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Abstract: At present, landslide susceptibility assessment (LSA) based on landslide characteristics in
different areas is an effective measure for landslide management. Nujiang Prefecture in China has
steep mountain slopes, a large amount of water and loose soil, and frequent landslide disasters, which
have caused a large number of casualties and economic losses. This paper aims to understand the
characteristics and formation mechanism of regional landslides through the evaluation of landslide
susceptibility so as to provide relevant references and suggestions for spatial planning and disaster
prevention and mitigation in Nujiang Prefecture. Based on the grid cell, this study selected 10 param-
eters, namely elevation, slope, aspect, lithology, proximity to faults, proximity to road, proximity to
rivers, normalized difference vegetation index (NDVI), land-use type, and precipitation. Support
vector machine (SVM), certainty factor method (CF), and deterministic coefficient method–support
vector machine (CF-SVM) were used to evaluate the landslide susceptibility in Nujiang Prefecture.
According to these three models, the study area was divided into five landslide susceptibility grades,
including extremely high susceptibility, high susceptibility, moderate susceptibility, low susceptibility,
and very low susceptibility. Receiver operating characteristic curve (ROC) was applied to verify the
accuracy of the model. The results showed that CF model (ROC = 0.865), SVM model (ROC = 0.892),
CF-SVM model (ROC = 0.925), and CF-SVM model showed better performance. Therefore, CF-SVM
model results were selected for analysis. The study found that the characteristics of high and ex-
tremely high landslide-prone areas in Nujiang Prefecture have the following characteristics: intense
human activities, large density of buildings and arable land, rich water resources, good economic
development, perfect transportation facilities, and complex topography and landform. In addition,
there is a finding inconsistent with our common sense that the distribution of landslide disasters
in the study area does not decrease with the increase of NDVI value. This is because the Nujiang
River basin is a high mountain canyon area with low rock strength, barren soil, and underdeveloped
vegetation and root system. In an area with large slope, the probability of landslide disaster will
increase with the increase of NDVI. The CF-SVM coupling model adopted in this study is a good first
attempt in the study of landslide hazard susceptibility in Nujiang Prefecture.

Keywords: GIS; landslide susceptibility; certainty factor; support vector machine; model coupling;
Nujiang Prefecture

1. Introduction

Landslide refers to the natural phenomenon in which the soil or rock mass on the slope
slides down the slope as a whole or in a scattered manner along a certain weak surface
or zone, caused by various natural processes and human activities under the action of
gravity [1–6]. Whether caused by natural factors or human activities, landslides cause a
great deal of economic losses and loss of life every year [7–9]. Extreme natural events such
as landslides cannot be foreseen, but their risk can be reduced by taking precautions and
early warning measures. Landslide susceptibility assessment aims to predict and analyze
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the spatial and temporal distribution and occurrence probability of landslide hazard [10]. In
recent decades, the most appropriate way to prevent landslide events has been to conduct
spatial assessment of landslide susceptibility [11,12]. Currently, a series of studies around
the world has assessed landslide susceptibility in the context of multiple influencing factors.
The results can provide an important decision-making basis for landslide hazard risk
management, territorial space planning and layout, and landslide monitoring [13].

Major advances in computing power, remote sensing, and geographic information
systems (GIS) have facilitated the development of landslide susceptibility maps. Various
landslide susceptibility mapping models and methods have been proposed, including:
(1) knowledge-based approaches such as analytic hierarchy process [14] and expert scoring
method [15]; (2) data-driven approaches such as information content method [16], frequency
ratio [17], certainty factor [18], index of entropy [19], and logistic regression analysis [20];
and (3) machine-learning methods (ML), such as decision tree [21,22], artificial neural
network (ANN) [23], support vector machine (SVM) [24], and random forest [25]. The
combination of GIS with data-driven methods or machine learning methods (ML) has
been widely used for landslide susceptibility assessment using spatial and non-spatial
data [17,23–25]. For example, Cheng, Y. et al. [26] used analytic hierarchy process to study
highway tunnel landslides. Chen, F. et al. [16] used the information model for spatial
susceptibility prediction and analysis of landslides. Ali, S. et al. [27] used GIS technology
to draw the landslide susceptibility map along the China–Pakistan Economic Corridor
(Karakoram Highway). Klose et al. [28] assessed landslide susceptibility in northwestern
Central Europe using a landslide geographic information database and bivariate statistical
analysis, while Niu, R.Q. et al. [29] performed a susceptibility evaluation using ML, and
Wu et al. [30] used decision tree and support vector machine to evaluate the landslide
susceptibility of Guojiaba Town in the Three Gorges Reservoir Area, China. Most of
the above studies applied multiple single models to landslide susceptibility and did not
consider coupling studies of different types of models.

A total of 6181 geological disasters occurred in China, including 4220 landslides,
accounting for 68.27 percent of the total according to the 2019 National Geological Disas-
ter Bulletin. Thus, we can see the seriousness of landslide geological disasters. Nujiang
Prefecture in China is a key area for the prevention and control of landslide geological
disasters. Because of its complex terrain, unique climate, and fragile ecological envi-
ronment, landslides occur frequently, seriously affecting the local economic and social
development [31,32]. At present, it is urgent to evaluate the susceptibility of landslide
disasters in Nujiang Prefecture. Landslide susceptibility assessment (LSA) is a typical non-
engineering measure and an effective method to mitigate, prevent, and manage landslide
damage [8,33–38]. In this research area, some experts have carried out landslide disaster
research. For example, He, J. et al. [39] analyzed landslide inducing factors in Lushui
County, Nujiang Prefecture, from the aspects of stratigraphic lithology, geological structure,
earthquake, and rainfall. Tan, S.C. et al. [40] designed and established the spatial database
for meteorological forecasting and the early warning of slope geological disasters, which
solved the limitation of the traditional database, which could not effectively manage spatial
data. Hu, J. et al. [41] optimized the critical rainfall, critical rain intensity and prone zoning
of precipitation-type geological disasters in Yunnan Province. Li, Y.M. et al. [42] used the CF
to analyze the susceptibility of slope geological disasters, analyzed the influence degree of
each factor on the occurrence of slope geological disasters through the susceptibility index,
and drew the zoning map of slope geological disaster susceptibility. Yao, Y.W. et al. [43]
used the distribution of geological disaster points to analyze the characteristics of geological
disasters in Lanping County, Nujiang Prefecture, and put forward countermeasures for
disaster prevention and control. Although some people have studied the landslide disaster
in Nujiang Prefecture, there are few studies on its susceptibility carried out by using models.
In the global scale, few people use mathematical statistics model and machine learning
model coupling to study the landslide susceptibility.
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At present, scholars use a variety of models to study landslide susceptibility. Among
these models, CF and SVM models have been widely used and praised. Theoretically, CF is
a mathematical statistical model, which has advantages in calculating CF values of various
levels of influence factors. SVM is a quantitative and objective model obtained by various
numerical calculations, which has great advantages in the study of small sample data.

