Drinking Water Supply in the Region of Antofagasta (Chile): A Challenge between Past, Present and Future
Abstract
:1. Introduction
2. The Geographical and Hydrological Context
3. Water Demand and Water Availability in the Region of Antofagasta
4. A Historical Excursus on the Water Demand in the Region of Antofagasta
5. The Problem of Arsenic and the Plants for Its Removal for Urban Areas
5.1. Origin and Concerns for the Arsenic Presence in the Region of Antofagasta
5.2. Water Treatment Plants for Arsenic Removal Serving Urban Areas
- Three WTPs, namely the Old (1970–year of starting operations) and the New (1989) plants of Salar del Carmen, located in Antofagasta, and the Planta de Filtros Cerro Topater (1978), located in Calama; all three WTPs are fed with river water that comes from the Alta Cordillera;
- One WTP in Taltal (namely O’Higgins, 1998) that treats the groundwater collected from the Agua Verde well field, located 70 km NE from Taltal;
- Two desalination plants located in Antofagasta, namely Desaladora Norte (previously called La Chimba, 2003) and in Taltal (2008);
- A new desalination plant located in Tocopilla that has recently (October 2020) started its operation.
- Three of these (namely Lequena, Quinchamale and San Pedro) are on the Río Loa (Quinchamale and San Pedro are located on small influents/secondary rivers of the Río Loa, namely Quebrada Quinchamale and Río San Pedro, respectively);
- A fourth extraction point, named Toconce, is located on the Río Toconce, which is an influent of the Río Salado that is, in turn, an influent of the Río Loa. Together with the three previous catchment points, they form the Alta Cordillera system;
- The fifth extraction point is located just outside the town of Calama (namely Puente Negro), where the waters coming from the other four extraction points are mixed and then sent to the three WTPs. The last water source is of lower quality with respect to the waters coming from the Alta Cordillera and it is used only in case of emergency [34,35].
6. Drinking Water Supply in Rural Areas: The Legal Framework and the Agua Potable Rural Program
6.1. Peculiarities of the Supply of Drinking Water in the Rural Areas of the Region of Antofagasta
6.2. The APR Systems in the Region of Antofagasta
Area | Comuna | APR System | Year | Number of Distribution Points [9] | Number of Beneficiaries [9] | Technology |
---|---|---|---|---|---|---|
Precordillera | Calama | Chunchuri–Calama Rural | 2013 | 98 | 295 [49] 400 [49] | Connection to the water distribution network of Calama |
Precordillera | Calama | Flor de Alfalfa | 2005 | 79 | 237 | Connection to the water distribution network of Calama |
Precordillera | Calama | Verdes Campiñas | >2021 | 69 [51] | 580 [51] 863 (2040) [51] | Connection to the water distribution network of Calama |
Precordillera | Calama | Caspana | >2020 | 189 | 250 | N.A. |
Precordillera | Calama | Toconce | 2005 | 98 [53] | 100 | Adsorption onto cerium oxide/Fe(OH)3 (working?) |
Precordillera | Calama | Ayquina–Turi | 2016 | 115 | 150 | Tank trucks from Calama (Project of a new plant? 2021) |
Precordillera | Calama | Lasana | 2017 | 117 | 431 | RO, 2 L/s |
Precordillera | Calama | Chiuchiu | 2000 | 184 | 1200 | Coagulation–flocculation, revamped, 4.7 L/s |
Precordillera | San Pedro de Atacama | San Pedro de Atacama | 1999 | 2800 [60] | 6200 [60] | Groundwater, 7 modules of RO |
Precordillera | San Pedro de Atacama | Río Grande | 2016 | 38 | 120 | RO |
Precordillera | San Pedro de Atacama | Toconao | 2014 | 350 | 1100 | Quartzite filter + IX |
Precordillera | San Pedro de Atacama | Socaire | 2011 | 150 [64] | 465 [64] | Quartzite filter + RO |
Precordillera | San Pedro de Atacama | Peine | 2009 (?) | 180 [64,66] | 558 [64] | N.A. |
Precordillera | María Elena | Quillagua | >2020 | 20 | 120 | IX + RO |
Costa | Taltal | Caleta Paposo | 2013 | 144 [70] | 430 [70] | Desalination plant (RO) |
7. Conclusions
- Even if Chile has quite a large availability of water, it is not evenly distributed over the country. Specifically, the region of Antofagasta is suffering a severe water crisis due to the unique characteristics of the area, namely the natural dryness, bad quality of freshwater and pressure of the mining industry. The water crisis is even expected to be worsened by the effects of climate change. The Río Loa is the most important water source in the region and in the Atacama Desert area. However, the environmental flow of the Río Loa, that is, the flow that allows the sustenance the ecosystem, as well as the means of subsistence and welfare of the people who depend on that ecosystem, is not sufficient to meet the demand for all uses with its current water flows and pressures. According to a recent diagnosis, a portfolio of projects that should be implemented to reduce the pressure on the Río Loa includes (i) the definition of water supply alternatives (ii) the recovery of sites of environmental relevance and (iii) the development of a more effective management of the territory [16];
