Factors Associated with Low Birthweight in Low-and-Middle Income Countries in South Asia
Abstract
:1. Introduction
2. Methods
2.1. Outcome Variable
2.2. Covariates
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lugli, L.; Neuroprem Working Group; Pugliese, M.; Plessi, C.; Berardi, A.; Guidotti, I.; Ancora, G.; Grandi, S.; Gargano, G.; Braibanti, S.; et al. Neuroprem: The Neuro-developmental outcome of very low birth weight infants in an Italian region. Ital. J. Pediatr. 2020, 46, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Zeitlin, J.; Szamotulska, K.; Drewniak, N.; Mohangoo, A.; Chalmers, J.; Sakkeus, L.; Irgens, L.; Gatt, M.; Gissler, M.; Blondel, B.; et al. Preterm birth time trends in Europe: A study of 19 countries. BJOG 2013, 120, 1356–1365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO. Global Nutrition Targets 2025: Low Birth Weight Policy Brief. 2014. Available online: https://apps.who.int/nutrition/publications/globaltargets2025_policybrief_lbw/en/index.html (accessed on 30 March 2022).
- Hirve, S.S.; Ganatra, B. Determinants of low birth weight: A community based prospective cohort study. Indian Pediatr. 1994, 31, 1221–1225. [Google Scholar]
- Hosain, G.M.M.; Chatterjee, N.; Begum, A.; Saha, S.C. Factors associated with low birthweight in rural Bangladesh. J. Trop. Pediatr. 2006, 52, 87–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kader, M.; Perera, N.K.P. Socio-economic and nutritional determinants of low birth weight in India. N. Am. J. Med Sci. 2014, 6, 302–308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mishra, P.S.; Sinha, D.; Kumar, P.; Srivastava, S.; Bawankule, R. Newborn low birth weight: Do socio-economic inequality still persist in India? BMC Pediatr. 2021, 21, 518. [Google Scholar] [CrossRef]
- Bhowmik, J.; Biswas, R.; Woldegiorgis, M. Antenatal care and skilled birth attendance in Bangladesh are influenced by female education and family affordability: BDHS 2014. Public Health 2019, 170, 113–121. [Google Scholar] [CrossRef]
- Rahman, M.; Uddin, H.; Lata, L.N.; Uddin, J. Associations of forms of intimate partner violence with low birth weight in India: Findings from a population-based Survey. J. Matern. Neonatal Med. 2021, 1–8. [Google Scholar] [CrossRef]
- Khan, M.A.; Mustagir, G.; Islam, R.; Kaikobad, S.; Khan, H.T. Exploring the association between adverse maternal circumstances and low birth weight in neonates: A nationwide population-based study in Bangladesh. BMJ Open 2020, 10, e036162. [Google Scholar] [CrossRef]
- Marete, I.; Ekhaguere, O.; Bann, C.M.; Bucher, S.L.; Nyongesa, P.; Patel, A.B.; Hibberd, P.L.; Saleem, S.; Goldenberg, R.L.; Goudar, S.S. Regional trends in birth weight in low-and middle-income countries 2013–2018. Reprod. Health 2020, 17, 176. [Google Scholar] [CrossRef] [PubMed]
- Sathi, N.J.; Ahammed, B.; Alam, K.; Hashmi, R.; Lee, K.Y.; Keramat, S.A. Socioeconomic inequalities in low birth weight in South Asia: A comparative analysis using Demographic and Health Surveys. SSM Popul. Health 2022, 20, 101248. [Google Scholar] [CrossRef] [PubMed]
- Rosa, W. Goal 5. Achieve Gender Equality and Empower All Women and Girls. In A New Era in Global Health: Nursing and the United Nations 2030 Agenda for Sustainable Development; Springer Publishing Company, LLC: New York, NY, USA, 2017; Volume 301. [Google Scholar]
- ICF International. Demographic and Health Survey Sampling and Household Listing Manual; ICF International: Calverton, MD, USA, 2012. [Google Scholar]
- National Institute of Population Research; Training Medical Education and Family Welfare Division Ministry of Health; Family Welfare Dhaka. Bangladesh Demographic and Health Survey 2017-18; NIPORT/ICF: Dhaka, Bangladesh, 2020.
- Ministry of Health. Nepal Demographic and Health Survey 2016; MOH/Nepal, New ERA, and ICF: Kathmandu, Nepal, 2017.
