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Abstract: The heavy pressure to improve CO2 emission control in industry requires the identification
of key sub-sectors and the clarification of how they mitigate CO2 emissions through various actions.
Focusing on 30 Chinese provincial regions, this study quantifies the contribution of each industrial
sector to regional CO2 mitigation by combining the logarithmic mean Divisia index with attribution
analysis and extract the key sectors of CO2 mitigation for each region. Results indicate that during
2010–2019, significant emission reduction was achieved through energy intensity (74%) in Beijing,
while emission reductions were attained through industrial structure changes for Anhui (50%), Henan
(45%), and Chongqing (45%). The contribution to emission reduction through energy structures is not
significant. The production and supply of power and heat (PSPH) is a central factor in CO2 mitigation
through all three inhibitive factors. Petroleum processing and coking (PPC) generally contributes to
emission reduction through energy structures, while the smelting and pressing of ferrous metals (SPMF)
through changes in industrial structures and energy intensity. PSPH and SPMF, in most regions,
have not achieved the emission peak. Except in the case of coal mining and dressing (CMD), CO2

emissions in other key sectors have almost been decoupled from industrial development. CMD
effectively promotes CO2 mitigation in Anhui, Henan, and Hunan, with larger contribution of PPC
in Tianjin, Xinjiang, Heilongjiang, and that of smelting and pressing of nonferrous metals in Yunnan
and Guangxi. The findings help to better identify key sectors across regions that can mitigate CO2

emissions, while analyzing the critical emission characteristics of these sectors, which can provide
references to formulating region- and sector-specific CO2 mitigation measures for regions at different
levels of development.

Keywords: CO2 emissions; industry; attribution analysis; key sectors; emission peak

1. Introduction

Facing the increasingly severe threat of global climate change, active measures are
being invoked around the world to meet this realistic challenge of reducing CO2 emis-
sions [1–3]. With rapid global industrialization, industry has become the main source of
CO2 emissions. As the International Energy Agency (IEA) reported, existing industrial
plants and coal-fired power plants around the world will emit about 600 billion tons of
CO2 over the next five years [4]. In the context of meeting more stringent climate targets,
the control of industrial CO2 emissions should be placed at a prioritized position.

At present, studies on industrial CO2 emissions have mainly focused on the influenc-
ing factors of emissions and the prediction of emission peak. A great number of studies
employed the methods, such as logarithmic mean Divisia index (LMDI) [5,6], stochastic
impacts by regression on population, affluence, and technology (STIRPAT) [7,8] and struc-
tural decomposition analysis (SDA) [9,10] to identify the influencing factors of industrial
CO2 emissions. The promotive and inhibitive drivers of emissions were explored at the
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national [11,12], provincial [13,14], regional [15,16], and sectoral levels [17,18]. The main
factors identified included: economic growth, industrial structure, energy structure, energy
intensity, population, urbanization, and so on [19–22]. Economic growth is considered as a
primary contributor to increasing emissions, while energy intensity significantly inhibits
emissions [23,24]. In addition, other factors, such as energy-saving technology, produc-
tion efficiency, and research and development (R&D) efficiency, have also been gradually
incorporated by researchers into the critical factors [25,26].

Recently, CO2 emission peak has been frequently described and analyzed in the pre-
diction of emissions in the scenarios of future economic development. Most studies believe
that the CO2 emissions of China could reach the peak before 2030 [27–29], and industry
plays a leading role in controlling emissions, as well as in achieving an earlier peak [30]. In-
dustrial CO2 emissions have a potential to peak by 2025 through policies such as optimizing
the industrial structure and eliminating overcapacity [31,32]. More subdivided industrial
sectors, such as nonferrous metals industry [33], chemical industry [34], power generation
industry [35], and steel and cement industries [36] have been estimated to reach the peak
of their emissions in different years, and show diverse emission reduction potentials. In
numerous scenario analyses, the growth and differences of energy consumption and CO2
emissions were predicted and compared under different settings of evolution of socioeco-
nomic situations, for which corresponding policy suggestions were put forward. Ref. [37]
believed that under the current policy scenario, the emissions of the power industry in
China cannot reach their peak before 2030, the findings of which align with that of Meng
et al. [38] based on the prediction of power industry’s emissions in a variety of scenarios.
Li et al. [39] assessed the CO2 reduction potential of the iron and steel industries in China in
six scenarios, providing a feasible path for the industries to achieve the emission reduction
goal by 2030.

