Modeling COVID-19 Transmission Dynamics: A Bibliometric Review
Abstract
:1. Introduction
- Q1. Researchers from which areas of expertise or knowledge domain have studied the COVID-19 transmission dynamics.
- Q2. What sources (Journals, Books, Conferences, etc.) might be relevant for further study of COVID-19 transmission dynamics?
- Q3. Who have been the most productive authors in this research area?
- Q4. What are the most impactful papers in this research area?
- Q5. Which countries are leading in conducting research in this area?
- Q6. What is the intellectual structure manifested in discipline orientation?
- Q7. What have been the research hotspots and research developments in this research area?
2. Research Methodology
2.1. Data
2.2. Analytical Tools
2.3. Author’s Co-Citation Analysis
2.4. Keyword Co-Occurrence Analysis
2.5. Construction of Maps
3. Results and Interpretation
3.1. Subject Area or Discipline-Wise Publications
3.2. Most Relevant Sources
3.3. Top-Cited Publications
3.4. Most Productive Authors (Sorted by Number of Articles)
3.5. Country-Specific Publications
3.6. Co-Citation Network
3.7. Co-Occurrence Network
3.8. Explaining Clusters (Table 5)
- Cluster 1 (Red Cluster): Tools for studying the transmission dynamics of COVID-19
- Cluster 2 (Green): Children in COVID-19
- Cluster 3 (Deep Blue): Epidemiology
- Cluster 4 (Yellow Cluster): Prevention Measure of COVID-19
- Cluster 5 (purple cluster): Study of Delta variant
- Cluster 6 (Sky Blue Cluster)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- CDC. CDC Museum COVID-19 Timeline. Available online: https://www.cdc.gov/museum/timeline/covid19.html (accessed on 10 October 2022).
- Sharif, N.; Alzahrani, K.J.; Ahmed, S.N.; Khan, A.; Banjer, H.J.; Alzahrani, F.M.; Parvez, A.K.; Dey, S.K. Genomic Surveillance, Evolution and Global Transmission of SARS-CoV-2 during 2019–2022. PLoS ONE 2022, 17, e0271074. [Google Scholar] [CrossRef] [PubMed]
- Bashir, M.F.; Ma, B.; Shahzad, L. A Brief Review of Socio-Economic and Environmental Impact of Covid-19. Air Qual. Atmos. Health 2020, 13, 1403–1409. [Google Scholar] [CrossRef] [PubMed]
- Nuno, F. Economic Effects of Coronavirus Outbreak (COVID-19) on the World Economy. In IESE Business School Working Paper No. WP-1240-E; 2020; Available online: https://ssrn.com/abstract=3557504 (accessed on 13 October 2022).
- Clarke, J. What Is a Systematic Review? Evid. Based Nurs. 2011, 14, 64. [Google Scholar] [CrossRef]
- Gopalakrishnan, S.; Parasuraman, G. Systematic Reviews and Meta-Analysis: Understanding the Best Evidence in Primary Healthcare. Fam. Med. Prim. Care Rev. 2013, 2, 3. [Google Scholar]
- Donthu, N.; Kumar, S.; Mukherjee, D.; Pandey, N.; Lim, W. How to Conduct a Bibliometric Analysis: An Overview and Guidelines. J. Bus. Res. 2021, 133, 285–296. [Google Scholar] [CrossRef]
- Fan, J.; Gao, Y.; Zhao, N.; Dai, R.; Zhang, H.; Feng, X.; Bao, S. Bibliometric Analysis on COVID-19: A Comparison of Research between English and Chinese Studies. Front. Public Health 2020, 8, 477. [Google Scholar] [CrossRef] [PubMed]
- Farooq, R.K.; Rehman, S.U.; Ashiq, M.; Siddique, N.; Ahmad, S. Bibliometric Analysis of Coronavirus Disease (COVID-19) Literature Published in Web of Science 2019–2020. J. Fam. Community Med. 2021, 28, 1–7. [Google Scholar]
- Furstenau, L.B.; Rabaioli, B.; Sott, M.K.; Cossul, D.; Bender, M.S.; Farina, E.M.J.D.M.; Filho, F.N.B.; Severo, P.P.; Dohan, M.S.; Bragazzi, N.L. A Bibliometric Network Analysis of Coronavirus during the First Eight Months of COVID-19 in 2020. Int. J. Environ. Res. Public Health 2021, 18, 952. [Google Scholar] [CrossRef]
- Gatto, A.; Drago, C.; Ruggeri, M. On the Frontline—A Bibliometric Study on Sustainability, Development, Coronaviruses, and COVID-19. Environ. Sci. Pollut. Res. 2022, 1–17. [Google Scholar] [CrossRef]
- Gong, Y.; Ma, T.; Xu, Y.; Yang, R.; Gao, L.; Wu, S.; Li, J. Early Research on COVID-19: A Bibliometric Analysis. Innovation 2020, 1, 100027. [Google Scholar] [CrossRef]
- Jin, H.; Lu, L.; Fan, H. Global Trends and Research Hotspots in Long COVID: A Bibliometric Analysis. Int. J. Environ. Res. Public Health 2022, 19, 3742. [Google Scholar] [CrossRef]
- Rahimi, I.; Chen, F.; Gandomi, A.H. A Review on COVID-19 Forecasting Models. Neural Comput. Appl. 2021, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Viana-Lora, A.; Nel-lo-Andreu, M.G. Bibliometric Analysis of Trends in COVID-19 and Tourism. Humanit. Soc. Sci. Commun. 2022, 9, 1–8. [Google Scholar]
- Ahmi, A. Bibliometric Analysis for Beginners: A Starter Guide to Begin with a Bibliometric Study Using Scopus Dataset and Tools Such as Microsoft Excel, Harzing’s Publish or Perish and VOSviewer Software. 2021. Available online: https://aidi-ahmi.com/index.php/bibliometric-analysis-for-beginners (accessed on 13 October 2022).