- National Institute of Population Studies; N.P. and ICF. Pakistan Demographic and Health Survey 2017-18; NIPS/Pakistan and ICF: Islamabad, Pakistan, 2019. [Google Scholar]
- ICF. Demographic and Health Surveys Standard Recode Manual for DHS7; The Demographic and Health Surveys Program: Rockville, MD, USA, 2018. [Google Scholar]
- Bhowmik, J.; Biswas, R.K.; Ananna, N. Women’s education and coverage of skilled birth attendance: An assessment of Sustainable Development Goal 3.1 in the South and Southeast Asian Region. PLoS ONE 2020, 15, e0231489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Outhwaite, W.; Turner, S. The SAGE Handbook of Social Science Methodology; Sage Publications Ltd.: London, UK, 2007. [Google Scholar]
- Ghouse, G.; Zaid, M. Determinants of Low Birth Weight a Cross Sectional Study: In Case of Pakistan; Munich Personal RePEc Archive: Munich, Germany, 2016. [Google Scholar]
- Gupta, R.D.; Swasey, K.; Burrowes, V.; Hashan, M.R.; Al Kibria, G.M. Factors associated with low birth weight in Afghanistan: A cross-sectional analysis of the demographic and health survey 2015. BMJ Open 2019, 9, e025715. [Google Scholar] [CrossRef] [PubMed]
- Ahammed, B.; Maniruzzaman; Ferdausi, F.; Abedin, M.; Hossain, M. Socioeconomic and demographic factors associated with low birth weight in Nepal: Data from 2016 Nepal demographic and health survey. Soc. Health Behav. 2020, 3, 158. [Google Scholar] [CrossRef]
- Aziz, A.; Saleem, S.; Nolen, T.L.; Pradhan, N.A.; McClure, E.M.; Jessani, S.; Garces, A.L.; Hibberd, P.L.; Moore, J.L.; Goudar, S.S.; et al. Why are the Pakistani maternal, fetal and newborn outcomes so poor compared to other low and middle-income countries? Reprod. Health 2020, 17, 190. [Google Scholar] [CrossRef]
- Dizon, F.; Herforth, A.; Wang, Z. The cost of a nutritious diet in Afghanistan, Bangladesh, Pakistan, and Sri Lanka. Glob. Food Secur. 2019, 21, 38–51. [Google Scholar] [CrossRef]
- Ahmed, Z.; Khoja, S.; Tirmizi, S.S. Antenatal care and the occurrence of Low Birth Weight delivery among women in remote mountainous region of Chitral, Pakistan. Pak. J. Med. Sci. 2012, 28, 800–805. [Google Scholar]
- Jafree, S.R.; Zakar, R.; Zakar, M.Z. Factors Associated with Low Birth Weight of Children among Employed Mothers in Pakistan. Matern. Child Health J. 2015, 19, 1993–2002. [Google Scholar] [CrossRef]
- Janjua, N.Z.; Delzell, E.; Larson, R.R.; Meleth, S.; Kristensen, S.; Kabagambe, E.; Sathiakumar, N. Determinants of low birth weight in urban Pakistan. Public Health Nutr. 2009, 12, 789–798. [Google Scholar] [CrossRef] [Green Version]
- Afiaz, A.; Arusha, A.R.; Ananna, N.; Kabir, E.; Biswas, R.K. A national assessment of elective cesarean sections in Bangladesh and the need for health literacy and accessibility. Sci. Rep. 2021, 11, 16854. [Google Scholar] [CrossRef]
- Alam Mahumud, R.; Sultana, M.; Sarker, A.R. Distribution and determinants of low birth weight in developing countries. J. Prev. Med. Public Health 2017, 50, 18–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, J.R.; Islam, M.; Awan, N.; Muurlink, O. Analysis of low birth weight and its co-variants in Bangladesh based on a sub-sample from nationally representative survey. BMC Pediatr. 2018, 18, 100. [Google Scholar] [CrossRef] [PubMed]
- Khan, N.; Mozumdar, A.; Kaur, S. Determinants of low birth weight in India: An investigation from the National Family Health Survey. Am. J. Hum. Biol. 2020, 32, e23355. [Google Scholar] [CrossRef] [PubMed]
- Thapa, J.K.; Stöckl, D.; Sangroula, R.K.; Pun, A.; Thapa, M.; Maskey, M.K.; Delius, M. Investment case approach for equitable access to maternal neonatal and child health services: Stakeholders’ perspective in Nepal. PLoS ONE 2021, 16, e0255231. [Google Scholar]
- Khan, T.I. Inclusive Growth in Bangladesh: A Critical Assessment—SANEM. In 2nd Sanem Annual Economists Conference “Managing Growth for Social Inclusion”; SANEM: Dhaka, Bangladesh, 2017; Available online: http://sanemnet.org/conference_2017/Presentation/Inclusive%20Growth%20in%20Bangladesh%20A%20Critical%20Assessment.pdf (accessed on 24 September 2022).
