Phase Angle as a Predictor for Physical Function in Institutionalized Independent Older Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Procedures
2.3. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Martins, A.D.; Fernandes, O.; Oliveira, R.; Bilro, V.; Lopes, G.; Rego, A.M.; Parraca, J.A.; Raimundo, A.M.M.; Brito, J.P. Effects of exercise programs on phase angle in older adults: A systematic review and meta-analysis. Arch. Gerontol. Geriatr. 2022, 103, 104787. [Google Scholar] [CrossRef] [PubMed]
- Jeong, Y.J.; Chong, Y.S.; Yu, N.Y.; Kim, B.A.; Shin, H.J. A meta-analysis of moderating effects and sub dimensions of successful aging. J. Korean Gerontol. Nurs. 2015, 35, 627–642. [Google Scholar]
- Fielding, R.A.; Meredith, C.N.; O’Reilly, K.P.; Frontera, W.R.; Cannon, J.G.; Evans, W.J. Enhanced protein breakdown after eccentric exercise in young and older men. J. Appl. Physiol. 1991, 71, 674–679. [Google Scholar] [CrossRef] [PubMed]
- Harris, T. Muscle mass and strength: Relation to function in population studies. J. Nutr. 1997, 127, 1004S–1006S. [Google Scholar] [CrossRef] [Green Version]
- Tisdale, M.J. New cachexic factors. Curr. Opin. Clin. Nutr. Metab. Care 1998, 1, 253–256. [Google Scholar] [CrossRef]
- Cannon, J.G. Cytokines in aging and muscle homeostasis. J. Gerontol. A Biol. Sci. Med. Sci. 1995, 50, 120–123. [Google Scholar] [CrossRef]
- Paraskevoudi, N.; Balcı, F.; Vatakis, A. “Walking” through the Sensory, Cognitive, and Temporal Degradations of Healthy Aging. Ann. N. Y. Acad. Sci. 2018, 1426, 72–92. [Google Scholar] [CrossRef]
- Clark, D.; Pojednic, R.M.; Reid, K.F.; Patten, C.; Pasha, E.P.; Phillips, E.M.; Fielding, R.A. Longitudinal Decline of Neuromuscular Activation and Power in Healthy Older Adults. J. Gerontol. Ser. A 2013, 68, 1419–1425. [Google Scholar] [CrossRef] [Green Version]
- Izquierdo, M.; Cadore, E.L. Muscle Power Training in the Institutionalized Frail: A New Approach to Counteracting Functional Declines and Very Late-Life Disability. Curr. Med. Res. Opin. 2014, 30, 1385–1390. [Google Scholar] [CrossRef]
- Yamada, Y.; Itoi, A.; Yoshida, T.; Nakagata, T.; Yokoyama, K.; Fujita, H.; Kimura, M.; Miyachi, M. Association of bioelectrical phase angle with aerobic capacity, complex gait ability and total fitness score in older adults. Exp. Gerontol. 2021, 150, 111350. [Google Scholar] [CrossRef]
- Langer, R.D.; da Costa, K.G.; Bortolotti, H.; Fernandes, G.A.; de Jesus, R.; Gonçalves, E.M. Phase angle is associated with cardiorespiratory fitness and body composition in children aged between 9 and 11 years. Physiol. Behav. 2020, 215, 112772. [Google Scholar] [CrossRef] [PubMed]
- Martins, P.C.; de Lima, L.R.A.; Berria, J.; Petroski, E.L.; da Silva, A.M.; Silva, D.A.S. Association between phase angle and isolated and grouped physical fitness indicators in adolescents. Physiol. Behav. 2020, 217, 112825. [Google Scholar] [CrossRef] [PubMed]
- Mundstock, E.; Amaral, M.A.; Baptista, R.R.; Sarria, E.E.; dos Santos, R.R.G.; Detoni Filho, A.; Rodrigues, C.A.S.; Forte, G.C.; Castro, L.; Padoin, A.V.; et al. Association between phase angle from bioelectrical impedance analysis and level of physical activity: Systematic review and meta-analysis. Clin. Nutr. 2019, 38, 1504–1510. [Google Scholar] [CrossRef] [PubMed]