The research shows that the coupling model can synthesize the advantages of each
model and make up for the shortcomings of each model. In terms of evaluation accuracy
and success rate, the model has obvious advantages over the single model. The hybrid
application of the model can significantly improve the accuracy and reliability of the results.
Therefore, this study selected two single models (CF model and SVM model) and one mixed
model (CF-SVM) to assess landslide susceptibility through the analysis of landslide data
in Nujiang Prefecture. The advantages and disadvantages of the deterministic coefficient
model and support vector machine are complementary, which effectively improves the
prediction accuracy of the model. This study provides a reference for the selection of
regional landslide susceptibility evaluation model under similar geological conditions.
It will help protect people’s lives and property, reduce disaster losses, and improve the
efficiency of disaster prevention and mitigation. It can also provide scientific basis for
government departments to formulate disaster prevention and mitigation measures, which
has important application value.

2. Materials and Methods
2.1. Overview of the Study Area and Data Sources
2.1.1. Overview of the Study Area

In this study, Nujiang Prefecture was selected as the study area. Nujiang Prefecture
is located in the longitudinal ridge and valley area of the Hengduan Mountains in the
northwest of Yunnan Province. It is located at 25◦33′–28◦23′ E and 98◦09′–99◦39′ N. It
includes the Lushui, Fugong, Gongshan, and Lanping Counties. The total area of the four
counties is 14,703 km2 (Figure 1). Nujiang Prefecture is located in a unique plateau and
mountainous environment, which is a typical deep-cutting zone of alpine valleys. More
than 40 mountain peaks exceed 4000 m. It includes four mountain ranges and three rivers:
Lika Mountain, Dulong River, Gaoligong Mountain, Nujiang River, Biluo Snow Mountain,
Lancang River, and Yunling Mountain. The three rivers slope across the entire territory
from north to south, forming a typical alpine and canyon landform. Due to plate collision
and subduction, a series of deep fault zones were formed in Nujiang Prefecture. Affected
by erosion and gravity, the rock mass is broken, loose materials are piled up, and the steep
slope reclamation phenomenon in Nujiang Prefecture is obvious, leading to serious soil
erosion and frequent geological disasters. Nujiang Prefecture has a subtropical mountain
monsoon climate, and its valley areas present subtropical humid climate characteristics.
The mountain ranges are alternately affected by the Qinghai–Tibet Plateau and the Bay of
Bengal air currents, coupled with the large topographical and vertical climate differences.

2.2. Models

The deterministic coefficient model can determine landslide susceptibility based on
the relationship between past landslide points and hazard-inducing factors, that is, quanti-
tatively reflecting the susceptibility interval of a certain hazard-inducing factor. However,
it is impossible to reflect the contribution of this factor in landslide occurrence as a whole.
In contrast, the SVM model is not prone to overfitting in case of limited samples, yields
good performance in the classification process, and can characterize the degree of contri-
bution of the evaluation factors. Therefore, coupling the two models allows utilizing the
advantages of both; that is, the deterministic coefficient model is used for calculating the
susceptibility of different classes between factors for classification of landslide data and
non-landslide data, and the SVM model is used for training and prediction to improve the
evaluation accuracy.
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2.2.1. Data Sources

Table 1 lists the landslide conditioning factors used in this study, together with their
sources and scales. Among them, the data of historical disaster points were provided by
the project team employed in this study, with a total of 561 landslide disaster points.

Table 1. Source and scales for the landslide conditioning factors used in this study.

Conditioning Factor Source Scale Classification Method

Elevation DEM was derived from ASTER GDEM data of the
Geospatial Data Cloud (http://www.gscloud.cn/

(accessed on 25 January 2022).)
30 × 30 m

Manual
Aspect Manual
Slope Manual

Lithology Geological map provided by Nujiang State Land and
Land Bureau.

1:250,000
Lithological units

Proximity to faults Equal interval
Proximity to rivers The National Basic Geographic Information Database

(https://wwwngcc.cn/ (accessed on 12 November 2021).)
– Equal interval

Proximity to road – Equal interval

NDVI
The normalized difference vegetation index (NDVI) data

were obtained from NASA (https://www.nasa.gov/
(accessed on 5 November 2021).)

250 × 250 m Natural breaks

Precipitation The meteorological data were procured from the Nujiang
Meteorological Bureau and Water Bureau. – Natural breaks

Land-use type

The land-use type data were carried out based on the
Landsat 8 OLI/TIRS data of Geospatial Data Cloud

(http://www.gscloud.cn/
(accessed on 25 December 2020).)

The
interpretation

accuracy reached
94.17%.

Land-cover unit

http://www.gscloud.cn/
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2.2.2. Deterministic Coefficient Model

The certainty factor method (CF) is a probability function belonging to the category of
bivariate statistical analysis and can be used to analyze the susceptibility of disaster events
according to various factors.

CF =

{ PPa−PPs
PPa (1−PPs) , PPa > PPs

PPa−PPs
PPs (1−PPa) , PPa < PPs

(1)

PPa is the probability of geological disasters occurring in the evaluation factor A, and
when applied, it is the ratio of the number of geological disasters existing in the evaluation
factor A to the area of the factor A. PPs is the prior probability of geological disasters
occurring in the whole study area, that is, the ratio of the number of geological disasters in
the whole study area to the total study area. The variation range of CF is [−1, 1], and the
positive value represents a high certainty of geological disaster occurrence. The negative
value represents a low certainty of geological disaster occurrence. When the calculated
result is close to 0, it means that the factor cannot determine whether the given area is
prone to geological disasters.