- Since the end of the nineteen century, large efforts have been made to construct water distribution networks and, in more recent years, WTPs to supply the large towns (such as Antofagasta, Calama, Tocopilla and Mejillones) and small centers with drinking water that complies with NCh409-2005. Further to these interventions, the drinking water coverage in urban areas in 2014 was practically universal, serving 99.9% of the population [40]. Especially in the urban area of the town of Antofagasta, the result was made possible after the installation of the Desaladora Norte desalination plant, the largest in the Latin America, with a treatment capacity of approx. 1000 L/s [13,39]. It can guarantee a continuity in the drinking water service from an infinite source, thus generating a benefit for the town. However, surveys carried out among the citizens have revealed that a large part of the population, between 70% and 80%, was not satisfied with the quality of the drinking water because of organoleptic issues related to taste, color and odor, or because they distrusted its direct consumption because of the strong communal memory of past diseases due to arsenic contamination [38]. Furthermore, some authors argue that the gradual introduction of desalinated water into the town’s metabolisms has exacerbated the existing socio-ecological inequalities, thus maintaining the perception of a situation of water scarcity, especially for low-income citizens [71]. Other criticalities concern the impact of the desalination plant on the marine biota, because of the discharge of the RO rejected waters into the ocean, and the lack of an independent energy source, which presently compels the plant to be run with the national energy system, which is 63% based on fossil fuels [38];
- Supplying drinking water and sanitation to the population of rural areas remains a challenge and 42% of the rural population of the region of Antofagasta still does not have a formal supply of drinking water [42]. The APR program, created in the mid-1960s, contributed to providing rural water service infrastructures. In the region of Antofagasta, there are 12 operating installations and 3 systems under construction or in a trial phase [48]. The beneficiaries of the APRs are responsible for managing, operating and maintaining the system through the APR cooperatives and the support of the DOH. The problems attributed to the APRs in recent years are related to a number of factors, namely (i) the lack of a systematic and comprehensive monitoring of the operations carried out at the installations, (ii) the inadequacy of the chosen technology to the specific installation site, and (iii) low managerial skills and technical knowledge of the committees that are responsible for operating, maintaining and financing the APR systems [40,67].
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- OECD. The governance of water infrastructure in Chile. In Gaps and Governance Standards of Public Infrastructure in Chile: Infrastructure Governance Review; OECD Publishing: Paris, France, 2017. [Google Scholar] [CrossRef]
- Romero, L.; Alonso, H.; Campano, P.; Fanfani, L.; Cidu, R.; Dadea, C.; Keegan, T.; Thornton, I.; Farago, M. Arsenic enrichment in waters and sediments of the Rio Loa (Second Region, Chile). Appl. Geochem. 2003, 18, 1399–1416. [Google Scholar] [CrossRef]
- Cisternas, L.A.; Gálvez, E.D. Chile’s mining and chemicals industries. Chem. Eng. Prog. 2014, 110, 46–51. [Google Scholar]
- Donoso, G. Integrated water management in Chile. In Integrated Water Resources Management in the 21st Century: Revisiting the Paradigm; Martínez-Santos, P., Aldaya, M.M., Llamas, R., Eds.; CRC Press: Boca Raton, FL, USA; Taylor and Francis Group: Oxfordshire, UK, 2014; pp. 217–234. [Google Scholar] [CrossRef]
- Meißner, S. The Impact of Metal Mining on Global Water Stress and Regional Carrying Capacities—A GIS-Based Water Impact Assessment. Resources 2021, 10, 120. [Google Scholar] [CrossRef]
- Tiwari, A.K.; Suozzi, E.; Silva, C.; De Maio, M.; Zanetti, M. Role of Integrated Approaches in Water Resources Management: Antofagasta Region, Chile. Sustainability 2021, 13, 1297. [Google Scholar] [CrossRef]
- Arrau Ingenieria E.I.R.L. Diagnóstico Plan Estratégico Para la Gestión de Los Recursos Hídricos, Región de Antofagasta. 2012; p. 68. Available online: https://snia.mop.gob.cl/repositoriodga/handle/20.500.13000/5409 (accessed on 29 September 2022).