- Gingras, Y. Bibliometrics and Research Evaluation: Uses and Abuses; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Esterhuizen, T.M.; Thabane, L. Con: Meta-Analysis: Some Key Limitations and Potential Solutions. Nephrol. Dial. 2016, 31, 882–885. [Google Scholar] [CrossRef] [Green Version]
- Lyman, G.H.; Kuderer, N.M. The Strengths and Limitations of Meta-Analyses Based on Aggregate Data. BMC Med. Res. Methodol. 2005, 5, 14. [Google Scholar] [CrossRef] [Green Version]
- Ahn, E.; Kang, H. Introduction to Systematic Review and Meta-Analysis. Korean J. Anesthesiol. 2018, 71, 103–112. [Google Scholar] [CrossRef] [Green Version]
- Aria, M.; Cuccurullo, C. Bibliometrix: An R-Tool for Comprehensive Science Mapping Analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Verborgh, R.; De Wilde, M. Using OpenRefine; Packt Publishing Ltd.: Birmingham, UK, 2013. [Google Scholar]
- Van Eck, N.; Waltman, L. Software Survey: VOSviewer, a Computer Program for Bibliometric Mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef] [Green Version]
- Tableau Desktop. Available online: https://www.tableau.com/products/desktop (accessed on 13 October 2022).
- Leydesdorff, L. Theories of Citation? Scientometrics 1998, 43, 5–25. [Google Scholar] [CrossRef]
- Shafique, M. Thinking inside the Box? Intellectual Structure of the Knowledge Base of Innovation Research (1988–2008). Strateg. Manag. J. 2013, 34, 62–93. [Google Scholar] [CrossRef]
- Jeong, Y.K.; Song, M.; Ding, Y. Content-Based Author Co-Citation Analysis. J. Informetr. 2014, 8, 197–211. [Google Scholar] [CrossRef]
- Benckendorff, P.; Zehrer, A. A Network Analysis of Tourism Research. Ann. Tour. Res. 2013, 43, 121–149. [Google Scholar] [CrossRef]
- Chen, X.; Chen, J.; Wu, D.; Xie, Y.; Li, J. Mapping the Research Trends by Co-Word Analysis Based on Keywords from Funded Project. Procedia Comput. Sci. 2016, 91, 547–555. [Google Scholar] [CrossRef]
- Rejeb, A.; Simske, S.; Rejeb, K.; Treiblmaier, H.; Zailani, S. Internet of Things Research in Supply Chain Management and Logistics: A Bibliometric Analysis. Internet Things 2020, 12, 100318. [Google Scholar] [CrossRef]
- Lee, P.-C.; Su, H.-N. Investigating the Structure of Regional Innovation System Research through Keyword Co-Occurrence and Social Network Analysis. Innov. Manag. Policy Pract. 2010, 12, 26–40. [Google Scholar] [CrossRef] [Green Version]
- van Eck, N.J.; Waltman, L. VOS: A New Method for Visualizing Similarities between Objects. In Advances in Data Analysis; Springer: Berlin/Heidelberg, Germany, 2007; pp. 299–306. ISBN 978-3-540-70980-0. [Google Scholar]
- M’Kendrick, A. Applications of Mathematics to Medical Problems. Proc. Edinb. Math. Soc. 1925, 44, 98–130. [Google Scholar] [CrossRef] [Green Version]
- DJ, S. Clinical Applications of Molecular Biology for Infectious Diseases. Clin. Biochem. Rev. 2006, 27, 39–51. [Google Scholar]
- Wren, J.D.; Kozak, K.Z.; Johnson, K.R.; Deakyne, S.J.; Schilling, L.M.; Dellavalle, R.P. A Survey of Perceived Contributions to Papers Based on Byline Position and Number of Authors. EMBO Rep. 2007, 8, 988–991. [Google Scholar] [CrossRef] [Green Version]
- Mattsson, P.; Sundberg, C.J.; Laget, P. Is Correspondence Reflected in the Author Position? A Bibliometric Study of the Relation between Corresponding Author and Byline Position. Scientometrics 2011, 87, 99–105. [Google Scholar] [CrossRef]
- Atangana, A. Modelling the Spread of COVID-19 with New Fractal-Fractional Operators: Can the Lockdown Save Mankind before Vac-Cination? Chaos Solitons Fractals 2020, 136, 109860. [Google Scholar] [CrossRef]
- Atangana, A. Application of Fractional Calculus to Epidemiology. In Fractional Dynamics; De Gruyter: Berlin, Germany, 2015; pp. 174–190. [Google Scholar]
- Zhang, J.; Litvinova, M.; Liang, Y.; Wang, Y.; Wang, W.; Zhao, S.; Wu, Q.; Merler, S.; Viboud, C.; Vespignani, A.; et al. Changes in Contact Patterns Shape the Dynamics of the COVID-19 Outbreak in China. Science 2020, 368, 1481–1486. [Google Scholar] [CrossRef] [PubMed]