Reducing industrial CO2 emissions is the key to reaching the peak of the whole coun-
try’s emissions at an earlier date, which requires a combination of technological innovation
and policy guidance. Specific to various sectors, clean coal technology can provoke cleaner
power generation development by improving the efficiency of coal utilization for thermal
power generation [40]. Waste heat energy recovery technology, hydrogen-based steelmak-
ing, and iron-ore electrolysis technologies are effective ways for sustainable green iron and
steel manufacturing [41]. Technology is only one part of the blueprint for emission control,
and putting in place the right policies can provide incentives for technology deployment
and accelerate emission reduction. For example, the carbon emission trading scheme
can stimulate effective responses across all channels, which is an effective approach to
achieving emission reduction targets at a sub-national scale [42,43]. The effects of carbon
pricing on critical earth system processes have also been explored, as well as the impact
on CO2 emissions [44]. Given the continuous transformation of development mode and
the adjustment of industrial structures, the emission characteristics of different subdivided
industrial sectors are diverse. Technological innovation and policy formulation targeting
the key sectors are the guarantee of achieving the emission peak as soon as possible. Thus,
identifying which sectors deserve prioritized attention is the prerequisite for addressing
these issues.

Based on the multiplicative decomposition of LMDI, the attribution analysis traces the
change of decomposition factors in various sub-sectors, and, thus, quantifies the contribu-
tion of various sectors to variations in CO2 emissions, which provides a methodological
support for the identification of the “key sectors”. At present, this method has been used
to identify the key sectors in terms of energy intensity [45,46], CO2 intensity [47,48], air
pollutant emissions [49], etc. When evaluating the emission performance of regional energy-
related activities, for example in power generation, regional attribution analysis was also
used to highlight regional differences of emission reduction [50]. Attribution analysis can
ascribe the contributions of the driving factors to some individual components, such as
sub-sectors or sub-regions, laying a foundation for the formulation of differentiated policies
for different sectors or regions.
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The ability of the industry to reach the peak of CO2 emissions ahead of schedule is the
key to China’s commitment to address climate change. Some problems remain to be further
explored, beyond a number of extant studies on industrial CO2 emissions. First, the urgency
to mitigate emissions should be differentiated among industrial sectors. Identifying the key
sectors in terms of larger contribution to CO2 mitigation is the basis for an orderly emission
reduction route. However, the identification of the key sectors in existing studies mainly
relies on qualitative analysis or direct observation based on numerical results, lacking a
methodological basis. In addition, industrial energy consumption and technological level
vary considerably across the provincial regions as a result of different levels of industrial
development and relevant policies. This leads to differences in the key sectors across
regions, as well as in the emission characteristics of these sectors, including the decoupling
from industrial development and the emission peaking status (having peaked or not). The
inadequacy in clarification of the above hinders the formulation of pertinent mitigation
measures for industrial CO2 emissions.

In light of the above, the CO2 emissions of industry in China’s 30 provincial regions
are sorted into contributions from six major influencing factors through the LMDI method,
and those inhibiting emissions in each region are identified. Then, the contributions of
industrial sectors to variations in the inhibitive effects are quantified by the attribution
analysis to extract the key sectors that significantly contribute to CO2 mitigation. Finally,
the emission characteristics of the key sectors in terms of the decoupling from industrial
development and peaking status in each region are analyzed. The novelty of this paper
lies in (1) tracking the key industrial sectors through the inhibitive driving effects on
CO2 mitigation in each provincial region in China; (2) inventorying the critical emission
characteristics of the key sectors in each region to facilitate the formulation of differentiated
emission control measures.

2. Methods
2.1. Divisia Decomposition Analysis

The LMDI decomposition method has two forms: addition and multiplication [51].
Compared with other index decomposition methods, LMDI has the advantages of wider
application scope and easier interpretation of results [52]. In order to conduct the attribution
analysis, the LMDI multiplication decomposition method proposed by Choi and Ang [53] is
adopted here. The CO2 emissions are decomposed into the Kaya identity [54] expressed as:

C = ∑i ∑j Cij =
Cij

Eij
×

Eij

Ei
× Ei

Qi
× Qi

Q
× Q

P
× P (1)

where C is total CO2 emissions of the industry; i denotes an industrial sector and j denotes
an energy type; E is energy consumption; Qi is the industrial output of sector i and Q is
total industrial output of a region; P is population of a region; Cij/Eij denotes the CO2
emission coefficient of energy j in sector i (EDij); Eij/Ei denotes the energy structure of
sector i (ESij); Ei/Qi denotes the energy intensity of sector i (EIi); Qi/Q denotes industrial
structure (ISi); Q/P denotes per capita industrial development level (IO).