- Arcadis. Plan Estratégico Para La Gestión De Los Recursos Hídricos, Región De Antofagasta, Resumen Ejecutivo. 2016; p. 143. Available online: https://snia.mop.gob.cl/repositoriodga/handle/20.500.13000/4382 (accessed on 29 September 2022).
- Arcadis. Plan Estratégico Para La Gestión De Los Recursos Hídricos, Región De Antofagasta, Informe Final. 2016; p. 356. Available online: https://snia.mop.gob.cl/sad/ADM5702.pdf (accessed on 29 September 2022).
- Pérez-Carrera, A.; Cirelli, A.F. Arsenic and water quality challenges in South America. In Water and Sustainability in Arid Regions; Schneier-Madanes, G., Courel, M.F., Eds.; Springer: Dordrecht, The Netherlands, 2010. [Google Scholar] [CrossRef]
- Chenoweth, J. Minimum water requirement for social and economic development. Desalination 2008, 229, 245–256. [Google Scholar] [CrossRef] [Green Version]
- Burdiles, P.; Carrasco, F.; Platzer, W. Estudio De Factibilidad De Tecnología Osmosis Inversa Con Energía Solar, INFORME CSET-2017-PU-006-ES. 2017, p. 41. Available online: https://www.fraunhofer.cl/en/cset/publicaciones (accessed on 28 October 2022).
- Herrera-León, S.; Cruz, C.; Kraslawski, A.; Cisternas, L.A. Current situation and major challenges of desalination in Chile. Desalin. Water Treat. 2019, 171, 93–104. [Google Scholar] [CrossRef]
- Nester, P.L.; Gayo, E.; Latorre, C.; Jordan, T.E.; Blanco, N. Perennial stream discharge in the hyperarid Atacama Desert of northern Chile during the latest Pleistocene. Proc. Natl. Acad. Sci. USA 2007, 104, 19724–19729. [Google Scholar] [CrossRef] [Green Version]
- Aitken, D.; Rivera, D.; Godoy-Faúndez, A.; Holzapfel, E. Water Scarcity and the Impact of the Mining and Agricultural Sectors in Chile. Sustainability 2016, 8, 128. [Google Scholar] [CrossRef]
- Centro de Ecología Aplicada. Diagnóstico Del Caudal Ambiental Del Río Loa, Región De Antofagasta. Informe Final. 2020; p. 919. Available online: https://mma.gob.cl/antofa-doc/2020_07_GOA002_INF_V1_InfFinal.pdf (accessed on 28 October 2022).
- Ghorbani, Y.; Kuan, S.H. A review of sustainable development in the Chilean mining sector: Past, present and future. Int. J. Min. Reclam. Environ. 2017, 31, 137–165. [Google Scholar] [CrossRef]
- Maino Prado, V.; Recabarren Rojas, F. Historia del Agua en el desierto más árido del mundo. 2011. Available online: https://historiadelagua.wordpress.com/ (accessed on 29 September 2022).