- Akgül, A.; Ahmad, S.; Ullah, A.; Baleanu, D.; Akgül, E.K. A Novel Method for Analysing the Fractal Fractional Integrator Circuit. Alex. Eng. J. 2021, 60, 3721–3729. [Google Scholar] [CrossRef]
- Skums, P.; Kirpich, A.; Baykal, P.I.; Zelikovsky, A.; Chowell, G. Global Transmission Network of SARS-CoV-2: From Outbreak to Pandemic. MedRxiv 2022. [Google Scholar] [CrossRef]
- Nishiura, H. Mathematical and Statistical Estimation Approaches in Epidemiology. In Mathematical and Statistical Estimation Approaches in Epidemiology; Chowell, G., Hyman, J.M., Bettencourt, L.M., Castillo-Chavez, C., Eds.; Springer: Dordrecht, The Netherlands, 2009; pp. 103–121. [Google Scholar]
- Tracy, M.; Cerdá, M.; Keyes, K.M. Agent-Based Modeling in Public Health: Current Applications and Future Directions. Annu. Rev. Public Health 2018, 39, 77–94. [Google Scholar] [CrossRef]
- Shamil, M.; Farheen, F.; Ibtehaz, N.; Khan, I.M.; Rahman, M.S. An Agent-Based Modeling of COVID-19: Validation, Analysis, and Recommendations. Cogn. Comput. 2021, 1–12. [Google Scholar] [CrossRef]
- Truszkowska, A.; Behring, B.; Hasanyan, J.; Zino, L.; Butail, S.; Caroppo, E.; Jiang, Z.; Rizzo, A.; Porfiri, M. High-Resolution Agent-Based Modeling of COVID-19 Spreading in a Small Town. Adv. Theory Simul. 2021, 4, 2000277. [Google Scholar] [CrossRef]
- Rockett, R.J.; Arnott, A.; Lam, C.; Sadsad, R.; Timms, V.; Gray, K.A.; Eden, J.; Chang, S.; Gall, M.; Draper, J.; et al. Revealing COVID-19 Transmission in Australia by SARS-CoV-2 Genome Sequencing and Agent-Based Modeling. Nat. Med. 2020, 26, 398–1404. [Google Scholar] [CrossRef]
- Miller, E. 1-Global Burden of Disease: Part C. Potential and Existing Impact of Vaccines on Disease Epidemiology. In The Vaccine Book; Bloom, B.R., Lambert, P.-H., Eds.; Academic Press: San Diego, CA, USA, 2003; pp. 37–50. ISBN 978-0-12-107258-2. [Google Scholar]
- Domingo, E. Chapter 7—Long-Term Virus Evolution in Nature. In Virus as Populations, 2nd ed.; Domingo, E., Ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 225–261. ISBN 978-0-12-816331-3. Available online: https://www.sciencedirect.com/science/article/pii/B9780128163313000076 (accessed on 13 October 2022).
- Chaudhry, M.R.A. Coronavirus Infection Outbreak: Comparison with Other Viral Infection Outbreak. In Coronavirus Disease; Academic Press: Cambridge, MA, USA, 2022; pp. 47–57. [Google Scholar]
- Locatelli, I.; Trächsel, B.; Rousson, V. Estimating the Basic Reproduction Number for COVID-19 in Western Europe. PLoS ONE 2021, 16, e0248731. [Google Scholar] [CrossRef]
- Wang, Y.; You, X.Y.; Wang, Y.J.; Peng, L.P.; Du, Z.C.; Gilmour, S.; Yoneoka, D.; Gu, J.; Hao, C.; Hao, Y.T.; et al. Estimating the Basic Reproduction Number of COVID-19 in Wuhan, China. Zhonghua Liu Xing Bing Xue Za Zhi 2021, 41, 476–479. [Google Scholar]
- Sy, K.T.L.; White, L.F.; Nichols, B.E. Population Density and Basic Reproductive Number of COVID-19 across United States Counties. PLoS ONE 2021, 16, e0249271. [Google Scholar] [CrossRef]
- Mutuku, J.K.; Hou, W.C.; Chen, W.H. An Overview of Experiments and Numerical Simulations on Airflow and Aerosols Deposition in Human Airways and the Role of Bioaerosol Motion in COVID-19 Transmission. Aerosol Air Qual. Res. 2020, 20, 1172–1196. [Google Scholar] [CrossRef]
- Diwan, S.S.; Ravichandran, S.; Govindarajan, R.; Narasimha, R. Understanding Transmission Dynamics of COVID-19-Type Infections by Direct Numerical Simulations of Cough/Sneeze Flows. Trans. Indian Natl. Acad. Eng. 2020, 5, 255–261. [Google Scholar] [CrossRef]
- Annas, S.; Pratama, M.I.; Rifandi, M.; Sanusi, W.; Side, S. Stability Analysis and Numerical Simulation of SEIR Model for Pandemic COVID-19 Spread in Indonesia. Chaos Solitons Fractals 2020, 139, 110072. [Google Scholar] [CrossRef] [PubMed]