Determinants | Afghanistan | Bangladesh | Nepal | Pakistan | ||||
---|---|---|---|---|---|---|---|---|
All (n) | LBW (n/%) | All (n) | LBW (n/%) | All (n) | LBW (n/%) | All (n) | LBW (n/%) | |
Total | 2671 | 389 (14.6) | 2200 | 317 (14.4) | 2564 | 289 (11.3) | 1575 | 294 (18.7) |
Residence | ||||||||
Urban | 1052 | 154 (14.6) | 970 | 132 (13.6) | 1701 | 180 (10.6) | 973 | 162 (16.6) |
Rural | 1619 | 235 (14.5) | 1250 | 185 (14.8) | 863 | 109 (12.6) | 602 | 132 (21.9) |
p-value | 0.974 | 0.462 | 0.138 | 0.011 | ||||
Maternal age at birth | ||||||||
<20 | 316 | 41 (13.0) | 624 | 97 (15.5) | 578 | 88 (15.2) | 76 | 25 (32.9) |
20–24 | 842 | 130 (15.4) | 756 | 105 (13.9) | 1038 | 112 (10.8) | 371 | 79 (21.3) |
25–29 | 666 | 103 (15.5) | 529 | 65 (12.3) | 603 | 65 (10.8) | 549 | 87 (15.8) |
>=30 | 847 | 115 (13.6) | 311 | 50 (16.1) | 345 | 24 (7.0) | 579 | 103 (17.8) |
p-value | 0.521 | 0.328 | 0.001 | 0.002 | ||||
Mother’s Education | ||||||||
No Education/preschool | 1854 | 285 (15.4) | 57 | 14 (24.6) | 536 | 74 (13.8) | 256 | 57 (22.3) |
Primary | 316 | 37 (11.7) | 344 | 60 (17.4) | 435 | 50 (11.5) | 184 | 41 (22.3) |
Secondary | 379 | 52 (13.7) | 1126 | 168 (14.9) | 1045 | 116 (11.1) | 504 | 121 (24.0) |
Higher | 122 | 15 (12.3) | 693 | 75 (10.8) | 548 | 49 (08.9) | 631 | 75 (11.9) |
p-value | 0.288 | 0.002 | 0.901 | <0.001 | ||||
Partner’s Education | ||||||||
No Education, preschool | 970 | 156 (16.1) | 158 | 26 (16.5) | 219 | 35 (16.0) | 162 | 38 (23.5) |
Primary | 461 | 74 (16.1) | 534 | 90(16.9) | 437 | 62 (14.2) | 150 | 37 (24.7) |
Secondary | 847 | 115 (13.6) | 790 | 127 (16.1) | 1285 | 136 (10.6) | 600 | 121 (20.2) |
Higher | 393 | 44 (11.2) | 738 | 74 (10.0) | 623 | 56 (09.0) | 663 | 98 (14.8) |
p-value | 0.076 | < 0.001 | 0.006 | 0.004 | ||||
Employment Status | ||||||||
Not Working | 2418 | 359 (14.8) | 1505 | 214 (14.2) | 1245 | 139 (11.2) | 1363 | 249 (18.3) |
Working | 253 | 30 (11.9) | 715 | 103 (14.4) | 1319 | 150 (11.4) | 212 | 45 (21.2) |
p-value | 0.235 | 0.958 | 0.917 | 0.351 | ||||
Wealth Index | ||||||||
Poorest | 299 | 77 (25.8) | 240 | 47 (19.6) | 462 | 56 (12.1) | 77 | 25 (32.5) |
Poorer | 405 | 73 (18.0) | 307 | 39 (12.7) | 484 | 54 (11.2) | 184 | 38 (20.7) |
Middle | 469 | 63 (13.4) | 399 | 71 (17.8) | 534 | 74 (13.9) | 266 | 61 (22.9) |
Richer | 685 | 82 (12.0) | 520 | 74 (14.2) | 572 | 69 (12.1) | 367 | 72 (19.6) |
Richest | 813 | 94 (11.6) | 754 | 86 (11.4) | 482 | 36 (07.5) | 681 | 98 (14.4) |
p-value | <0.001 | 0.004 | 0.048 | <0.001 | ||||
Exposed to Media | ||||||||
No | 861 | 159 (18.5) | 690 | 109 (15.8) | 949 | 123 (13.0) | 405 | 99 (24.4) |
Yes | 1810 | 230 (12.7) | 1530 | 208 (13.6) | 1615 | 166 (10.3) | 1170 | 195 (16.7) |
p-value | <0.001 | 0.190 | 0.045 | 0.001 | ||||
Decision-making Power of Women | ||||||||