2.2.3. SVM Model

Support vector machine (SVM) is a binary classification model, which is a classification
prediction model developed on the basis of statistical principles [9]. This method is widely
used in various fields. SVM is more reasonable and effective than other learning methods
in solving small sample, high dimensional, and non-linear problems. The basic principle
is to find an optimal hyperplane, which can not only correctly divide the two types of
sample points but also maximize the geometric interval from the nearest sample point
to the plane. SVM is suitable for small samples and nonlinear and high-dimensional
space problems, which can highlight its unique advantages and can be combined with
other machine learning to jointly analyze problems. In this study, the training set is set
as T = {(x1, y1)(x2,y2), . . . , (xn, yn)}, where x is the input vector, and x1 ∼ xn represents
elevation, aspect, slope, lithology, proximity to faults, proximity to road, proximity to river,
NDVI, precipitation, and land-use type, respectively. In the formula, y ∈ (0, 1), 1 and
0 denote landslide and non-landslide, respectively. The goal of SVM classification is to
find an optimal separating hyperplane that can be distinguished between landslides and
non-landslides in the above training set. The equation of the separating hyperplane is:
w ∗ x + b = 0, and w is called the vector, and b is called the intercept. The prediction
accuracy of SVM depends on the choice of kernel function. There are four types of kernel
functions commonly used: linear kernel function, polynomial kernel function, radial basis
kernel function, and Sigmoid kernel function. RBF is widely used in landslide susceptibility
prediction. Its advantages are its fewer parameters, strong flexibility, and good performance.
Therefore, this study adopts RBF kernel function to build support vector machine model,
as shown in Formula (2).

K (xix) = exp(−γ||xi − x||)2 (2)

where x is the input vector, and γ is the gamma parameter.

2.2.4. CF-SVM Model

When selecting training samples, most studies often take a certain number of landslide
data as samples for training and the rest as test samples [34]. These research methods only
consider the contribution of each evaluation factor to landslide formation, that is, only
analyze the corresponding relationship between evaluation factor and sample without
analyzing the stable slope (negative sample), so the selection of sample is often one-sided,
and it is difficult to give an in-depth explanation of the mechanism of landslide formation.
On the basis of summarizing relevant research, this study adopts the method of positive
sample and negative sample for sample selection. The specific process is as follows: Firstly,
the CF model is used to partition landslide susceptibility, and then, non-landslide samples
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are selected from the very-low- and low-susceptibility areas, making the overall sample
more reasonable and more authoritative.

The input variables of the model were 561 landslide and 561 non-landslide raster
cells, among which landslide raster cells were the known landslide cataloguing informa-
tion above, and non-landslide cells were mainly collected and acquired in the very-low-
susceptibility area and the low-susceptibility area in the whole Nujiang Prefecture in a
random way. After that, the above 561 landslide and 561 non-landslide grid cells were
randomly divided into two parts, 70% of which were used for SVM model training and
30% of which were used for SVM model testing. By applying the above trained and tested
SVM model to the CF values of 11 evaluation factors, the spatial distribution of landslide
susceptibility in Nujiang Prefecture could be obtained.

2.3. Selection and Grading of Evaluation Factors and Sampling Strategy
2.3.1. Selection of Evaluation Factors

The influencing factors of geological disasters were divided into two categories: inter-
nal leading factors and external environmental triggering factors [44]. In this study, based
on the collected historical disaster, relevant literature, geological conditions of the study
area, landslide formation conditions, and development characteristics, the elevation, aspect,
slope, proximity to river, lithology, proximity to faults, normalized difference vegetation
index (NDVI), proximity to roads, land-use type, and precipitation were used as evaluation
factors to construct an evaluation index system for landslide susceptibility assessment.

2.3.2. Correlation Analysis of Evaluation Factors

When there are multiple collinearities between the evaluation factors, the model
becomes complicated, and the prediction accuracy of the model decreases. To avoid
this, SPSS software was used to analyze the correlation of each evaluation factor. If the
absolute value of the correlation coefficient is greater than 0.3, it means that there is a
strong correlation between the factors; otherwise, the correlation is weak. Results of the
correlation analysis are shown in Table 2. Only the soil type factor exceeded 0.3, and the
absolute values of the correlation coefficients among the other evaluation factors were all
less than 0.3, indicating that the correlation between the factors except for the soil type is
weak and can be used for landslide susceptibility analysis.

Table 2. Correlation values of each factor.

Factor Elevation Aspect Slope Lithology Proximity
to Faults

Proximity
to Rivers

Proximity
to Road NDVI Precipitation Land-Use

Type Agrotype

Elevation 1.000
Aspect 0.070 1.000
Slope −0.095 −0.046 1.000

Lithology 0.413 0.078 −0.037 1.000
Proximity to faults 0.054 0.031 −0.019 0.170 1.000
Proximity to rivers 0.074 0.078 0.036 0.109 −0.059 1.000
Proximity to road 0.139 0.092 0.007 0.109 0.063 0.034 1.000

NDVI 0.216 0.048 −0.132 0.092 −0.045 −0.001 −0.008 1.000
Precipitation −0.160 −0.138 0.082 −0.309 0.026 0.105 −0.066 −0.077 1.000

Land-use type −0.065 −0.009 0.193 −0.052 −0.020 0.128 0.032 −0.107 0.092 1.000
Agrotype 0.371 −0.009 −0.105 0.065 0.250 0.131 0.048 0.184 0.068 0.121 1.000

2.3.3. Grading of Evaluation Factors

The evaluation factors were classified according to the geological environment of the
study area and the spatial distribution characteristics of landslides. The evaluation factors
were divided into two types: continuous and discrete. The CF values of each factor is
shown in Table 3,the density of disaster point at different levels of each factor is shown in
Figure 2, the single-factor grading diagram is shown in Figure 3.
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Table 3. CF values of each factor.