- Sharomi, O.; Malik, T. Optimal Control in Epidemiology. Ann. Oper. Res. 2017, 251, 55–71. [Google Scholar] [CrossRef]
- Shen, Z.H.; Chu, Y.M.; Khan, M.A.; Muhammad, S.; Al-Hartomy, O.A.; Higazy, M. Mathematical Modeling and Optimal Control of the COVID-19 Dynamic. Results Phys. 2021, 31, 105028. [Google Scholar] [CrossRef]
- Perkins, T.A.; España, G. Optimal Control of the COVID-19 Pandemic with Non-Pharmaceutical Interventions. Bull. Math. Biol. 2020, 82, 1–24. [Google Scholar] [CrossRef]
- Tsay, C.; Lejarza, F.; Stadtherr, M.A.; Baldea, M. Modeling, State Estimation, and Optimal Control for the US COVID-19 Outbreak. Sci. Rep. 2020, 10, 1–12. [Google Scholar] [CrossRef]
- Malik, A.; Alkholief, M.; Aldakheel, F.M.; Khan, A.A.; Ahmad, Z.; Kamal, W.; Gatasheh, M.K.; Alshamsan, A. Sensitivity Analysis of COVID-19 with Quarantine and Vaccination: A Fractal-Fractional Model. Alex. Eng. J. 2022, 61, 8859–8874. [Google Scholar] [CrossRef]
- Thabane, L.; Mbuagbaw, L.; Zhang, S.; Samaan, Z.; Marcucci, M.; Ye, C.; Thabane, M.; Giangregorio, L.; Denni, B.; Kosa, D.; et al. A Tutorial on Sensitivity Analyses in Clinical Trials: The What, Why, When and How. BMC Med. Res. Methodol. 2013, 13, 92. [Google Scholar] [CrossRef] [Green Version]
- Giachetto, G.; Mauvezin, J.; Babio, S.; Dabezies, L.; Calvo, C.; Mara, P. SARS-CoV-2 Infection in Children: Clinical Characteristics and Dynamics of SARS-CoV-2 Transmission in a Private Health Center. Uruguay. Rev. Chil. De Infectol. Organo De La Soc. Chil. De Infectol. 2021, 38, 500–505. [Google Scholar] [CrossRef]
- Levy, E.R.; Blumenthal, J.; Chiotos, K. Coronavirus Disease 2019 in Children. Curr. Opin. Infect. Dis. 2021, 34, 500–509. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.H.; Kim, H.W.; Kang, J.M.; Kim, D.H.; Cho, E.Y. Epidemiology and Clinical Features of Coronavirus Disease 2019 in Children. Clin. Exp. Pediatrics 2020, 63, 125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nikolopoulou, G.B.; Maltezou, H.C. COVID-19 in Children: Where Do We Stand? Arch. Med. Res. 2022, 53, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Zhen-Dong, Y.; Gao-Jun, Z.; Run-Ming, J.; Zhi-Sheng, L.; Zong-Qi, D.; Xiong, X.; Guo-Wei, S. Clinical and Transmission Dynamics Characteristics of 406 Children with Coronavirus Disease 2019 in China: A Review. J. Infect. 2020, 81, e11–e15. [Google Scholar] [CrossRef]
- Shiri, T.; Evans, M.; Talarico, C.A.; Morgan, A.R.; Mussad, M.; Buck, P.O.; McEwan, P.; Strain, W.D. Vaccinating Adolescents and Children Significantly Reduces COVID-19 Morbidity and Mortality across All Ages: A Population-Based Modeling Study Using the UK as an Example. Vaccines 2021, 9, 1180. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.T.; Mei, S.; Luo, S.; Leung, K.; Liu, D.; Lv, Q.; Liu, J.; Li, Y.; Prem, K.; Jit, M.; et al. A Global Assessment of the Impact of School Closure in Reducing COVID-19 Spread. Philos. Trans. R. Soc. A 2022, 380, 20210124. [Google Scholar] [CrossRef]
- Tanaka, M.L.; Marentes Ruiz, C.J.; Malhotra, S.; Turner, L.; Peralta, A.; Lee, Y.; Jumarang, J.; Perez, S.E.; Navarro, J.; Bard, J.D.; et al. SARS-CoV-2 Transmission Dynamics in Households with Children, Los Angeles, California. Front. Pediatrics 2022, 9, 1520. [Google Scholar] [CrossRef]
- Edelman, N.; Simon, P.; Cassell, J.; Kiss, I. Network Analysis of England’s Single Parent Household COVID-19 Control Policy Impact: A Proof-of-Concept Study. Epidemiol. Infect. 2022, 150, E104. [Google Scholar] [CrossRef]
- David, S.; Rahamim-Cohen, D.; Tasher, D.; Geva, A.; Azuri, J.; Ash, N. COVID-19 in Children and the Effect of Schools Reopening on Potential Transmission to Household Members. Acta Paediatr. 2021, 110, 2567–2573. [Google Scholar] [CrossRef]
- CDC. Principles of Epidemiology in Public Health Practice; US Department of Health and Human Services: Atlanta, GA, USA, 2012.