The variations in total CO2 emission over the period [t− 1, t] can be calculated as follows:

Ct

Ct−1
= Dt−1,t

ED × Dt−1,t
ES × Dt−1,t

EI × Dt−1,t
IS × Dt−1,t

IO × Dt−1,t
P (2)

where Dt−1,t
ED , Dt−1,t

ES , Dt−1,t
EI , Dt−1,t

IS , Dt−1,t
IO and Dt−1,t

P denote the variations in CO2 emissions
induced by emission coefficient, energy structure, energy intensity, industrial structure,
per capita industrial development level, and population, respectively. The variables in
Equation (2) are calculated as follows:

Dt,t−1
ED = exp(

I

∑
i=1

J

∑
j=1

ωs−v
ij ln(

EDij,t

EDij,t−1
)) (3)
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Dt,t−1
ES = exp(

I

∑
i=1

J

∑
j=1

ωs−v
ij ln(

ESij,t

ESij,t−1
)) (4)

Dt,t−1
EI = exp(

I

∑
i=1

J

∑
j=1

ωs−v
ij ln(

EIij,t

EIij,t−1
)) (5)

Dt,t−1
IS = exp(

I

∑
i=1

J

∑
j=1

ωs−v
ij ln(

ISij,t

ISij,t−1
)) (6)

Dt,t−1
IO = exp(

I

∑
i=1

J

∑
j=1

ωs−v
ij ln(

IOij,t

IOij,t−1
)) (7)

Dt,t−1
P = exp(

I

∑
i=1

J

∑
j=1

ωs−v
ij ln(

Pij,t

Pij,t−1
)) (8)

where

ωs−v
ij =

L(Cij,t/Ct, Cij,t−1/Ct−1)

I
∑

i=1

J
∑

j=1
L(Cij,t/Ct, Cij,t−1/Ct−1)

(9)

and L(A, B) = (A − B)/(lnA − lnB) represents the logarithmic mean function.
The multi-period divisia decomposition expresses total emission variations over the

period [0, T], which can be expressed as:

CT
C0

=
T
∏

t=1

Ct
Ct−1

=
T
∏

t=1
(Dt,t−1

ED × Dt,t−1
ES × Dt,t−1

EI × Dt,t−1
IS × Dt,t−1

IO × Dt,t−1
P )

= D0,T
ED × D0,T

ES × D0,T
EI × D0,T

IS × D0,T
IO × D0,T

P

(10)

where D0,T
ED, D0,T

ES , D0,T
EI , D0,T

IS , D0,T
IO , and D0 ,T

P denote the corresponding cumulative products
of single-period decomposed variables.

2.2. Attribution Analysis

Attribution analysis is used to further explore the contribution of individual compo-
nents to the effects of influencing factors [53]. Based on the results of the LMDI multi-
plicative decomposition, this method can attribute the variations in decomposition factors’
effects to all terminal sectors. For example, the single-period attribution results of energy
intensity can be expressed as:

EIt
EIt−1

− 1 =
I

∑
i=1

J
∑

j=1
rij(

EIi,t
EIi,t−1

− 1)

rij =

ωs−v
ij EIi,t−1

L(EIi,t ,EIi,t−1EIt/EIt−1)

∑I
i=1 ∑J

j=1

ωs−v
ij EIi,t−1

L(EIi,t ,EIi,t−1EIt/EIt−1)

(11)

where
J

∑
j=1

rij(
EIi,t

EIi,t−1
− 1) represents the contribution of sector i to the variation of energy

intensity over the period [t − 1, t]; rij denotes the weight of energy type j in sector i.
According to the single-period attribution results, the contribution of each sector to

variations in energy intensity over the period [0, T] are expressed as:
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EIt
EI0
− 1 =

I
∑

i=1

J
∑

j=1

T
∑

t=1

EIt−1
EI0

rij,t−1,t(
EIi,t

EIi,t−1
− 1)

rij,t−1,t =

ωs−v
ij,t−1,tEIi,t−1

L(EIi,t ,EIi,t−1EIt/EIt−1)

∑I
i=1 ∑J

j=1

ωs−v
ij,t−1,tEIi,t−1

L(EIi,t ,EIi,t−1EIt/EIt−1)

(12)

where
J

∑
j=1

T
∑

t=1

EIt−1
EI0

rij,t−1,t(
EIi,t

EIi,t−1
− 1) represents the contribution of sector i to the multi-

period variations in energy intensity effect over the period [t − 1, t]. Similarly, Equations
(11) and (12) can be used to describe the contribution of a sector to variations in other
influencing factors.

2.3. Decoupling Index

Most researchers have applied the decoupling model to confirm whether environ-
mental issues have been decoupled from economic growth [55–57]. At present, there are
two widely used models in this field. Compared with the Organization for Economic
Co-operation and Development (OECD) decoupling model, the Tapio decoupling model
is more widely used due to low data requirements, simple operation, and clear results.
The Tapio decoupling model is used in this study to analyze if CO2 emissions of these key
sectors have been decoupled from industrial output.

γ =
∆C/C
∆Y/Y

(13)

where γ denotes the decoupling index between CO2 emissions and industrial output; Y
represents industrial output; 4C and 4Y denote the variations in CO2 emissions and
industrial output, respectively. Different levels of decoupling state are presented in Table 1.