Factor Classification Area Number of Landslide Points pa ps CF

Slope

0–10◦ 731.0079 30 0.0410 0.0382 0.0731
10–20◦ 2240.5428 116 0.0518 0.0382 0.2735
20–30◦ 3820.0815 187 0.0490 0.0382 0.2293
30–40◦ 4425.603 153 0.0346 0.0382 −0.0973
40–50◦ 2680.7157 63 0.0235 0.0382 −0.3933
>50◦ 805.0491 12 0.0149 0.0382 −0.6186

Aspect

Plane 22.2255 0 0.0000 0.0382 −1.0000
North 1886.0004 40 0.0212 0.0382 −0.4538

Northeast 1702.0764 68 0.0400 0.0382 0.0467
East 1852.425 100 0.0540 0.0382 0.3048

Southeast 1806.8571 75 0.0415 0.0382 0.0840
South 1907.3826 56 0.0294 0.0382 −0.2375

Southwest 1849.5159 66 0.0357 0.0382 −0.0671
West 1862.0028 96 0.0516 0.0382 0.2703

Northwest 1814.5143 60 0.0331 0.0382 −0.1379

Elevation

<1200 253.4256 25 0.0986 0.0382 0.6375
1200–1600 695.9151 118 0.1696 0.0382 0.8057
1600–1900 985.4766 162 0.1644 0.0382 0.7984
1900–2400 2467.7622 187 0.0758 0.0382 0.5162
2400–3000 4342.7025 67 0.0154 0.0382 −0.6050
3000–3600 3874.6638 2 0.0005 0.0382 −0.9870

>3600 2083.0542 0 0.0000 0.0382 −1.0000

Proximity to rivers

0–200 1610.7471 94 0.0584 0.0382 0.3599
200–400 1539.6921 119 0.0773 0.0382 0.5264
400–600 1476.4599 84 0.0569 0.0382 0.3424
600–800 1412.6364 90 0.0637 0.0382 0.4170

800–1000 1348.4016 66 0.0489 0.0382 0.2292
1000–1200 1273.5279 51 0.0400 0.0382 0.0491

>1200 6041.535 57 0.0094 0.0382 −0.7599

Lithology

Weak rock group 7073.2944 230 0.0325 0.0382 −0.1528
Hard rock group 4066.362 148 0.0364 0.0382 −0.0479

Harder rock group 3545.0187 183 0.0516 0.0382 0.2712
Loose rock group 18.3249 0 0.0000 0.0382 −1.0000

Proximity to faults

<400 1764.5994 94 0.0533 0.0382 0.2950
400–800 1569.7656 119 0.0758 0.0382 0.5164

800–1200 1359.7416 84 0.0618 0.0382 0.3975
1200–1600 1274.3034 90 0.0706 0.0382 0.4780
1600–2000 999.1170 66 0.0661 0.0382 0.4392
2000–2400 844.9938 51 0.0604 0.0382 0.3824

>2400 6890.4792 57 0.0083 0.0382 −0.7897

NDVI

Poor vegetation cover 289.2655 0 0.0000 0.0382 −1.0000
Average vegetation coverage 980.5989 21 0.0214 0.0382 −0.4483

Good vegetation coverage 3216.5431 102 0.0317 0.0382 −0.1744
Excellent vegetation cover 5367.6063 245 0.0456 0.0382 0.1706

Very excellent vegetation cover 4832.6326 193 0.0399 0.0382 0.0464

Proximity to road

0–200 1753.1496 275 0.1569 0.0382 0.7868
200–400 1560.8115 100 0.0641 0.0382 0.4205
400–600 1390.5945 45 0.0324 0.0382 −0.1570
600–800 1249.3899 33 0.0264 0.0382 −0.3161

800–1000 1111.7763 29 0.0261 0.0382 −0.3248
1000–1200 1087.8549 31 0.0285 0.0382 −0.2606
1200–1400 863.1207 18 0.0209 0.0382 −0.4631

>1400 5686.3026 30 0.0053 0.0382 −0.8663

Land-use type

Construction land 137.1537 106 0.7729 0.0382 0.9883
Plowland 1056.7953 278 0.2631 0.0382 0.8889
Grassland 1206.9702 3 0.0025 0.0382 −0.9372

Forest 10918.0086 166 0.0152 0.0382 −0.6108
Unutilized land 666.0549 8 0.0120 0.0382 −0.6935

Water body 718.0173 0 0.0000 0.0382 −1.0000

Precipitation

852–1021 4331.9367 207 0.0478 0.0382 0.2095
1021–1152 3233.5686 131 0.0405 0.0382 0.0605
1152–1299 2430.3624 50 0.0206 0.0382 −0.4705
1299–1451 2797.758 130 0.0465 0.0382 0.2284
1451–1656 1909.3743 43 0.0225 0.0382 −0.4192
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Land-Use Type

Different land-use patterns have different impacts on geological disasters. Unplanned
land-use patterns destroy the natural environment and aggravate the occurrence of geo-
logical disasters.Based on the 2017 land-use data and Google Earth images from 2020, the
land-use data-type distribution map of Nujiang in 2020 was obtained in this study by visual
interpretation and correction according to first-level classification standards (Figure 2a). By
using the deterministic coefficient model, CF values of unused land, grassland, construction
land, cultivated land, forest land, and water bodies were calculated (Table 3).The density of
disaster point at different levels of each factor is shown in Figure 3a.

Elevation

Although elevation does not directly affect the occurrence of landslides [32], different
elevations lead to different factors, such as rainfall, temperature, soil type, vegetation type,
and intensity of human activities. Nujiang Prefecture has high mountains, deep valleys,
steep slopes, rapid waters, and complex topography and landforms with an elevation
difference of more than 4000 m. According to different vertical climatic zones, ArcGIS was
used to classify the elevations (Figure 2b), and the CF values of different elevation zones
were calculated. It can be seen from Table 2 that when the elevation is less than 1900 m, the
certainty coefficient value is close to 1, indicating that within this range, landslide disasters
are extremely prone to occur. Superimposing the elevation classification map with the
vector of residential areas in Nujiang Prefecture revealed that areas with an elevation of
less than 1900 m are densely distributed, human engineering activities such as steep slope
reclamation and slope excavation are more frequent, and the damage to the original natural
environment is more serious. Most of the water systems are distributed in areas with lower
altitudes, which are more likely to cause landslide disasters. In contrast, when the elevation
is more than 1900 m, as the altitude increases, the CF value and the possibility of geological
disasters gradually decrease.The density of disaster point at different levels of each factor
is shown in Figure 3b.