No | 774 | 106 (13.7) | 265 | 38 (14.3) | 720 | 98 (13.6) | 392 | 87 (22.2) |
Yes | 1897 | 283(14.9) | 1995 | 279 (14.0) | 1844 | 191 (10.4) | 1183 | 202 (17.1) |
p-value | 0.452 | 1.000 | 0.023 | 0.046 | ||||
Intimate Partner Violence | ||||||||
No | 531 | 88 (16.6) | 1892 | 266 (14.1) | 1867 | 215 (11.5) | 1183 | 195 (16.5) |
Yes | 2140 | 301 (14.1) | 328 | 51 (15.5) | 697 | 74 (10.6) | 392 | 99 (25.3) |
p-value | 0.162 | 0.531 | 0.569 | <0.001 |
Variable | AOR (95% CI) | p-Value |
---|---|---|
Country (Ref: Afghanistan) | ||
Bangladesh | 1.27 (0.91 to 1.78) | 0.159 |
Nepal | 0.73 (0.50 to 1.05) | 0.092 |
Pakistan | 2.17 (1.49 to 3.14) | <0.001 |
Residence (Ref: Urban) | ||
Rural | 0.77 (0.61 to 0.97) | 0.027 |
Maternal age at birth (Ref: < 20) | ||
20–24 | 0.91 (0.73 to 1.13) | 0.386 |
25–29 | 0.86 (0.64 to 1.16) | 0.314 |
>=30 | 0.76 (0.56 to 1.03) | 0.076 |
Mother’s Education (Ref: No Education/preschool) | ||
Primary | 0.78 (0.58 to 1.05) | 0.098 |
Secondary | 0.81 (0.53 to 1.25) | 0.334 |
Higher | 0.63 (0.38 to 1.05) | 0.079 |
Partner’s Education (Ref: Reference: No Education, preschool) | ||
Primary | 0.90 (0.66 to 1.23) | 0.524 |
Secondary | 0.94 (0.69 to 1.29) | 0.707 |
Higher | 0.63 (0.42 to 0.94) | 0.024 |
Employment Status (Ref: Not Working) | ||
Working | 1.07 (0.87 to 1.32) | 0.519 |
Wealth Index (Ref: Poorest) | ||
Poorer | 0.71 (0.52 to 0.97) | 0.032 |
Middle | 0.88 (0.66 to 1.20) | 0.425 |
Richer | 0.70 (0.50 to 0.97) | 0.032 |
Richest | 0.78 (0.52 to 1.19) | 0.500 |
Exposed to Media (Ref: No) | ||
Yes | 0.87 (0.72 to 1.05) | 0.143 |
Decision-Making Power of Women (Ref: No) | ||
Yes | 0.82 (0.66 to 1.03) | 0.090 |
Intimate Partner Violence (Ref: No) | ||
Yes | 1.08 (0.88 to 1.32) | 0.467 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ngo, N.; Bhowmik, J.; Biswas, R.K. Factors Associated with Low Birthweight in Low-and-Middle Income Countries in South Asia. Int. J. Environ. Res. Public Health 2022, 19, 14139. https://doi.org/10.3390/ijerph192114139
Ngo N, Bhowmik J, Biswas RK. Factors Associated with Low Birthweight in Low-and-Middle Income Countries in South Asia. International Journal of Environmental Research and Public Health. 2022; 19(21):14139. https://doi.org/10.3390/ijerph192114139
Chicago/Turabian StyleNgo, Ngan, Jahar Bhowmik, and Raaj Kishore Biswas. 2022. "Factors Associated with Low Birthweight in Low-and-Middle Income Countries in South Asia" International Journal of Environmental Research and Public Health 19, no. 21: 14139. https://doi.org/10.3390/ijerph192114139
APA StyleNgo, N., Bhowmik, J., & Biswas, R. K. (2022). Factors Associated with Low Birthweight in Low-and-Middle Income Countries in South Asia. International Journal of Environmental Research and Public Health, 19(21), 14139. https://doi.org/10.3390/ijerph192114139