Table 1. Levels of decoupling state [58].

4C/C 4Y/Y γ Decoupling State

<0 >0 γ < 0 Strong decoupling
>0 >0 0.8 > γ ≥ 0 Weak decoupling
>0 >0 1.2 ≥ γ ≥ 0.8 Expansive coupling
>0 >0 γ > 1.2 Expansive negative decoupling
>0 <0 γ < 0 Strong negative decoupling
<0 <0 0.8 > γ ≥ 0 Weak negative decoupling
<0 <0 1.2 ≥ γ ≥ 0.8 Recessive coupling
<0 <0 γ > 1.2 Recessive decoupling

Strong decoupling: CO2 emissions decrease while GDP increases; Weak decoupling: CO2 emissions are growing
more slowly than GDP; Expansive decoupling: CO2 emissions increase in step with GDP; Expansive negative
decoupling: CO2 emissions are growing much faster than GDP; Strong negative decoupling: CO2 emissions
increase while GDP decreases; Weak negative decoupling: CO2 reduction is slower than GDP recession; Recessive
coupling: CO2 emissions are declining at the same speed as GDP; Recessive decoupling: CO2 emissions are falling
much faster than GDP.

2.4. Data and Study Area

The study period ranges from 2010 to 2019 considering the availability of the latest
data for each provincial region. Overall, the study period can reflect the situations in the
12th and 13th five-year plan periods. Due to the absence of economic data for subdivided
industrial sectors, LMDI-attribution analysis and decoupling analysis are only carried out
until 2017. The data on energy consumption and CO2 emissions during this period are
obtained from the datasets published by China Emission Accounts and Datasets (CEADs)
inventory [59–61]. The data on industrial output and population of 30 provincial regions
are gathered from the China Statistical Yearbooks [62]. To accommodate the price inflation,
the industrial output data are normalized at the 2010 constant price.
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The level of industrial development in China is uneven across regions, with Guang-
dong, Jiangsu, Shandong, Zhejiang, and other eastern coastal regions having a higher
level than the central and western regions. However, the pace of industrial development
in the central and western regions has been accelerated, in part supported by enhanced
policies and capital investment. Meanwhile, each region has its own primary resources
for development, for example, coal mining resources are concentrated in Shanxi, Inner
Mongolia, Shaanxi, and other regions; Heilongjiang, Shandong, and Liaoning are richer in
oil resources. In general, there are regional differences in the economy and resources; as a
result, it is of great significance to analyze key sectors at the provincial level.

3. Results
3.1. Decomposition Analysis of Industrial CO2 Emissions

The industrial CO2 emissions of 30 regions are decomposed by LMDI method accord-
ing to Equations (1)–(10). The results show that, in most regions, industrial development
and population have positive effects, while energy intensity and industrial structure have
negative effects, as illustrated in Figure 1. Industrial development is the most important
driver of emissions. The regions where the contribution of industrial development is larger
include Anhui, Guizhou, Jiangxi, Ningxia, Shaanxi, etc. These regions have a weaker eco-
nomic base, but are relatively rich in resources to boost industrial development. However,
the growth rate of industrial output of the developed regions, such as Beijing, Guang-
dong, Shanghai, and Zhejiang, is slowing down due to stronger economic foundation.
The promotive effects of industrial development in these regions are not very obvious.
The contribution of population is weaker than that of industrial development. Except
for Heilongjiang, Jilin, and Liaoning, population contributes positively to emissions in
most regions. In recent years, the low birth rate and serious outflow of population in the
Northeast China are responsible for this situation.

1 
 

Figure 1. LMDI decomposition results of industrial CO2 emissions of regions during 2010–2017.
ES: energy structure; IS: industrial structure; EI: energy intensity; IO: per capita industrial develop-
ment level; P: population.
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Attributed to the goals for energy intensity and CO2 emission intensity control proposed
successively in the 11th and 12th five-year plans, the effects on energy conservation and
emission reduction are gradually emerging, which impels the inhibitive effect of energy inten-
sity in most regions (except Heilongjiang and Qinghai) during the study period. Industrial
structure is also an inhibitive factor in most regions. However, industrial structure in regions,
such as Hainan, Liaoning, and Xinjiang, promotes emissions. Taking Liaoning as an example,
the contribution rate of industrial structure is as high as 53%. This is possibly triggered by
that the heavy industrial sectors with larger emissions, such as SPFM, have an upward trend
in industrial output (the abbreviations of sectors are provided in Table 2). Meanwhile, the
proportion of industrial output of the light industrial sectors is declining. As a result, industrial
structure has a great promotive effect in Liaoning. As for energy structure, the inhibitive effect
is slightly obvious in regions rich in renewable energy, such as Qinghai, Guangxi, and Yunnan.
However, seen overall, the effect of energy structure is insignificant.