- Harding, J. Apparatus for solar distillation. Minutes Proc. Inst. Civ. Eng. 1883, 73, 284–288. [Google Scholar] [CrossRef]
- Hirschmann, J.R. Solar distillation in Chile. Desalination 1975, 17, 31–67. [Google Scholar] [CrossRef]
- Arellano Escudero, N. La planta solar de desalación de agua de Las Salinas (1872). Quad. D’historia L’enginyeria 2011, 12, 229–251. [Google Scholar]
- Godoy Orellana, M.; Méndez, M. “Apenas tenemos el agua suficiente para nuestras máquinas”: Estado, minería y tecnologías hídricas en el desierto de Atacama Taltal, 1870–1930. Caravelle 2018, 111, 25–40. [Google Scholar]
- Arriaza, B.; Galaz-Mandakovic, D. Expansión minera, déficit hídrico y crisis sanitaria. La potabilización del Río Toconce y el impacto del arsenicismo en la población de la provincia de Antofagasta (1915–1971). Historia 396 2020, 10, 71–112. [Google Scholar]
- Insitituto Nacional De Normalización (INN). Drinking Water Quality Standard NCh409 of 78; Ministerio de Obras Públicas: Santiago, Chile, 2005.
- Tapia, J.; Murray, J.; Ormachea, M.; Tirado, N.; Nordstromf, D.K. Origin, distribution, and geochemistry of arsenic in the Altiplano-Puna plateau of Argentina, Bolivia, Chile, and Perú. Sci. Total Environ. 2019, 678, 309–325. [Google Scholar] [CrossRef]
- Cortecci, G.; Boschetti, T.; Mussi, M.; Lameli, C.H.; Mucchino, C.; Barbieri, M. New chemical and original isotopic data on waters from El Tatio geothermal field, northern Chile. Geochem. J. 2005, 39, 547–571. [Google Scholar] [CrossRef]
- Cáceres Valencia, A. Arsénio, normativas y efectos en la salud. In Proceedings of the XIII Congreso De Ingenieria Sanitaria Y Ambiental, AIDIS Chile, Antofagasta, Chile, 10 August 1999; p. 13. [Google Scholar]
- Smith, A.H.; Marshall, G.; Yuan, Y.; Steinmaus, C.; Liaw, J.; Smith, M.T.; Wood, L.; Heirich, M.; Fritzemeier, R.M.; Pegramd, M.D.; et al. Rapid Reduction in Breast Cancer Mortality with Inorganic Arsenic in Drinking Water. EBioMedicine 2014, 1, 58–63. [Google Scholar] [CrossRef] [Green Version]
- Marshall, G.; Ferreccio, C.; Yuan, Y.; Bates, M.N.; Steinmaus, C.; Selvin, S.; Liaw, J.; Smith, A.H. Fifty-year study of lung and bladder cancer mortality in Chile related to arsenic in drinking water. J. Natl. Cancer Inst. 2007, 99, 920–928. [Google Scholar] [CrossRef] [Green Version]
- Sancha, A.M.; O’Ryan, R.; Perez, O. The removal of arsenic from drinking water and associated costs: The Chilean case. In Interdisciplinary Perspectives on Drinking Water Risk Assessment and Management; IAHS Publication: Oxfordshire, UK, 2000; Volume 260, pp. 17–25. [Google Scholar]
- Cortina, J.L.; Litter, M.I.; Gibert, O.; Valderrama, C.; Sancha, A.M.; Garrido, S.; Ciminelli, V.S.T. Latin American experiences in arsenic removal from drinking water and mining effluents. In Innovative Materials and Methods for Water Treatment-Separation of Cr and As; CRC Press: Boca Raton, FL, USA; Taylor and Francis Group: Oxfordshire, UK, 2016; Chapter 22; pp. 391–416. [Google Scholar]
- Steinmaus, C.M.; Ferreccio, C.; Acevedo Romo, J.; Yuan, Y.; Cortes, S.; Marshall, G.; Moore, L.E.; Balmes, J.R.; Liaw, J.; Golden, T.; et al. Drinking Water Arsenic in Northern Chile: High Cancer Risks 40 Years after Exposure Cessation. Cancer Epidemiol Biomark. Prev. 2013, 22, 623–630. [Google Scholar] [CrossRef] [Green Version]
- Sancha, A.M. Review of coagulation technology for removal of arsenic: Case of Chile. J. Health Popul. Nutr. 2006, 24, 267–272. [Google Scholar]
- SiSS Superintendencia de Servicios Sanitarios. Estudio Tarifario Intercambio Empresas de Servicios Sanitarios II Región: Aguas Antofagasta S.A., Tratacal S.A. Y Econssa Chile S.A., Periodo 2016–2021; SiSS Superintendencia de Servicios Sanitarios: Santiago, Chile, 2016; p. 58.