Slope

Slope is a key factor affecting the stability of an area. Areas with large slopes are more
likely to witness landslides, while areas with flat terrains and small slopes are less likely
to have geological disasters. The study area has high mountains and steep slopes, with
a slope range of 0.35–88.38◦, which was divided into six grades: 0–10◦, 10–20◦, 20–30◦,
30–40◦, 40–50◦, and >50◦ (Figure 2c). The CF model was used to calculate the certainty
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coefficient of each slope grade, and the relationship between the slope and the occurrence
of landslide disasters in the study area was analyzed. The results are shown in Table 3.
The certainty coefficient of slope within 10–30◦ is large, indicating the higher possibility
of geological disasters in this area.The density of disaster point at different levels of each
factor is shown in Figure 3c.

Aspect

Sunny slopes and shaded slopes receive different solar radiation intensities, which
affect the vegetation growth, vegetation types, rainfall, and soil moisture [41–43], thereby
acting as one of the evaluation factors of landslide disasters. The text was based on
ArcGIS10.7 and Nujiang Prefecture DEM data, and the aspect raster map was calculated
according to a previously defined method [45,46] (Figure 2d). The aspect was divided into
plane, north, northeast, east, southeast, south, southwest, west, and northwest. For the
nine levels, the CF value of each slope direction classification area was calculated using the
deterministic coefficient model, and the results are shown in Table 3.The density of disaster
point at different levels of each factor is shown in Figure 3d.

Proximity to Rivers

Rivers are an important factor in the development of geological disasters. Deforesta-
tion in the slopes and erosion at the river banks result in an increase in the empty area. In
addition, the water flow increases the moisture content of the soil and increases the weight
and softens the rock and soil, thereby reducing the stability of the slope and increasing
the probability of geological disasters. In this study, the data for the Nujiang River system
were extracted using the hydrological analysis function in the ArcGIS software, and the
multi-ring buffer area was used in the field analysis to establish the river buffer area at
200 m intervals. The buffer area was divided into seven intervals by using the CF model
(Figure 2e), and the relationship between geological hazard susceptibility and distance to
rivers was analyzed (Table 3). The results showed that the greater the distance from the
rivers, the smaller the CF value. The CF value is greater than 0 for distances of 0–600 m,
indicating that the distance from the water system plays a vital role in the occurrence of
geological disasters. When the distance from the water system is greater than 600 m, the
CF value is less than 0, which shows that the influence of the water system on geological
disasters is relatively weak at such distances.The density of disaster point at different levels
of each factor is shown in Figure 3e.

Lithology

Different rock and soil bodies have different lithologies: their structural, physical, and
chemical properties and their ability to resist erosion and weathering vary. Therefore, the
probability of occurrence of geological disasters also varies. In this study, stratigraphic
groups were used as the basic unit to divide the rock and soil mass in Nujiang Prefecture
into four groups: soft rock, hard rock, harder rock, and loose rock. The vector data were
converted to raster data by using ArcGIS to obtain the Nujiang State lithology classification
map shown in Figure 2f. Next, using the CF model, the influence of stratum lithology
on the occurrence and development of geological disasters was quantitatively analyzed.
The density of disaster point at different levels of each factor is shown in Figure 3f.The
results (Table 3) revealed that the harder rock group has the largest certainty coefficient
value, indicating that geological disasters are prone to occur in soft and hard interbedded
rock formations, such as quartz sandstone, sandstone, shale-intercalated limestone, slate-
intercalated basalt, and limestone-interbedded slate, because soft rock interbeds with hard
rock, and soft rock becomes a natural sliding bed, creating favorable conditions for the
occurrence of geological disasters, while loose rocks (such as sandy clay and sandy gravel)
have poor stability and cannot form slopes with large slopes. Hard rocks are resistant to
weathering and are not easily eroded; thus, the slopes have good stability and are not prone
to geological disasters.
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Proximity to Faults

Fault structure is one of the indispensable evaluation factors. During the formation of
a fault zone, the rock and soil get divided, destroying the integrity and continuity of the
rock formation and affecting the stability of the slope. Broken rock mass and loose deposits
can easily lead to geological disasters. The faults in Nujiang Prefecture are clustered; the
main faults are distributed from north to south, and the other major faults are mainly
located along the north-south direction, with less distribution in the east-west direction.
The fault zones in the region are densely distributed and structurally developed. In this
study, the multi-ring buffer tool was used to divide the intervals with the catastrophic
point ratio and the point density curve mutation points in each grading interval as a
reference(Figure 3g), a fault buffer with a distance of 400 m was established (Figure 2g),
and the certainty coefficient of each interval was calculated (Table 3). The results showed
that the greater the distance from the fault zone, the smaller the certainty coefficient. The
CF value is larger in the interval of 0–800 m, indicating that geological disasters are more
likely to occur. When the distance from the fault zone exceeds 2000 m, the CF value is less
than 0. Thus, the fault structure has little influence on the occurrence of geological disasters
at such increased distances.

Proximity to Road

The transportation network in Nujiang Prefecture is developing rapidly with the
construction of numerous bridges and tunnels. The excavation of slopes and blasting in
engineering construction activities disturb the rock and soil mass AND destroy the stability
of the slope, and the rock becomes loose and fragile, thus causing geological disasters.
According to the road distribution map of Nujiang Prefecture, a buffer zone with a 200 m
radius was established (Figure 2h); the deterministic coefficient values of the buffer zones
are shown in Table 3. The density of disaster point at different levels of each factor is shown
in Figure 3h.