Table 2. Sector classification and abbreviation.

Code Sector Abbreviation

1 Coal Mining and Dressing CMD
2 Petroleum and Natural Gas Extraction PNGE
3 Ferrous Metals Mining and Dressing FMMD
4 Nonmetal Minerals Mining and Dressing NMMD
5 Food Processing FPS
6 Food Production FP
7 Beverage Production BP
8 Tobacco Processing TP
9 Textile Industry TI
10 Garments and Other Fiber Products GOFP
11 Leather, Furs, Down and Related Product LFDRP
12 Timber Processing, Bamboo, Cane, Palm Fiber, and Straw Products TPBCP
13 Furniture Manufacturing FM
14 Papermaking and Paper Products PPP
15 Printing and Record Medium Reproduction PRMR
16 Cultural, Educational and Sports Articles CESA
17 Petroleum Processing and Coking PPC
18 Raw Chemical Materials and Chemical Products RCMCP
19 Medical and Pharmaceutical Products MPP
20 Chemical Fiber CF
21 Rubber and Plastic Products RPP
22 Nonmetal Mineral Products NMP
23 Smelting and Pressing of Ferrous Metals SPFM
24 Smelting and Pressing of Nonferrous Metals SPNM
25 Metal Products MP
26 Ordinary Machinery OM
27 Equipment for Special Purposes ESP
28 Transportation Equipment TE
29 Electric Equipment and Machinery EEM
30 Electronic and Telecommunications Equipment ETE
31 Instruments, Meters, Cultural and Office Machinery IMCOM
32 Other Manufacturing Industry OMI
33 Scrap and waste SW
34 Production and Supply of Power and Heat PSPH
35 Production and Supply of Gas PSG
36 Production and Supply of Tap Water PSTW

3.2. Attribution Analysis of Sectors’ Contributions to CO2 Mitigation

According to the results of LMDI decomposition, energy structure, industrial structure,
and reduction in energy intensity contribute significantly to CO2 mitigation in most regions.
However, there are still some differences in specific inhibitive factors across regions. For ex-
ample, the above three factors all have an inhibitive effect on CO2 emissions in Anhui, while
only industrial structures and reduction in energy intensity contribute to CO2 mitigation
in Guangdong. Therefore, 30 regions are divided into six groups according to the specific
inhibitive factors for each region. On this basis, the variations in the effects of energy
structure, industrial structure and energy intensity are further attributed to 36 subdivided
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industrial sectors in each region. Figure 2 combined with Tables S1–S3 in Supplementary
Material shows the attribution results.

 

2 
Figure 2. Attribution of CO2 mitigation to the industrial sectors through energy structure, industrial
structure, and energy intensity. (a) Group 1 (the inhibitive factors are energy structure, industrial
structure, and energy intensity). (b) Group 2 (the inhibitive factors are industrial structure and energy
intensity). (c) Group 3 (the inhibitive factors are energy structure and energy intensity). (d) Group 4
(the inhibitive factor is energy structure). (e) Group 5 (the inhibitive factor is industrial structure).
(f) Group 6 (the inhibitive factor is energy intensity).

Regions in Group 1 include Anhui, Chongqing, Fujian, Guangxi, Jilin, Jiangsu, Shan-
dong, Shaanxi, Shanghai, Sichuan, Tianjin, and Yunnan, in which energy structure, indus-
trial structure, and energy intensity all make a contribution to emission reduction. The
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contribution of PSPH is −16.38% though energy structure in Tianjin, and that of PPC is
−13.19% in Shaanxi, which are obviously higher than that of other sectors. Sectors that
significantly contribute to emission reduction through industrial structure in Group 1 ap-
pear to SPFM in Guangxi (−41.7%) and PSPH in Anhui (−35.91%). Sectors contributing
to the effects of energy intensity are basically concentrated in PSPH in each region, with
the highest contribution in Guangxi (−69.44%). Industrial structure and energy intensity
contribute to CO2 mitigation in regions in Group 2, including Guangdong, Guizhou, Hebei,
Henan, Hubei, Hunan, Inner Mongolia, Jiangxi, Ningxia, and Shanxi. PSPH is the main
contributor to the variations in industrial structure, followed by CMD in Henan (−7.49%)
and Hunan (−10.15%), and SPFM in Hebei (−11.91%) and Hubei (−11.85%). PSPH in
Hunan (−17.66%) makes a greater contribution to variations in energy intensity, while
SPFM in this group promotes CO2 mitigation through energy intensity changes compared
with Group 1. Group 3 includes Hainan, Liaoning, Xinjiang, and Zhejiang, where energy
structures and energy intensity changes are the main inhibitive factors. PSPH is the main
contributor to emission reduction in this group, whatever through which factors. Mean-
while, PPC in Liaoning (−1.87%) and Xinjiang (−2.62%) also have a great impact. Qinghai
is the only one region in Group 4, where the contribution of PSPH to variations in energy
structure is −25.66%. PSPH (−9.28%) and PPC (−6.80%) in Heilongjiang contribute to
CO2 mitigation through industrial structure only, and this region is divided into Group 5.
Energy intensity is the only inhibitive factor in Group 6. PSPH in Beijing (−60.00%) and
Gansu (−28.72%) are the main contributors.