- Porta, M. A Dictionary of Epidemiology; Porta, M., Ed.; Oxford University Press: Oxford, UK, 2014. [Google Scholar]
- Gräf, T.; Bello, G.; Naveca, F.G.; Gomes, M.; Cardoso, V.L.O.; da Silva, A.F.; Dezordi, F.Z.; dos Santos, M.C.; Santos, K.C.D.O.; Batista, L.R.; et al. Phylogenetic-Based Inference Reveals Distinct Transmission Dynamics of SARS-CoV-2 Lineages Gamma and P.2 in Brazil. iScience 2022, 4, 104156. [Google Scholar] [CrossRef]
- Raghwani, J.; du Plessis, L.; McCrone, J.T.; Hill, S.C.; Parag, K.V.; Thézé, J.; Kumar, D.; Puvar, A.; Pandit, R.; Pybus, O.G.; et al. Genomic Epidemiology of Early SARS-CoV-2 Transmission Dynamics, Gujarat, India. Emerg. Infect. Dis. 2022, 28, 751. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Cui, S.; Rui, J.; Zhao, Z.; Deng, B.; Liu, C.; Li, K.; Wang, Y.; Yang, Z.; Li, Q.; et al. Epidemiological Characteristics and Transmissibility for SARS-CoV-2 of Population Level and Cluster Level in a Chinese City. Front. Public Health 2021, 9, 799536. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Dong, N.; Chen, S. Advanced Genetic Methodologies in Tracking Evolution and Spread of SARS-CoV-2. In Humana; Springer: New York, NY, USA, 2022; ISBN 978-1-07-162110-3. [Google Scholar]
- Flores-Alanis, A.; Cruz-Rangel, A.; Rodríguez-Gómez, F.; González, J.; Torres-Guerrero, C.; Delgado, G.; Cravioto, A.; Morales-Espinosa, R. Molecular Epidemiology Surveillance of SARS-CoV-2: Mutations and Genetic Diversity One Year after Emerging. Pathogens 2021, 10, 184. [Google Scholar] [CrossRef]
- Vilar, S.; Isom, D.G. One Year of SARS-CoV-2: How Much Has the Virus Changed? Biology 2021, 10, 91. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Xiao, T.; Cai, Y.; Chen, B. Structure of SARS-CoV-2 Spike Protein. COVIRO 2021, 50, 173–182. [Google Scholar] [CrossRef] [PubMed]
- Arya, R.; Kumari, S.; Pandey, B.; Mistry, H.; Bihani, S.C.; Das, A.; Prashar, V.; Gupta, G.D.; Panicker, L.; Kumar, M. Structural Insights into SARS-CoV-2 Proteins. J. Mol. Biol. 2021, 433, 166725. [Google Scholar] [CrossRef] [PubMed]
- Naqvi, A.A.T.; Fatima, K.; Mohammad, T.; Fatima, U.; Singh, I.K.; Singh, A.; Atif, S.M.; Hariprasad, G.; Hasan, G.M.; Hassan, M.I. Insights into SARS-CoV-2 Genome, Structure, Evolution, Pathogenesis and Therapies: Structural Genomics Approach. Biochim. Biophys. Acta Mol. Basis Dis. 2020, 1866, 165878. [Google Scholar] [CrossRef]
- Kumar, S.; Saxena, S.K. Structural and Molecular Perspectives of SARS-CoV-2. Methods 2021, 195, 23–28. [Google Scholar] [CrossRef]
- CDC. Centers for Disease Control and Prevention. Available online: https://www.cdc.gov/nonpharmaceutical-interventions/index.html (accessed on 23 July 2022).
- MacIntyre, C.R. Case Isolation, Contact Tracing, and Physical Distancing Are Pillars of COVID-19 Pandemic Control, Not Optional Choices. Lancet Infect. Dis. 2020, 20, 1105–1106. [Google Scholar] [CrossRef]
- CDC. Centers for Disease Control and Prevention. Available online: https://www.cdc.gov/coronavirus/2019-ncov/your-health/quarantine-isolation.html?CDC_AA_refVal=https%3A%2F%2Fwww.cdc.gov%2Fcoronavirus%2F2019-ncov%2Fif-you-are-sick%2Fquarantine.html#iso (accessed on 23 July 2022).
- Cetron, M.; Maloney, S.; Koppaka, R.; Simone, P. Isolation and Quarantine: Containment Strategies for SARS 2003. In Learning from SARS: Preparing for the Next Disease Outbreak; Hardcopy Version at National Academies Press: Washington, DC, USA, 2004; pp. 71–83. [Google Scholar]
- Wilder-Smith, A.; Freedman, D.O. Isolation, Quarantine, Social Distancing and Community Containment: Pivotal Role for Old-Style Public Health Measures in the Novel Coronavirus (2019-NCoV) outbreak. J. Travel Med. 2020, 27, taaa020. [Google Scholar] [CrossRef] [Green Version]
- Hellewell, J.; Abbott, S.; Gimma, A.; Bosse, N.I.; Jarvis, C.I.; Russell, T.W.; Munday, J.D.; Kucharski, A.J.; Edmunds, W.J.; Funk, S.; et al. Feasibility of Controlling COVID-19 Outbreaks by Isolation of Cases and Contacts. Lancet. Glob. Health 2020, 8, e488–e496. [Google Scholar] [CrossRef] [Green Version]