- CAUSSE. Modelamiento sistema de producción de agua potable Gran Sistema Norte ADASA. Planta Tratamiento PFCT (Cerro Topater); CAUSSE: Santiago, Chile, 2016; p. 34. [Google Scholar]
- Sancha, A.M.; O’Ryan, R. Managing Hazardous Pollutants in Chile: Arsenic. In Reviews of Environmental Contamination and Toxicology; Whitacre, D.M., Ed.; Springer Science + Business Media: Berlin/Heidelberg, Germany, 2008; Volume 196, p. 123. [Google Scholar] [CrossRef]
- Granada, J.; Godoy, D.; Cerda, W. Conversión de procesos en plantas de filtros abatidoras de arsénico para lograr residuales menores a 0.01 mg/L. In Proceedings of the XV Congreso de Ingeniería Sanitaria y Ambiental, AIDIS Chile, Concepción, Chile, 1–3 October 2003; p. 17. [Google Scholar]
- Šteflová, M.; Koop, S.H.A.; Fragkou, M.C.; Mees, H. Desalinated drinking-water provision in water-stressed regions: Challenges of consumer-perception and environmental impact lessons from Antofagasta, Chile. Int. J. Water Resour. Dev. 2021, 38, 742–765. [Google Scholar] [CrossRef]
- Burk, R.L.; Dixon, M.B.; Kim-Hak, D.; Martiz Vega, P. A comparison of three reverse osmosis membranes at La Chimba desalination plant, Antofagasta, Chile. In Proceedings of the International Desalination Association World Congress on Desalination and Water Reuse, Tianjin, China, 20–25 October 2013; p. 6. [Google Scholar]
- Blanco, E.; Donoso, G. Agua potable rural: Desafíos para la provisión sustentable del recurso. Actas de Derecho de Aguas 2016, 6, 63–79. [Google Scholar]
- Correa-Parra, J.; Vergara-Perucich, J.F.; Aguirre-Nuñez, C. Water Privatization and Inequality: Gini Coefficient for Water Resources in Chile. Water 2020, 12, 3369. [Google Scholar] [CrossRef]
- Amulén, la Fundación del Agua. Pobres De Agua. Radiografía Del Agua Rural De Chile: Visualización De Un Problema Oculto. 2019, p. 104. Available online: http://derechoygestionaguas.uc.cl/es/publicaciones/libros/451-pobres-de-agua-radiografia-del-agua-potable-rural-en-chile-visualizacion-de-un-problema-oculto (accessed on 29 September 2022).
- Villarroel Novoa, C. Asociaciones Comunitarias De Agua Potable Rural En Chile: Diagnóstico Y Desafíos; Grafica Andes Ltd.: Santiago, Chile, 2012; p. 24. ISBN 978-956-8299-01-9. [Google Scholar]
- Suarez Delucchi, A.A. “At-home ethnography”: Insider, outsider and social relations in rural drinking water management in Chile. J. Organ. Ethnogr. 2018, 7, 199–211. [Google Scholar] [CrossRef]
- Budds, J. Securing the market: Water security and the internal contradictions of Chile’s Water Code. Geoforum 2020, 113, 165–175. [Google Scholar] [CrossRef]
- Prieto, M. Bringing water markets down to Chile’s Atacama Desert. Water Int. 2016, 41, 191–212. [Google Scholar] [CrossRef]
- Donoso, G.; Calderón, C.; Silva, M. Informe Final De Evaluación. Infraestructura Hidráulica De Agua Potable Rural (APR); Ministerio de Obras Públicas: Santiago, Chile; Dirección de Obras Hidráulicas: Talca, Chile, 2015; p. 152.
- Andess, A.G. Sistemas de Agua Potable Rural (APR). 2018, p. 105. Available online: http://www.andess.cl/wp-content/uploads/2017/12/Andess-Chile-Informe-APR-web.pdf (accessed on 28 September 2022).
- Calama: Finaliza La Instalación Del Sistema De Agua Potable Rural En Chunchuri. Available online: https://www.soychile.cl/Calama/Sociedad/2014/02/07/229956/Calama-finaliza-la-instalacion-del-sistema-de-Agua-Potable-Rural-en-Chunchuri.aspx (accessed on 29 September 2022).