Precipitation

Rainfall is usually considered as the most vital evaluation factor for the susceptibility
evaluation of geological disasters. According to statistical analysis, most landslides in
Nujiang Prefecture are rainstorm-type landslides. The influence of rainfall on geological
disasters is mainly due to the following aspects: water erosion on the surface leading to
soil erosion, a large amount of rainwater infiltration, softening rock strata, increasing slope
weight, decreasing slope stability, and induced slope slip. The Kriging interpolation method
based on the GIS spatial analysis function was used to perform spatial interpolation of the
rainfall data of 11 meteorological stations in Nujiang Prefecture. The natural breakpoint
method was used to divide the rainfall data into five grades (Table 3), and the classification
of annual average precipitation in Nujiang Prefecture was obtained (Figure 2i). The density
of disaster point at different levels of each factor(Figure 3i).

NDVI

Normalized difference vegetation index (NDVI) was first proposed by Rouse et al.
in the 1970s [46–48]. Because NDVI can better reflect vegetation growth and vegetation
coverage, it has been used by numerous scholars. The larger the NDVI value, the larger
the vegetation coverage [44,47,48]. In the present study, the MODIS data for 2019 with a
spatial resolution of 250 m was selected, the vegetation coverage was extracted, and the
outliers were removed using the ENVI5.3 software. The NDVI values were converted to
0–1 by using the fuzzy membership tool in the ArcGIS overlay analysis tool. The natural
breakpoint method was used to divide normalized NDVI values into five grades (Figure 2j),
and the CF values within the range of different NDVI grades were determined (Table 3).The
density of disaster point at different levels of each factor is shown in Figure 3j. NDVI
reflects the quantitative relationship between landslide disaster and vegetation density.
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NDVI can be calculated by the near-infrared band IR and infrared band R obtained from
satellite images, as follows:

NDVI =
IR− R
IR + R

(3)

In Equation (5), the value range of NDVI is −0.26 to 0.80, and it is divided into five
levels by using the equal spacing method: which are <0, 0–0.2, 0.2–0.4, 0.4–0.6, and >0.6.

The results show that except for interference areas such as water bodies and clouds,
there is a trend that the better the vegetation coverage, the larger the CF value. This is
contrary to our common conclusion, but it is not a calculation error; instead, it is because
Nujiang Prefecture is a typical landform of the southwest alpine valley area with high moun-
tains and steep slopes, poor soil, underdeveloped root systems, and unprotected vegetation.
When the vegetation is destroyed, the impact force generated causes the slope to move
and displace, thereby increasing the susceptibility to geological disasters. Therefore, in the
southwest alpine and valley area, good vegetation coverage is not necessarily conducive
for reducing the occurrence of geological disasters. On the contrary, in areas with larger
slopes, the greater the NDVI value, the more likely the occurrence of geological disasters.

2.3.4. Sampling Strategy of Modeling Samples

Before modeling, the positive and negative samples in the study area must be sampled.
The positive sample is the landslide point in the study area, and the negative sample is
the non-landslide point. The selection of the negative sample is very important for the
construction of the model. Because the specific location of the landslide-prone area cannot
be accurately determined before the prediction, selection of non-landslide points in the
landslide-prone area must be avoided; this will help maintain the prediction accuracy of
the model. Therefore, in this study, the CF value of each factor was calculated first, and
then, the sum of the CF values of all the factors under each grid was calculated to obtain
the susceptibility index based on the CF model. A quick evaluation was performed, and
finally, by using the natural breakpoint method, landslide susceptibility was divided into
five grades: low-prone area, less-prone area, medium-prone area, higher-prone area, and
highly prone area. By using the CF model as the a priori model, non-landslide points were
randomly selected in areas other than the high-prone area so as to ensure the accuracy of
the selection of non-landslide points considering the uncertainty and spatial correlation of
landslide-prone area. A total of 561 high probability non-landslide points were selected
in the study area. The combination of the existing 561 landslide points and the 561 high-
probability non-landslide points selected using the CF model was used as the training and
test datasets for the modeling. Among them, 70% of the data was used as the training set
and 30% as a test set.The process is shown in Figure 4.

2.4. Model Construction and Application

The CF value of each factor calculated using the CF model was used as the classification
data of the SVM model. By using the selected classification data, the appropriate parameters
were selected, and the model was trained. Finally, the trained model was used to perform
predictions for the entire study area, and the evaluation results of disaster susceptibility
were obtained.

After the modeling samples were selected, the model for the study area was con-
structed. The overall idea of evaluating the susceptibility of the study area is as follows.
The CF formula was used to calculate the susceptibility of each factor as the classification
data of the SVM model. Then, the selected classification data were used to select appropri-
ate parameters to train the model. Finally, the trained model was used to predict landslide
susceptibility for the entire study area.
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Using GIS as a platform, the CF value of each index factor was calculated under
different state grading by using the CF model. Next, the resolution of the 10 factor layers
was unified to 30 m, and the CF values of the factors were added with equal weights.
Finally, The landslide susceptibility index of Nujiang Prefecture was reclassified using
ArcGIS. As shown in Figure 5, Nujiang Prefecture was divided into areas with five levels of
susceptibility: extremely high susceptibility, high susceptibility, medium susceptibility, low
susceptibility, and very low susceptibility.

ArcGIS was used to extract the extremely low-prone areas and low-prone areas in the
CF model results. Then, 561 non-landslide points and 561 landslide points in the extremely
low- and low-prone areas were selected, and the landslide and non-landslide unit spatial
data were obtained. Next, the data were normalized. The spatial data of landslide and non-
landslide units were divided into 70% and 30% for the training set and test set, respectively.
The model was developed using SPSS Modeler18; then, the data were inputted into the
SVM model for training and testing. To study the accuracy of the model, four kernel
functions, namely linear kernel function, polynomial kernel function, radial basis kernel
function, and Sigmoid kernel function, were used for training and testing. The one yielding
the highest accuracy was selected: radial basis kernel function. Next, the spatial normalized
data for the grid unit of Nujiang Prefecture were inputted into the trained model to obtain
the Nujiang Prefecture landslide susceptibility index. Finally, ArcGIS was used to reclassify
the landslide susceptibility index, as shown in Figure 6. Accordingly, Nujiang Prefecture
was divided into areas with five levels of susceptibility: extremely high susceptibility, high
susceptibility, medium susceptibility, low susceptibility, and very low susceptibility.
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The four kernel functions are as follows:

(1) Linear kernel function:
K (x, xi) = xi∗x (4)

(2) Polynomial kernel function:

K (x, xi) = (xi∗x + 1)p (5)
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(3) Radial basis kernel function:

K (x, xi) = exp
(
−γ||xi − x||2

)
(6)

(4) Sigmoid kernel function:

K (x, xi) = tan[v (xi∗x) + c] (7)

3. Results
3.1. Factor Importance

The importance of index factors reflects the influence degree of different index factors
on regional landslide susceptibility. Therefore, calculating and analyzing the importance
of each index factor can provide a guiding basis for landslide disaster management. The
predictive ability of the indicator factors used in this study is shown in Figure 7. The results
obtained by the CF-SVM model show that the elevation (0.301) of landslide adjusting
factors is the highest, followed by land use (0.289), proximity to road (0.171), proximity to
fault (0.072), proximity to rivers (0.061), NDVI (0.034), slope (0.021), precipitation (0.020),
aspect (0.019), and lithology (0.012).
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3.2. Landslide Susceptibility Maps

Through ArcGIS10.6 software, the trained model was used to calculate the landslide
susceptibility index (LSI), as shown in Figure 6. It can be seen from Figure 6 that the
probability of landslide in the whole study area is −1~1. The CF susceptibility index
ranged from −0.6997 to 0.4867. The prevalence index of SVM ranged from −0.7236 to
0.6788. The susceptibility index of CF-SVM ranged from −0.9104 to 0.7543. Using the
natural discontinuity point classification method in ArcGIS, LSI value is divided into five
easy levels: extremely high, high, medium, low, and extremely low, as shown in Figure 7.
According to Figure 7, extremely high, high, medium, low, and extremely low levels of CF
accounted for 10.03%, 19.60%, 26.02%, 27.24%, and 17.12%, respectively. SVM was 7.67%,
18.22%, 26.29%, 28.00%, and 19.82%; CF-SVM accounted for 7.09%, 16.57%, 10.10%, 30.11%,
and 35.63%, respectively.

3.2.1. Evaluation Results of Susceptibility Based on CF Model

The CF value of each index factor under different state grading was calculated and then
inputted into each factor layer; then, the ArcGIS raster calculator was used for overlapping
with equal weights to obtain the Nujiang prefecture susceptibility index map. The results
show that the extremely high- and high-prone areas cover 4355.67 km2, which is only
25.89% of the total area, but include 532 landslide points, accounting for approximately
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94.83% of the total number of geological disasters, and the density of disaster points is as
high as 0.1221/km2, which is extremely low. The proportion of disaster points in low-prone
areas is only 0.36%.

3.2.2. The Susceptibility Evaluation Results Based on the SVM Model

The spatial normalized data of the grid unit in Nujiang Prefecture was inputted into the
trained SVM model to obtain the susceptibility index of the grid unit in Nujiang Prefecture.
The natural breakpoint method was then used to determine the landslide susceptibility
of the grid unit in Nujiang Prefecture. The evaluation index was reclassified to obtain the
susceptibility index map of Nujiang Prefecture. The results show that the extremely high-
and high-prone areas cover 3806.92 km2, accounting for only 23.66% of the total area, but
include 472 landslide points, accounting for approximately 84.13% of the total number of
geological disasters, and the density of disaster points is as high as 0.1239/km2, which is
extremely low. Further, the proportion of disaster points in low-prone areas is only 1.25%.

3.2.3. Evaluation Results of Susceptibility Based on the Coupling of CF and SVM

The proportion of disasters in high-risk areas can reflect the scientific nature of model
evaluation. It is more convenient for government departments to include more disaster
units in high-risk areas. In this study, the GIS field calculator was used to determine the
area and proportion of qualitative disaster susceptibility grades as well as the number of
geological disaster points in each grade and their proportions and density (Tables 4–6). The
disaster densities in the extremely high- and high-prone areas of CF, SVM, and CF + SVM are
0.1221, 0.1239, and 0.1351 disasters/km2, respectively. The results show that the extremely
high- and high-risk areas evaluated by CF + SVM have a higher proportion of landslide
disaster, which is more suitable for the practical application of landslide susceptibility in
Nujiang Prefecture. The CF + SVM model performed better than the individual CF and
SVM models. The results obtained using the CF + SVM model showed that the areas
with extremely high vulnerability to geological disasters in Nujiang Prefecture are mainly
distributed along the banks of the Dulong River, Nujiang River, Lancang River, and their
tributaries as well as along roads at all levels. The analysis result is consistent with the actual
geological hazard distribution characteristics in the study area. The extremely high- and
high-prone areas cover 3479.05 km2, accounting for only 23.66% of the total area, but include
470 landslide points, accounting for 83.77% of the total number of geological disasters,
and the density of disaster points is as high as 0.1351/km2, indicating the susceptibility to
geological disasters. The higher the number, the greater the probability of the total number
of geological disasters. The CF and SVM models also showed similar effects. In summary,
Nujiang Prefecture should strengthen the prevention and control of geological disasters in
extremely high- and high-prone areas in the future.

Table 4. Statistical table of CF model susceptibility.

Degree of Susceptibility Area (km2) Ratio (%) Number of
Disasters (Unit) Ratio% Disaster Point

Density (Unit/km2)

Very low susceptibility 2516.5000 17.12% 0.0000 0.0000 0.0000
Low susceptibility 4005.7900 27.24% 2.0000 0.36% 0.0005

Moderate susceptibility 3825.0400 26.02% 27.0000 4.81% 0.0071
High susceptibility 2881.4300 19.60% 150.0000 26.74% 0.0521

Very high susceptibility 1474.2400 10.03% 382.0000 68.09% 0.2591
Total 14,703.0000 1.0000 561.0000 1.0000 —
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Table 5. Statistical table of SVM model susceptibility.

Degree of Susceptibility Area (km2) Ratio (%) Number of
Disasters (Unit) Ratio% Disaster Point

Density (Unit/km2)

Very low susceptibility 2914.3200 19.82% 0.0000 0.0000 0.0000
Low susceptibility 4116.1100 28.00% 7.0000 1.25% 0.0017

Moderate susceptibility 3865.6500 26.29% 82.0000 14.62% 0.0212
High susceptibility 2678.8600 18.22% 173.0000 30.84% 0.0646

Very high susceptibility 1128.0600 7.67% 299.0000 53.30% 0.2651
Total 10,473.00 1.0000 561 1.0000 —

Table 6. Statistical table of CF + SVM model susceptibility.