- Memon, Z.; Qureshi, S.; Memon, B.R. Assessing the Role of Quarantine and Isolation as Control Strategies for COVID-19 Outbreak: A Case Study. Chaos Solitons Fractals 2021, 144, 110655. [Google Scholar] [CrossRef] [PubMed]
- Zeb, A.; Alzahrani, E.; Erturk, V.S.; Zaman, G. Mathematical Model for Coronavirus Disease 2019 (COVID-19) Containing Isolation Class. BioMed Res. Int. 2020, 2020, 3452402. [Google Scholar] [CrossRef]
- Tang, B.; Xia, F.; Tang, S.; Bragazzi, N.L.; Li, Q.; Sun, X.; Liang, J.; Xiao, Y.; Wu, J. The Effectiveness of Quarantine and Isolation Determine the Trend of the COVID-19 Epidemics in the Final Phase of the Current Outbreak in China. Int. J. Infect. Dis. 2020, 95, 288–293. [Google Scholar] [CrossRef] [PubMed]
- Sjödin, H.; Wilder-Smith, A.; Osman, S.; Farooq, Z.; Rocklöv, J. Only Strict Quarantine Measures Can Curb the Coronavirus Disease (COVID-19) Outbreak in Italy, 2020. Eurosurveillance 2020, 25, 2000280. [Google Scholar] [CrossRef]
- Saidi, O.; Malouche, D.; Saksena, P.; Arfaoui, L.; Talmoudi, K.; Hchaichi, A.; Bouguerra, H.; Romdhane, H.B.; Hsairi, M.; Ouhichi, R.; et al. Impact of Contact Tracing, Respect of Isolation, and Lockdown in Reducing the Number of Cases Infected with COVID-19. Case Study: Tunisia’s Response from March 22 to May 4, 2020. IJID Off. Publ. Int. Soc. Infect. Dis. 2021, 113, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Vecino-Ortiz, A.I.; Villanueva Congote, J.; Zapata Bedoya, S.; Cucunuba, Z.M. Impact of Contact Tracing on COVID-19 Mortality: An Impact Evaluation Using Surveillance Data from Colombia. PLoS ONE 2021, 6, e0246987. [Google Scholar] [CrossRef]
- Malheiro, R.; Figueiredo, A.; Magalhães, J.; Teixeira, P.; Moita, I.; Moutinho, M.; Mansilha, R.; Gonçalves, L.; Ferreira, E. Effectiveness of Contact Tracing and Quarantine on Reducing COVID-19 Transmission: A Retrospective Cohort Study. Public Health 2020, 189, 54–59. [Google Scholar] [CrossRef]
- Willem, L.; Abrams, S.; Libin, P.J.K.; Coletti, P.; Kuylen, E.; Petrof, O.; Møgelmose, S.; Wambua, J.; Herzog, S.A.; Faes, C.; et al. The Impact of Contact Tracing and Household Bubbles on Deconfinement Strategies for COVID-19. Nat. Commun. 2021, 12, 1–9. [Google Scholar] [CrossRef]
- Thunström, L.; Newbold, S.C.; Finnoff, D.; Ashworth, M.; Shogren, J.F. The Benefits and Costs of Using Social Distancing to Flatten the Curve for COVID-19. J. Benefit-Cost Anal. 2020, 11, 179–195. [Google Scholar] [CrossRef]
- Rachah, A. Modelling the Effect of Social Distancing on the Spread of COVID-19. Int. J. Appl. Math. 2022, 35, 331. [Google Scholar] [CrossRef]
- Glogowsky, U.; Hansen, E.; Schächtele, S. How Effective Are Social Distancing Policies? Evidence on the Fight against COVID-19. PLoS ONE 2021, 16, e0257363. [Google Scholar] [CrossRef] [PubMed]
- Bhatnagar, P.; Kaura, S.; Rajan, S. Predictive Models and Analysis of Peak and Flatten Curve Values of CoVID-19 Cases in India. Evergr. Jt. J. Nov. Carbon Resour. Sci. Green Asia Strategy 2020, 7, 458–467. [Google Scholar] [CrossRef]
- Ghosh, A.; Nundy, S.; Mallick, T.K. How India Is Dealing with COVID-19 Pandemic. Sens. Int. 2020, 1, 100021. [Google Scholar] [CrossRef]
- Kumar, V.M.; Pandi-Perumal, S.R.; Trakht, I.; Thyagarajan, S.P. Strategy for COVID-19 Vaccination in India: The Country with the Second Highest Population and Number of Cases. NPJ Vaccines 2020, 6, 1–7. [Google Scholar] [CrossRef]
- Kumar, M.; Patel, A.K.; Shah, A.V.; Raval, J.; Rajpara, N.; Joshi, M.; Joshi, C.G. First Proof of the Capability of Wastewater Surveillance for COVID-19 in India through Detection of Genetic Material of SARS-CoV-2. Sci. Total Environ. 2020, 746, 141326. [Google Scholar] [CrossRef]
- Mlcochova, P.; Kemp, S.A.; Dhar, M.S.; Papa, G.; Meng, B.; Ferreira, I.A.T.M.; Datir, R.; Collier, D.A.; Albecka, A.; Singh, S.; et al. SARS-CoV-2 B.1.617.2 Delta Variant Replication and Immune Evasion. Nature 2021, 599, 114–119. [Google Scholar] [CrossRef]
- Bian, L.; Gao, Q.; Gao, F.; Wang, Q.; He, Q.; Wu, X.; Mao, Q.; Xu, M.; Liang, Z. Impact of the Delta Variant on Vaccine Efficacy and Response Strategies. Expert Rev. Vaccines 2021, 20, 1201–1209. [Google Scholar] [CrossRef]