- Jerônimo, A.F.A.; Batalha, N.; Collado-Mateo, D.; Parraca, J.A. Phase Angle from Bioelectric Impedance and Maturity-Related Factors in Adolescent Athletes: A Systematic Review. Sustainability 2020, 12, 4806. [Google Scholar] [CrossRef]
- Di Vincenzo, O.; Marra, M.; Scalfi, L. Bioelectrical impedance phase angle in sport: A systematic review. J. Int. Soc. Sport. Nutr. 2019, 16, 49. [Google Scholar] [CrossRef] [Green Version]
- Martins, P.C.; Lima, T.R.; Silva, A.M.; Silva, D.A.S. Association of phase angle with muscle strength and aerobic fitness in different populations: A systematic review. Nutrition 2022, 93, 111489. [Google Scholar] [CrossRef]
- Matias, C.N.; Nunes, C.L.; Francisco, S.; Tomeleri, C.M.; Cyrino, E.S.; Sardinha, L.B.; Silva, A.M. Phase angle predicts physical function in older adults. Arch. Gerontol. Geriatr. 2020, 90, 104151. [Google Scholar] [CrossRef]
- Buffa, R.; Floris, G.; Marini, E. Assessment of nutritional status in free-living elderly individuals by bioelectrical impedance vector analysis. Nutrition 2009, 25, 3–5. [Google Scholar] [CrossRef]
- Streb, A.R.; Hansen, F.; Gabiatti, M.P.; Tozetto, W.R.; Del Duca, G.F. Phase angle associated with different indicators of health-related physical fitness in adults with obesity. Physiol. Behav. 2020, 225, 113104. [Google Scholar] [CrossRef]
- Short, T.; Pits, M.; Yamada, P.; Teranishi-Hashimoto, C. Phase Angle is Associated with Muscular Fitness in Breast Cancer Survivors. Int. J. Exerc. Sci. Conf. Proc. 2021, 14, 105. [Google Scholar]
- World Medical Association. World Medical Association Declaration of Helsinki: Ethical Principles for Medical Research Involving Human Subjects. J. Am. Med. Assoc. 2013, 310, 2191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rikli, R.E.; Jones, C.J. Development and validation of a functional fitness test for community-residing older adults. J. Aging Phys. Act. 1999, 7, 129–161. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Routledge: Abingdon-on-Thames, UK, 1988. [Google Scholar] [CrossRef]
- Germano, M.L.; Gomes, C.S.; Azevedo, I.G.; Fernandes, J.; Freitas, R.V.M.; Guerra, R.O. Relationship between phase angle and physical performance measures in community-dwelling older adults. Exp. Gerontol. 2021, 152, 111466. [Google Scholar] [CrossRef] [PubMed]
- Tomeleri, C.M.; Cavalcante, E.F.; Antunes, M.; Nabuco, H.C.G.; de Souza, M.F.; Teixeira, D.C.; Gobbo, L.A.; Silva, A.M.; Cyrino, E.S. Phase Angle Is Moderately Associated with Muscle Quality and Functional Capacity, Independent of Age and Body Composition in Older Women. J. Geriatr. Phys. Ther. 2019, 42, 281–286. [Google Scholar] [CrossRef]
- Kyle, U. Bioelectrical impedance analysis? Part I: Review of principles and methods. Clin. Nutr. 2004, 23, 1226–1243. [Google Scholar] [CrossRef]
- Campa, F.; Toselli, S.; Mazzilli, M.; Gobbo, L.A.; Coratella, G. Assessment of body composition in athletes: A narrative review of available methods with special reference to quantitative and qualitative bioimpedance analysis. Nutrients 2021, 13, 1620. [Google Scholar] [CrossRef]