- Noticias De La Región-MOP Ejecuta Más De $680 Millones En Proyectos De Agua Potable Rural. Available online: http://antofagasta.mop.cl/noticias/Paginas/DetalledeNoticias.aspx?item=415 (accessed on 29 September 2022).
- MOP Inició Construcción De Nuevo Sistema De Agua Potable Rural En Sector Verdes Campiñas. Available online: https://www.timeline.cl/mop-inicio-construccion-de-nuevo-sistema-de-agua-potable-rural-en-sector-verdes-campinas/ (accessed on 29 September 2022).
- Aprueban Estudio Para Concretar Captación Y Tratamiento De Agua Potable En La Localidad De CA.spana. Available online: https://elamerica.cl/2020/11/10/aprueban-estudio-para-concretar-captacion-y-tratamiento-de-agua-potable-en-la-localidad-de-caspana/ (accessed on 29 September 2022).
- Garrido-Márquez, A. Experiencia en Arsénico en Sistemas de Agua Potable Rural, Ministerio de Obras Públicas. 2014. Available online: https://docplayer.es/51511853-Experiencia-en-arsenico-en-sistemas-de-agua-potable-rural.html (accessed on 28 September 2022).
- Aguas Antofagasta Grupo EPM Apoya Con Suministro Adicional a Ayquina Para El Desarrollo De Su Festividad Religiosa. Available online: http://www.region2.cl/aguas-antofagasta-grupo-epm-apoya-con-suministro-adicional-a-ayquina-para-el-desarrollo-de-su-festividad-religiosa/ (accessed on 29 September 2022).
- Comunidades De Ayquina Y Cupo Reciben Aporte De Agua Potable De Minera El Abra. Available online: https://elamerica.cl/2020/08/05/comunidades-de-ayquina-y-cupo-reciben-aporte-de-agua-potable-de-minera-el-abra/ (accessed on 29 September 2022).
- Codelco Y Dirección De Obras Hidráulicas Firman Convenio Para Proyectos De Agua Potable Y Servicios. Available online: https://www.guiaminera.cl/codelco-y-direccion-de-obras-hidraulicas-firman-convenio-para-proyectos-de-agua-potable-y-servicios/ (accessed on 29 September 2022).
- Mejorarán El Sistema De Agua Potable En Chiu Chiu Y Lasana. Available online: http://www.chilesustentable.net/2017/07/mejoraran-el-sistema-de-agua-potable-en-chiu-chiu-y-lasana/ (accessed on 29 September 2022).
- Region2.cl, Gobierno Dotará De Dos Nuevas Plantas De Agua Potable En Lasana Y Chiu Chiu. Available online: http://www.region2.cl/gobierno-dotara-de-dos-nuevas-plantas-de-agua-potable-en-lasana-y-chiu-chiu/ (accessed on 29 September 2022).
- CAPRA, Comité de Agua Potable Rural de San Pedro de Atacama. Memoria y Balance, año 2016. 2016, p. 33. Available online: https://www.chululo.cl/incs/docs/download.php?f=memoria_capra_2016.pdf (accessed on 28 September 2022).
- 85% De Avance Muestra Obra De Agua Potable Para San Pedro De Atacama. Available online: https://elamerica.cl/2022/07/21/85-de-avance-muestra-obra-de-agua-potable-para-san-pedro-de-atacama/ (accessed on 29 September 2022).
- Chululo, La Localdad De Río Grande Contará Con Una Planta De Agua Potable. Available online: http://www.chululo.cl/pages/recortes2.php?id=25072015_055135 (accessed on 29 September 2022).
- Chululo, Toconao Inauguró Su Nueva Planta De Tratamiento De Arsénico. Available online: https://www.chululo.cl/pages/recortes2.php?id=04092014_205303 (accessed on 29 September 2022).
- Chululo, El Agua Potable Rural De Socaire. Un Proceso Menos Claro Que El Agua. Available online: http://www.chululo.cl/pages/reportajes2.php?id=31082011_030731 (accessed on 29 September 2022).
- MOP Inspeccionó Obras De Conservación a Red De Suministro De Agua En Peine Y Socaire. Available online: https://elamerica.cl/2021/02/03/mop-inspecciono-obras-de-conservacion-a-red-de-suministro-de-agua-en-peine-y-socaire (accessed on 29 September 2022).