- Christensen, P.A.; Olsen, R.J.; Long, S.W.; Subedi, S.; Davis, J.J.; Hodjat, P.; Walley, D.R.; Kinskey, J.C.; Gollihar, J. Delta Variants of SARS-CoV-2 Cause Significantly Increased Vaccine Breakthrough COVID-19 Cases in Houston, Texas. Am. J. Pathol. 2022, 192, 320–331. [Google Scholar] [CrossRef]
- Shoukat, A.; Vilches, T.N.; Moghadas, S.M.; Sah, P.; Schneider, E.C.; Shaff, J.; Ternier, A.; Chokshi, D.A.; Galvani, A.P. Lives Saved and Hospitalizations Averted by COVID-19 Vaccination in New York City: A Modeling Study. Lancet Reg. Health Am. 2022, 5, 100085. [Google Scholar] [CrossRef]
- Head, J.R.; Andrejko, K.L.; Remais, J.V. Model-Based Assessment of SARS-CoV-2 Delta Variant Transmission Dynamics within Partially Vaccinated K-12 School Populations. Lancet Reg. Health Am. 2022, 5, 100133. [Google Scholar] [CrossRef]
- Hwang, H.; Lim, J.S.; Song, S.A.; Achangwa, C.; Sim, W.; Kim, G.; Ryu, S. Transmission Dynamics of the Delta Variant of SARS-CoV-2 Infections in South Korea. J. Infect. Dis. 2022, 225, 793–799. [Google Scholar] [CrossRef] [PubMed]
- Hart, W.S.; Miller, E.; Andrews, N.J.; Waight, P.; Maini, P.K.; Funk, S.; Thompson, R.N. Generation Time of the Alpha and Delta SARS-CoV-2 Variants: An Epidemiological Analysis. Lancet Infect. Dis. 2022, 22, 603–610. [Google Scholar] [CrossRef]
- Kang, M.; Xin, H.; Yuan, J.; Ali, S.T.; Liang, Z.; Zhang, J.; Hu, T.; Lau, E.H.; Zhang, Y.; Zhang, M.; et al. Transmission Dynamics and Epidemiological Characteristics of SARS-CoV-2 Delta Variant Infections in Guangdong, China, May to June 2021. Eurosurveillance 2022, 27, 2100815. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Wei, L.; Niu, P. The Novel Coronavirus Outbreak in Wuhan, China. Glob. Health Res. Policy 2020, 5, 6. [Google Scholar] [CrossRef]
- Graham-Harrison, E.; Kuo, L. China’s Coronavirus Lockdown Strategy: Brutal but Effective. Guardian 2020, 3, 44–49. [Google Scholar]
- Feng, E. China Is Imposing Strict Lockdowns To Contain New COVID Outbreaks. But There’s A Cost; NPR: Washington, DC, USA, 2021. [Google Scholar]
- Okonkwo, N.E.; Aguwa, U.T.; Jang, M.; Barré, I.A.; Page, K.R.; Sullivan, P.S.; Beyrer, C.; Baral, S. COVID-19 and the US Response: Accelerating Health Inequities. BMJ Evid. Based Med. 2021, 26, 176–179. [Google Scholar] [CrossRef]
- Krouse, H.J. COVID-19 and the Widening Gap in Health Inequity. Otolaryngol. Head Neck Surg. 2020, 163, 65–66. [Google Scholar] [CrossRef]
- Gu, F.; Wu, Y.; Hu, X.; Guo, J.; Yang, X.; Zhao, X. The Role of Conspiracy Theories in the Spread of COVID-19 across the United States. Int. J. Environ. Res. Public Health 2021, 18, 3843. [Google Scholar] [CrossRef]
- Enders, A.M.; Uscinski, J.E.; Klofstad, C.; Stoler, J. The Different Forms of COVID-19 Misinformation and Their Consequences. Harv. Kennedy Sch. Misinf. Rev. 2020, 1, 1–21. [Google Scholar] [CrossRef]
- Uscinski, J.E.; Enders, A.M.; Klofstad, C.; Seelig, M.; Funchion, J.; Everett, C.; Wuchty, S.; Premaratne, K.; Murthi, M. Why Do People Believe COVID-19 Conspiracy Theories? Harv. Kennedy Sch. Misinf. Rev. 2020, 1, 1–12. [Google Scholar] [CrossRef]
- US Census Bureau Current Population. Available online: https://www.census.gov/popclock/print.php?component=counter (accessed on 14 October 2022).
- Kasthuri, A. Challenges to Healthcare in India-The Five A’s. Indian J. Community Med. 2018, 43, 141–143. [Google Scholar] [CrossRef] [PubMed]
- Baqal, O.J.; Farouk, A.F. India’s Frantic Fight Against COVID-19: Rescuing a Broken Healthcare System by Adopting a “Doctor and Patient First” Approach. Pak. J. Med. Sci. 2022, 38, 1064–1066. [Google Scholar] [CrossRef] [PubMed]
- Daria, S.; Islam, M.d.R. The Use of Cow Dung and Urine to Cure COVID-19 in India: A Public Health Concern. Int. J. Health Plan. Manag. 2021, 36, 1950–1952. [Google Scholar] [CrossRef]
- India’s Media Must Promote Science, Not Superstition, in COVID-19 Fight. Available online: https://asia.nikkei.com/Opinion/India-s-media-must-promote-science-not-superstition-in-COVID-19-fight (accessed on 14 October 2022).