3.3. Key Industrial Sectors for CO2 Mitigation

Sectors that considerably propel CO2 mitigation through the inhibitive effects are
defined as the key sectors in this study, which are the main forces of emission reduction
deserving more attention in policy-making. However, the key sectors under different
inhibitive factors are diverse, thus forming a combination of regional key sectors, as shown
in Figure 3. 

3 

 

Figure 3. Key industrial sectors for CO2 mitigation in each region. (a) Group 1 (the inhibitive factors
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are energy structure, industrial structure and energy intensity). (b) Group 2 (the inhibitive factors
are industrial structure and energy intensity). (c) Group 3 (the inhibitive factors are energy structure
and energy intensity). (d) Group 4, 5, and 6 (the inhibitive factors are energy structure, industrial
structure, and energy intensity, respectively). Each string of connected circles in the figure indicates
that the sector (the smallest circle) has an inhibitive effect on regional (the middle circle) industrial
CO2 emissions through an inhibitive factor (the largest orange circle).

From the perspective of inhibitive factors, the key sectors under energy structure in
Group 1 are concentrated in PPC and PSPH, while the key sectors under industrial structure
and energy intensity are concentrated in SPFM and PSPH. The inhibitive factors of Group
2 are industrial structure and energy intensity, with the key sectors also concentrated in
SPFM and PSPH. In Group 3, PSPH is the key sector for all regions under energy intensity,
and the key sectors under energy structure also include PPC and PSPH. There is only one
inhibitive factor in Group 3 to Group 5, with PSPH as the main key sector in three groups.

From the perspective of sectors, PSPH is the key sector for all regions, indicating that,
with the development of low-carbon power supply and decarbonization technologies, CO2
mitigation in PSPH is being promoted properly. It still has a great potential for further CO2
mitigation that will be the main force for deepening emission reduction in energy system
in the future. PPC and SPFM are also the key sectors for most regions. However, PPC
generally contributes to emission reduction through energy structure, while SPFM through
industrial structure and energy intensity. SPFM solidifies energy intensity improvement
through energy-saving technological transformation, such as reducing the use of coal
for iron making and smelting, and expanding clean energy use. PPC accelerates energy
structure adjustment through eliminating outdated production capacity, combined with
technological advancement, such as augmenting biofuel production. Other sectors, such
as CMD in Anhui, Sichuan, Chongqing, Henan, and Hunan promote emission reduction
mainly through industrial structure adjustment. NMP contributes to CO2 mitigation mainly
in Fujian, Sichuan, Chongqing, and Hubei through energy intensity changes. SPNM is the
main promoter of emission reduction in Guangxi and Yunnan.

3.4. Emission Characteristics of the Key Sectors for CO2 Mitigation

The critical emission characteristics, including decoupling from industrial develop-
ment and the peaking status in each region are analyzed so as to better compare the
emission status of the key sectors in different regions, with the results presented in Table 3.
The two columns under each sector represent the two emission characteristics. Seen overall,
in terms of either the number of key sectors that contribute to CO2 mitigation or the emis-
sion characteristics, the performance of the economically developed eastern coastal regions
is overall better than that of the economically underdeveloped central and western regions.

From the perspective of sector, except CMD whose emissions present recessive de-
coupling or negative decoupling, other key sectors in most regions have accomplished the
decoupling of emissions from industrial development. However, through the comparison
of the emission peaking status of regions, CMD is the one with the best situation among the
key sectors, while SPFM and PSPH in most regions have not peaked the emissions, espe-
cially PSPH, whose emissions in most regions are still on the rise. From the perspective of
region, Beijing and Shanghai have a small energy intensity although they have maintained
the rapid growth in industrial output, and the decoupling from industrial development
and the peaking status of the key sectors have been basically achieved through industrial
restructure. Emissions of most key sectors in Fujian, Jiangsu, Sichuan, and Tianjin have
been decoupled from industrial development, however without showing a clear trend
towards peaking. Hebei, Hubei, Jilin, and Shaanxi are heavy industrial regions in need
for transformation. The emissions of the key sectors have already turned a corner, but
present weak negative decoupling due to the downward growth rate of industrial output.
Some western regions, such as Guangxi and Xinjiang, fall behind in industrial development.
Emissions of the key sectors are in a state of negative decoupling, and the emission peaking
is yet to be realized.
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Table 3. Critical emission characteristics of the key industrial sectors of regions.