Degree of Susceptibility Area (km2) Ratio (%) Number of
Disasters (Unit) Ratio% Disaster Point

Density (Unit/km2)

Very low susceptibility 5238.37002 35.63% 0.0000 0.0000 0.0000
Low susceptibility 4427.62662 30.11% 22 3.92% 0.0049

Moderate susceptibility 1557.94512 10.10% 69 12.30% 0.0442
High susceptibility 2435.83212 16.57%1 154 27.45% 0.0632

Very high susceptibility 1043.22612 7.09% 316 56.33% 0.3029
Total 10,473.00 1.0000 561 1.0000 —

3.3. Test and Comparison of Models

Area under curve (AUC) is defined as the area under the ROC curve; the value ranges
between 0.5 and 1. The larger the AUC value, the higher the prediction accuracy of the
model. Figure 8 shows that the AUC values of the CF, SVM, and CF + SVM models are 0.865,
0.892, and 0.925, respectively, indicating that the three models have high accuracy and that
the coupled model yields higher accuracy than the individual models. Thus, the coupling
of CF and SVM models is more suitable for the assessment of landslide susceptibility.
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4. Discussion

Most of the historical slope geological disaster sites in Nujiang Prefecture are located
in the highly susceptible areas, mainly distributed along rivers and roads in Nujiang Pre-
fecture. The results are in good agreement with the actual occurrence of slope geological
disasters, indicating that the selected sensitivity factors and evaluation models are reason-
able. These results are consistent with those reported in other studies assessing landslide
susceptibility [39,40,42,49–51].

Currently, landslide researchers have applied various machine learning methods
to different areas with different results. Even within a single region, different models,
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such as logistic regression and support vector machines, may produce different results
due to weighted differences, which in turn are related to their probability distribution
functions. These differences stem in part from the choice of model and uncertainty in
the input data. Today, many works focus only on the application of a single model to
susceptibility assessment (e.g., [52–56]). In this study, statistical models and machine
learning methods are coupled. The SVM algorithm is enhanced by creating, using, and
testing an integrated CF-SVM model. The results show that the proposed model provides
higher prediction accuracy than SVM algorithm. It performs better than a single model.
Based on the training and validation datasets, the model successfully distinguishes the
landslide-prone areas in the study area. Our results support previous studies showing that
coupled models can significantly reduce overfitting and noise problems in the modeling
process [13,23,54,57–62]. The novelty of our method is that we consider the combination
of statistical models and machine learning models, which can perform well in solving the
problem of poor performance of a single model.

To improve land management and distribution policies, it is essential to designate
landslide-prone areas. Machine learning algorithms are widely used in landslide suscep-
tibility mapping. The main objective is to study and capture the nonlinear relationship
between landslide events and their conditional parameters. However, there are still some
shortcomings: (1) The selection and analysis of evaluation factors are insufficient. Due
to the complex geological structure of the study area, there may be obvious correlation
between landslide disaster influencing factors, or the control factors and influencing factors
of screening factors are insufficient, which may lead to the decrease of model accuracy.
(2) Insufficient normalization of evaluation factors: There are often differences in attributes
and dimensions between influencing factors and controlling factors, which will lead to the
loss of important disaster evaluation factors. (3) The sample set construction is insufficient;
the negative sample selection method is especially very important. Whether the data set
cleaning is in place, negative sample selection rules, and the imbalance of positive and
negative sample ratio will directly affect the evaluation accuracy of the model. The coupling
method of CF and SVM proposed in this paper selects factors after multivariate collinearity
diagnosis, emphasizing the importance of data cleaning. Quantization and normalization
of the impact factors, complete deletion of null values, replacement of noise values, inter-
polation outliers and other cleaning work for the original data set, and standard selection
of negative samples can ensure that each feature has the same impact on the evaluation
results so as to ensure the accuracy of the results. This research method effectively solves
the above problems and improves the evaluation accuracy of landslide susceptibility.

The occurrence of landslide is a complex process involving geology, mechanics, meteo-
rology and hydrology, cartography, and other fields of knowledge. Only using the model to
evaluate the landslide susceptibility can only roughly predict the range of landslide occur-
rence, but it is not very accurate. In addition, the number of models selected in this paper
is limited, and multi-model optimization comparison can be further carried out to obtain
more accurate results. Due to the accelerated urbanization and intense human engineering
activities in Nujiang Prefecture, China, in recent years, it is recommended to conduct a
vulnerability evaluation every three years with sufficient data on landslide disaster sites
and compare the evaluation results to provide a basis for local disaster prevention and
reduction and reasonable land planning.

5. Conclusions

Taking Nujiang Prefecture as the study area and by analyzing the data, 10 evaluation
factors were selected. Landslide susceptibility was evaluated using CF, SVM, deterministic
coefficient, and SVM coupling (CF-SVM). The following conclusions were drawn:

(1) Landslides are common in China’s Nujiang Prefecture, where they cause severe
damage to roads, buildings, and other infrastructure. Moreover, future losses are likely to
grow as the economy grows. The Chinese government and departments at all levels in
Nujiang Prefecture are concerned about the possible loss of life caused by the landslide.
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To address this issue, Chinese policymakers and policymakers need to better understand
where landslides are likely to occur. The accurate landslide sensitivity map provided in
this paper can help them select suitable sites for infrastructure development.

(2) In this paper, the prediction accuracy of support vector machine and CF model
and their combination in the study area is obtained. The AUC of CF, SVM, and CF-SVM
models were 0.865, 0.892, and 0.925, respectively, indicating that the prediction accuracy of
the CF-SVM model was the highest, and the model was more suitable for landslide hazard
susceptibility evaluation in the study area. This study solves the problem that a single
model cannot effectively evaluate the susceptibility of landslide disaster and provides a
new idea for the study of landslide disaster in Nujiang Prefecture. It provides an important
decision-making basis for disaster prevention and reduction, territorial space planning,
and dynamic monitoring in Nujiang Prefecture.
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