- Goswami, G.; Labib, T. Bibliographic Dataset for Modeling COVID-19 Transmission Dynamics. 2022; submitted. [Google Scholar] [CrossRef]
Types of Document | Number |
---|---|
Article | 933 |
Book Chapter | 17 |
Conference Paper | 50 |
Conference Review | 4 |
Editorial | 2 |
Erratum | 5 |
Letter | 10 |
Note | 11 |
Review | 70 |
Short survey | 1 |
Total | 1103 |
Subject Area | Number of Publications * | Percentage of Publications |
---|---|---|
Medicine | 532 | 28% |
Mathematics | 226 | 12% |
Biochemistry, Genetics, and Molecular Biology | 143 | 8% |
Engineering | 130 | 7% |
Immunology and Microbiology | 130 | 7% |
Computer Science | 116 | 6% |
Multidisciplinary | 101 | 5% |
Physics and Astronomy | 99 | 5% |
Environmental Science | 75 | 4% |
Agricultural and Biological Sciences | 58 | 3% |
Others | 276 | 15% |
Rank | Sources | Number of Articles | H-Index * | G-Index * |
---|---|---|---|---|
1 | Scientific Reports | 30 | 8 | 14 |
2 | PLOS One | 27 | 8 | 15 |
3 | Chaos Solitons And Fractals | 23 | 15 | 20 |
4 | Results In Physics | 23 | 6 | 12 |
5 | International Journal Of Environmental Research And Public Health | 22 | 8 | 14 |
6 | Infectious Disease Modelling | 19 | 8 | 15 |
7 | International Journal Of Infectious Diseases | 19 | 8 | 13 |
8 | Nature Communications | 16 | 9 | 14 |
9 | Frontiers in Public Health | 14 | 3 | 8 |
10 | BMC Infectious Diseases | 12 | 5 | 8 |
Rank | Authors | Title | Total Citations | Source |
---|---|---|---|---|
1. | Chinazzi M | The effect of travel restrictions on the spread of the 2019 novel coronavirus (COVID-19) outbreak | 1558 | Science |
2. | Kissler Sm | Projecting the transmission dynamics of SARS-CoV-2 through the post-pandemic period | 1289 | Science |
3. | Hellewell J | Feasibility of controlling COVID-19 outbreaks by isolation of cases and contacts | 1274 | Lancet Global Health |
4. | Kucharski Aj | Early dynamics of transmission and control of COVID-19: a mathematical modelling study | 1209 | Lancet Infectious Diseases |
5. | Prem K | The effect of control strategies to reduce social mixing on outcomes of the COVID-19 epidemic in Wuhan, China: a modelling study | 1055 | Lancet Public Health |
6. | Davies Ng | Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England | 854 | Science |
7. | Wu Jt | Estimating the clinical severity of COVID-19 from the transmission dynamics in Wuhan, China | 646 | Nature Medicine |
8. | Cowling Bj | Impact assessment of non-pharmaceutical interventions against coronavirus disease 2019 and influenza in Hong Kong: an observational study | 524 | Lancet Public Health |
9. | Gatto M | Spread and dynamics of the COVID-19 epidemic in Italy: Effects of emergency containment measures | 504 | PROC NATL ACAD SCI U S A |
10. | Lavezzo E | Suppression of a SARS-CoV-2 outbreak in the Italian municipality of Vo’ | 502 | Nature |
Rank | Authors | Number of Articles | Articles Fractionalized | H-Index * |
---|---|---|---|---|
1 | Wang X | 26 | 3.25 | 8 |
2 | Li Y | 18 | 2.29 | 10 |
3 | Wang J | 18 | 4.19 | 5 |
4 | Wang Y | 18 | 3.22 | 7 |
5 | Xiao Y | 17 | 3.17 | 7 |
6 | Shah K | 16 | 3.55 | 11 |
7 | Wu J | 16 | 1.97 | 6 |
8 | Cowling Bj | 15 | 1.82 | 9 |
9 | Jit M | 15 | 0.95 | 8 |
10 | Liu Y | 14 | 1.74 | 7 |
Cluster 1 (Red) | Cluster 2 (Green) | Cluster 3 (Deep Blue) | Cluster 4 (Yellow) | Cluster 5 (Purple) | Cluster 6 (Sky Blue) |
---|---|---|---|---|---|
Tools for Studying Transmission dynamics | Study of Children in COVID-19 | Epidemiology | Non-pharmaceutical interventions to prevent COVID-19 | Study of delta variant | Outbreak of COVID-19 pandemic |
agent-based model | children | compartmental models | contact tracing | delta variant | outbreak |
basic reproduction number | China | COVID-19 pandemic | isolation | India | pandemic |
COVID-19 transmission dynamics | COVID-19 | effective reproduction number | modelling | reproduction number | |
epidemic model | COVID-19 disease | epidemiology | non-pharmaceutical intervention | serial interval | |
mathematical models | epidemics | infectious diseases | quarantine | vaccination | |
numerical simulations | seir model | mathematical modelling | social distancing | ||
optimal control | transmission | public health | |||
parameter estimation | transmission models | transmission dynamics | |||
sensitivity analysis | vaccination | ||||
stability | |||||
stability analysis | |||||
quarantine | |||||
social distancing |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goswami, G.G.; Labib, T. Modeling COVID-19 Transmission Dynamics: A Bibliometric Review. Int. J. Environ. Res. Public Health 2022, 19, 14143. https://doi.org/10.3390/ijerph192114143
Goswami GG, Labib T. Modeling COVID-19 Transmission Dynamics: A Bibliometric Review. International Journal of Environmental Research and Public Health. 2022; 19(21):14143. https://doi.org/10.3390/ijerph192114143
Chicago/Turabian StyleGoswami, Gour Gobinda, and Tahmid Labib. 2022. "Modeling COVID-19 Transmission Dynamics: A Bibliometric Review" International Journal of Environmental Research and Public Health 19, no. 21: 14143. https://doi.org/10.3390/ijerph192114143
APA StyleGoswami, G. G., & Labib, T. (2022). Modeling COVID-19 Transmission Dynamics: A Bibliometric Review. International Journal of Environmental Research and Public Health, 19(21), 14143. https://doi.org/10.3390/ijerph192114143