Coal Mining
and Dressing

Petroleum
Processing
and Coking

Nonmetal
Mineral
Products

Smelting and
Pressing of

Ferrous Metals

Smelting and
Pressing of

Nonferrous Metals

Production and
Supply of

Power and Heat

Group 1

Anhui RC # WD x WD x
Chongqing WND # WD # WD x

Fujian WD x SD # SD x
Guangxi WD x SND x SD x

Jilin EC # SD x SND x
Jiangsu WD x WD x

Shandong SD x WD x
Shaanxi END # WD x

Shanghai SD x RD # SD #
Sichuan RD # SD x SD #
Tianjin SD x SD x SD x
Yunnan RD x SD x SD x

Group 2

Guangdong SD x
Guizhou SD # WD x

Hebei WD x WND x
Henan RC # WD # SD x
Hubei SD # WND x SD x
Hunan RC # SD x SD x
Jiangxi WD # WD x WD x
Inner

Mongolia SD x END x

Ningxia SD x WD x WD x
Shanxi SD # SD x WD x

Group 3

Hainan WD x
Liaoning RD x RC x WD x
Xinjiang RD x EC x
Zhejiang WD x

Group 4 Beijing SD #
Gansu SD x

Group 5 Heilongjiang RD # WD x

Group 6 Qinghai WD #

SD (strong decoupling); WD (weak decoupling); EC (expansive coupling); END (expansive negative decoupling);
SND (strong negative decoupling); WND (weak negative decoupling); RC (recessive coupling); RD (recessive
decoupling); #: with an emission peak; x: without an emission peak.

4. Discussion

The attribution analysis reveals that sectors contributing to CO2 mitigation across
regions are mainly concentrated in PSPH, SPFM, and PPC, which is attributed to reinforced
government’s control over these sectors in recent years. Alongside energy efficiency
improvement and renewable energy development, these key sectors have basically realized
the decoupling from industrial development. While promoting CO2 mitigation, PSPH
also needs to meet the continuous growth of power demand. However, restricted by the
coal-dominated energy structure, the emissions of PSPH lag far from the peak, which is in
compliance with the results of Wen et al. [63]. The same situation happens to SPFM, which
is the second largest emitter following PSPH due to its large scale and production process
characteristics relying on fossil fuels.

There are differences in the key sectors and emission characteristics among regions.
Beijing, Qinghai, Shanghai, and Sichuan are among the minority of regions where PSPH
has achieved the emission peak. These regions are either at the forefront of economic
development or rich in clean energy. The promotion of power trading markets, and the
deployment of pumped storage and offshore power stations have prompted to improve
power generation efficiency. CMD is the key sector for Anhui, Chongqing, Henan, Hunan,
and other regions, in addition to the above sectors. The number of mines with small single
wells in these regions have reduced since the implementation of coal supply-side reform
because of the poor mining conditions. Meanwhile, the support of relevant policies, such as
controlling the total number of coal mines in Hunan, resolving overcapacity in Henan, as
well as putting forward coal-intelligence goals in Anhui and Henan, have also contributed
to CO2 mitigation in this sector. However, the decoupling status of CMD is mainly in
recessive coupling, indicating that both CO2 emission and industrial output are declining,
which shows the main task of the sector in these regions is changing the development mode
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to realize the decoupling as soon as possible. PPC mainly contribute to CO2 mitigation
in the Northeast China and some oil-producing regions, such as Shaanxi, Tianjin, and
Xinjiang, among which the decoupling has been achieved, except Jilin and Shaanxi. The
long industrial chain, the wide variety of products, and the continuous growth of oil
consumption pose severe challenges to low-carbon transition in this sector. Strengthening
emission reduction in production process and alleviating energy consumption caused by
raw materials to achieve deeper decarbonization is the key to reaching the peak for the
sector. There are unique non-metallic resources in Hunan, Jiangxi, and Sichuan, and the
industrial parks have been established successively in these regions. The development of
energy efficient materials, implementation of access standards and establishment of R&D
centers have facilitated a green manufacturing system, enabling NMP to promote CO2
mitigation in these regions. SPNM undergoes high-quality development in regions rich in
mineral resources, such as Yunnan and Guangxi, through technological breakthrough as in
the case of aluminum electrolysis.

