort Cost (−) Uncomfortable

Hours (−)
Overall Cost

(−)
Carbon Emissions

(kgCO2)

DP algorithm 572.00 542.54 56 1114.54 3.34
Baseline-18 ◦C 447.00 1867.43 120 2314.43 2.61
Baseline-20 ◦C 881.00 363.75 15 1244.75 5.14
Baseline-22 ◦C 1309.00 667.25 22 1976.25 7.64
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The proposed algorithm maintained the indoor thermal environment at the comfort
level for the 24 h, while the baseline case only regulates the indoor thermal environment
during the occupied period (Figure 2). The controlled building has an envelope structure
with high thermal insulation performance and high air-tight performance, reaching the en-
ergy efficiency level of nearly zero energy consumption buildings. Under the baseline-22 ◦C
control strategy, the room will be overheated at noon and the temperature will be higher
than 22 ◦C. Therefore, the discomfort cost of baseline-22 ◦C is higher than that of the
dynamic programming algorithm. Compared with baseline-22 ◦C, the dynamic program-
ming algorithm prevents overheating through intelligent control, which reduces the cost
of room discomfort by 18.7% and saves energy by 56.3%. The dynamic programming
algorithm reduces the overall cost by 43.6% compared with baseline-22 ◦C; compared
with baseline-20 ◦C, the discomfort cost of dynamic programming algorithm is increased
by 49.1%, but both are at a lower level. The dynamic programming algorithm’s energy
cost was reduced by 35.1%, and the overall cost was reduced by 10.5%; compared with
baseline-18 ◦C, the energy cost is only increased by 27.9%, but its discomfort cost is reduced
by 70.1%, and the overall cost is reduced by 51.8%.

The above analysis shows that the dynamic programming algorithm balances the
relationship between indoor thermal comfort and energy consumption by allowing for
the room to be temporarily in an uncomfortable state in exchange for energy saving
potential. The dynamic programming algorithm can find the control strategy with the
lowest overall cost.

6.5. Future Directions

The future work is mainly concentrated in the following aspects:

(1) The identification of an accurate model requires a big historical data set, which is
difficult to obtain in some buildings. Further research should address how to generate
an acceptable model with a smaller data set.

(2) The evaluation of thermal comfort in this paper is based on room temperature and
does not consider the influence of other parameters such as humidity and mean
radiant temperature. There are two reasons for this: on the one hand, parameters
related to thermal comfort need to be predicted using the model, and introducing
more parameters increases the complexity of the model, and on the other hand, the
computational complexity of the dynamic programming problem grows exponentially
with the number of dimensions of the state variables. Further research is needed to
perform a more objective thermal comfort evaluation without significantly increasing
the computational cost.

(3) It is important to deploy the developed algorithm into a real-world testbed. From the
simulation in the real world, which is extremely complex, there are some challenges
related to the infrastructure required to effectively deploy the algorithm. Future work
will be focused on these aspects, as well as the performance assessment of the DP
control strategy on site deployment.

7. Conclusions

This research proposes a heating control method for HVAC based on dynamic pro-
gramming to achieve better balance between thermal comfort, energy consumption and
personnel preferences of a nearly zero energy residential building. Firstly, the simula-
tion program for a nearly zero energy residential building is established in the TRNSYS
environment. Then, three model identification methods, namely multivariate linear re-
gression model, support vector regression model and Artificial Neural Network, were
used to establish room temperature and HVAC energy consumption models. The suitable
models are chosen according to the statistical performance criteria among the three model
identification methods. Finally, based on the selected models, the dynamic programming
algorithm is used for the model predictive control of the system. The main conclusions of
this research are as follows:
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(1) Compared with the simplified first principle models used in the existing literature, the
room temperature model established by the data-driven technology in this research
reflects the characteristics of the building with better precision.

(2) Using the average room temperature 4 h before each optimal control to characterize
the thermal energy storage in building can solve the problem that the dynamic
programming has difficulty obtaining the building historical state due to no aftereffect
requirement, so that the building model used by the controller can better reflect the
building thermal inertia.

(3) By adjusting the weighting coefficients of discomfort cost and energy cost in the cost
function, the lifestyle preferences of users can be adjusted. When the discomfort cost
weight is 1 and the energy cost weight is 130, the overall cost is the lowest, i.e., the
optimal balance between end-user comfort, lifestyle preferences and HVAC system
energy consumption is achieved.

(4) The Python/TRNSYS co-simulation results show that the proposed control scheme
can adjust the HVAC system and the operation mode the building not only according
to the current monitored information, but also including consideration of future
environment change and predicted response of the building thermal system. Its
overall cost is far lower than the case using rule-based control. Compared with the
baseline-20 ◦C case, which keeps the room temperature at the lowest comfort level,
the proposed control algorithm can save energy and reduce emissions by 35.1%.
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Nomenclature

This
k thermal energy storage in building (−)

xk the state of the system (−)
uk decision variable (−)
J∗k the lowest cost from stage k to stage m (−)
Sin,T

k current temperature of the room (◦C)
SPAU,times

k the remaining start hours of the PAU (−)
SASHP,on/o f f

k the on/off of the ASHP (−)
SSet,T

k the setting of the room temperature (◦C)
SPAU,on/o f f

k the on/off of the PAU (−)
SPAU,mode

k the working mode of the PAU (−)
Sshading

k solar radiation blocked by shading equipment (%)
Sin,T

k,min minimum room temperature at time k (◦C)
Sin,T

k,max maximum room temperature at time k (◦C)
SWeather

k outdoor weather (−)
λ

cm f
k the weighting coefficient of discomfort cost (−)

λcst
k the weighting coefficient of energy cost (−)

λ
on/o f f
k the weighting coefficient of ASHP on/off cost (−)
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Ccm f
k discomfort cost (−)

Ccst
k energy cost (kW)

Con/o f f
k ASHP on/off cost (−)

G solar radiation (W/m2)
Q the heating and cooling output of ASHP (kW)
Subscripts
0− 24, k the stage index
Abbreviations
HVAC heating, ventilation and air conditioning
NZE net zero emissions
NZEB nearly zero energy buildings
MPC model predictive control
SVM support vector machine
ANN Artificial Neural Network
MPR multivariate polynomial regression
MSE Mean Square Error
MAE Mean Absolute Error
MAPE Mean Absolute Percent Error
R2 coefficient of determination
RBFs radial basis functions
MLP multi-layer-perceptons
ASHP Air-Sourced Heat Pump
PAU Primary Air Unit
BNMI best network after multiple iterations
DP dynamic programming
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