- Municipio De San Pedro Identifica Mejoras Que Se Ejecutarán En Planta De Agua Potable DE Socaire. Available online: https://www.municipiosanpedrodeatacama.cl/municipio-de-san-pedro-identifica-mejoras-que-se-ejecutaran-en-planta-de-agua-potable-de-socaire/ (accessed on 29 September 2022).
- Gobierno Entregó Bono De Agua Potable Rural a Localidad De Peine. Available online: https://goreantofagasta.cl/gobierno-entrego-bono-de-agua-potable-rural-a-localidad-de-peine/goreantofagasta/2020-08-12/183525.html (accessed on 29 September 2022).
- Acuña, V.; Tironi, M. Extractivist droughts: Indigenous hydrosocial endurance in Quillagua, Chile. Extr. Ind. Soc. 2022, 9, 101027. [Google Scholar] [CrossRef]
- Region2.cl, Gobierno Coordina Con Comunidad Puesta En Marcha De Nuevo Sistema De Agua Potable Rural. Available online: http://www.region2.cl/gobierno-coordina-con-comunidad-puesta-en-marcha-de-nuevo-sistema-de-agua-potable-rural/ (accessed on 29 September 2022).
- Gobierno Licita Proyecto Para Instalar Planta De Tratamiento De Agua Potable En Quillagua. Available online: http://www.intendenciaantofagasta.gov.cl/noticias/gobierno-licita-proyecto-para-instalar-planta-de-tratamiento-de-agua-potable-en-quillagua/ (accessed on 29 September 2022).
- Region2.cl, Construcción Del Sistema De Agua Potable Rural De Paposo Está En Su Etapa Final. Available online: http://www.region2.cl/construccion-del-sistema-de-agua-potable-rural-de-paposo-esta-en-su-etapa-final/ (accessed on 29 September 2022).
- Campero, C.; Harris, L.M. The Legal Geographies of Water Claims: Seawater Desalination in Mining Regions in Chile. Water 2019, 11, 886. [Google Scholar] [CrossRef]
NCh409-2005 | Toconce | Lequena | Quinchamale | San Pedro | Puente Negro | |
---|---|---|---|---|---|---|
Alta Cordillera System | ||||||
Altitude, m a.s.l. a | - | 3335 | 3245 | 3056 | 3290 | 2284 |
Flow rate, L/s a | - | 610 c (470) d | 576 c (550) d | 400 c (300) d | 90 | 150 c (69) d |
As, mg/L b | 0.01 | 0.82 | 0.25 | 0.18 | 0.50 | 1.24 |
Cl, mg/L b | 400 | 135 | 163 | 429 | 235 | 2144 |
pH b | 6.5–8.5 | 8.17 | 8.37 | 8.00 | 8.64 | 8.14 |
Turbidity, NTU b | 2 | 1.015 | 6.450 | 4.782 | NA | NA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruffino, B.; Campo, G.; Crutchik, D.; Reyes, A.; Zanetti, M. Drinking Water Supply in the Region of Antofagasta (Chile): A Challenge between Past, Present and Future. Int. J. Environ. Res. Public Health 2022, 19, 14406. https://doi.org/10.3390/ijerph192114406
Ruffino B, Campo G, Crutchik D, Reyes A, Zanetti M. Drinking Water Supply in the Region of Antofagasta (Chile): A Challenge between Past, Present and Future. International Journal of Environmental Research and Public Health. 2022; 19(21):14406. https://doi.org/10.3390/ijerph192114406
Chicago/Turabian StyleRuffino, Barbara, Giuseppe Campo, Dafne Crutchik, Arturo Reyes, and Mariachiara Zanetti. 2022. "Drinking Water Supply in the Region of Antofagasta (Chile): A Challenge between Past, Present and Future" International Journal of Environmental Research and Public Health 19, no. 21: 14406. https://doi.org/10.3390/ijerph192114406
APA StyleRuffino, B., Campo, G., Crutchik, D., Reyes, A., & Zanetti, M. (2022). Drinking Water Supply in the Region of Antofagasta (Chile): A Challenge between Past, Present and Future. International Journal of Environmental Research and Public Health, 19(21), 14406. https://doi.org/10.3390/ijerph192114406