The methods presented in this paper that couple the inhibitive factors extracted
from LMDI analysis with attribution analysis provide an approach capable of quantifying
the contribution of industrial sectors to the drivers and extracting the key sectors that
contributed to CO2 mitigation. Complex network approach and input–output model have
also been applied to analyze the different roles of various sectors to help decision-makers
identify key sectors [64,65]. However, the key sectors identified in this study are those
under the inhibitive factors that promote CO2 mitigation in each region, meaning that
these sectors are already contributing to emission reductions. Additionally, this is a better
visualization of which factors of these sectors can be adjusted to mitigate regional CO2 more
effectively, and facilitate policymakers to develop more targeted emission reduction policies.
Furthermore, this study analyzes the critical emission characteristics of the key sectors
across regions, so as to provide reference to formulating differentiated emission reduction
measures for regions with different levels of development, policies, and technological
guidance. The methods can be extended to recognize the key sectors in terms of significant
contribution to the emission and mitigation of air pollutants or water pollutants.

Some policy implications can be revealed through combing the strategic goal of China’s
carbon peaking before 2030 with the findings of this study. Firstly, compared with other
sectors, PSPH and SPFM in most regions have not yet achieved the peak. Renewable
energy should be the priority for power generation in the future, meanwhile the energy
storage technology and power market should be extended to promote an early emission
peak for PSPH. As for SPFM, excessive and outdated production capacity is still the main
problem faced by this sector. Secondly, while PPC is undergoing prosperous development
in Tianjin, Heilongjiang, Xinjiang, and other oil-producing regions, it still suffers from
heavy emission control burden. In order to arrive at the emission peak earlier, adjusting
the structure of refinery products and replacing with greener fuels is the prior mission.
CMD has made certain contribution to CO2 mitigation in Anhui, Hunan, Henan, and
other regions. However, this sector should be further focused on in Shanxi, Shaanxi,
and Mongolia for the release of production capacity of mines under construction and the
elimination of mines with poor endowments. Regions rich in mineral resources, such as
Yunnan and Guangxi, should strengthen technological innovation and policy guidance
in SPNM. Finally, regions, such as Beijing, Guangdong, and Zhejiang, only have PSPH
as their key sector. As the first echelon leading China in achieving the carbon peaking
and carbon neutrality goals, they should keep transforming their own advantages into the
tractive force for the development of the surrounding regions and provide support to boost
low-carbon development in surrounding regions.

5. Conclusions

In the context of pursuing earlier carbon peaking in China, CO2 mitigation in industry,
which the largest source of CO2 emissions, is a foremost task. Using the LMDI-attribution
method, this study identifies the key sectors that significantly contribute to CO2 mitigation
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in 30 provincial regions in China, and analyzes the emission characteristics, including
decoupling from industrial development and peaking status of these sectors. Several key
findings are summarized as follows:

Industrial development and population growth are the main drivers of emissions.
Energy intensity and industrial structure inhibit emissions in most regions, but industrial
structure is a main factor promoting emissions in some regions as result of the increasing
share of energy-intensive sector. The effect of energy structures on emission reduction
in most regions is not obvious. According to the combinations of inhibitive factors, the
30 regions are divided into six groups. The key sectors that promote CO2 mitigation in
each region are tracked through the inhibitive effects, mainly including: coal mining and
dressing, petroleum processing and coking, non-metal mineral products, smelting and pressing of
ferrous metals, smelting and pressing of nonferrous metals, and production and supply of power
and heat. Of these, production and supply of power and heat propels CO2 mitigation through
all three inhibitive factors. Petroleum processing and coking generally contributes to emission
reduction through energy structure, while smelting and pressing of ferrous metals through
industrial structure and energy intensity.

The results of the study also show the emission characteristics of key sectors in each
region. Production and supply of power and heat is the key sector in all regions, followed by
smelting and pressing of ferrous metals, but these two sectors in most regions have not achieved
the emission peak. Except coal mining and dressing, the key sectors in most regions have
accomplished the decoupling of emissions from industrial development. In addition, coal
mining and dressing effectively promotes CO2 mitigation in Anhui, Henan, and Hunan, with
a larger contribution of petroleum processing and coking in Tianjin, Xinjiang, Heilongjiang,
and other oil-producing regions, and that of smelting and pressing of nonferrous Metals in
Yunnan and Guangxi.

This study identifies the key sectors that contribute to regional emission reductions,
which are major areas for future industrial CO2 mitigation; it also examines the critical
emission characteristics of these sectors. The level of development of the key sectors varies
from region to region, and the results of the study can provide assistance in formulating
regional emission reduction paths that are more suitable for local development. The
revealed policy implications can serve for better policy-making on sector-level and region-
level carbon mitigation practices. There are still some limitations in this paper. First of all,
due to the limitations of the research method of attribution analysis, the change of the total
amount can only be decomposed into one-dimensional factors, which makes it impossible
to explore the driving factors of the change of emissions from multiple dimensions, such
as different sectors and different energy types. Second, the key sectors discussed in this
study are those under the inhibitive factors of industrial CO2 emissions, and the promotive
factors of emissions are not specific to the segmented sectors, which should be incorporated
into the further work.
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