- Tomeleri, C.M.; Ribeiro, A.S.; Cavaglieri, C.R.; Deminice, R.; Schoenfeld, B.J.; Schiavoni, D.; Dos Santos, L.; de Souza, M.F.; Antunes, M.; Venturini, D.; et al. Correlations between resistance training-induced changes on phase angle and biochemical markers in older women. Scand. J. Med. Sci. Sport. 2018, 28, 2173–2182. [Google Scholar] [CrossRef]
- Martins, A.D.; Oliveira, R.; Brito, J.P.; Costa, T.; Ramalho, F.; Pimenta, N.; Santos Rocha, R. Phase angle cutoff value as a marker of the health status and functional capacity in breast cancer survivors. Physiol. Behav. 2021, 235, 113400. [Google Scholar] [CrossRef]
- Axelsson, L.; Silander, E.; Bosaeus, I.; Hammerlid, E. Bioelectrical phase angle at diagnosis as a prognostic factor for survival in advanced head and neck cancer. Eur. Arch. Oto-Rhino-Laryngol. 2018, 275, 2379–2386. [Google Scholar] [CrossRef] [Green Version]
- Garlini, L.M.; Alves, F.D.; Ceretta, L.B.; Perry, I.S.; Souza, G.C.; Clausell, N.O. Phase angle and mortality: A systematic review. Eur. J. Clin. Nutr. 2019, 73, 495–508. [Google Scholar] [CrossRef]
- Gupta, D.; Lammersfeld, C.A.; Vashi, P.G.; King, J.; Dahlk, S.L.; Grutsch, J.F.; Lis, C.G. Bioelectrical impedance phase angle in clinical practice: Implications for prognosis in stage IIIB and IV non-small cell lung cancer. BMC Cancer 2009, 9. [Google Scholar] [CrossRef]
- Oliveira, R.; Leão, C.; Silva, A.F.; Clemente, F.M.; Santamarinha, C.T.; Nobari, H.; Brito, J.P. Comparisons between Bioelectrical Impedance Variables, Functional Tests and Blood Markers Based on BMI in Older Women and Their Association with Phase Angle. Int. J. Environ. Res. Public Health 2022, 19, 6851. [Google Scholar] [CrossRef]
- Jones, C.J.; Rikli, R.E.; Beam, W.C. A 30-s chair-stand test as a measure of lower body strength in community-residing older adults. Res. Q. Exerc. Sport 1999, 70, 113–119. [Google Scholar] [CrossRef]
- Barbosa-Silva, M.C.; Barros, A.J.; Wang, J.; Heymsfield, S.B.; Pierson, R.N., Jr. Bioelectrical impedance analysis: Population reference values for phase angle by age and sex. Am. J. Clin. Nutr. 2005, 82, 49–52. [Google Scholar] [CrossRef]
- Norman, K.; Stobaus, N.; Zocher, D.; Bosy-Westphal, A.; Szramek, A.; Scheufele, R.; Smoliner, C.; Pirlich, M. Cutoff percentiles of bioelectrical phase angle predict functionality, quality of life, and mortality in patients with cancer. Am. J. Clin. Nutr. 2010, 92, 612–619. [Google Scholar] [CrossRef]
Outcomes | Total (n = 111) (Mean ± SD) | Women (n = 75) (Mean ± SD) | Men (n = 36) (Mean ± SD) | p-Value |
---|---|---|---|---|
Age (y) a | 85.1 ± 6.8 | 85.2 ± 6.9 | 84.8 ± 7.0 | 0.809 |
Height (m) a | 1.51 ± 0.1 | 1.48 ± 0.1 | 1.57 ± 0.1 | 0.001 |
Weight (kg) a | 64.8 ± 11.5 | 63.6 ± 11.8 | 67.2 ± 10.4 | 0.123 |
Body mass index (kg/m2) a | 28.3 ± 4.5 | 28.9 ± 4.7 | 27.0 ± 3.9 | 0.035 |
Waist circunference (cm) a | 100.4 ± 11.1 | 101.9 ± 11.2 | 97.3 ± 10.4 | 0.040 |
Education level b | 0.001 | |||
| 46 (41.4) | 32 (42.7) | 14 (38.9) | |
| 10 (9.0) | 7 (9.3) | 3 (8.3) | |
| 13 (11.7) | 8 (10.7) | 5 (13.9) | |
| 42 (37.8) | 28 (37.3) | 14 (38.9) |
Total (n = 111) | Women (n = 75) | Men (n = 36) | p | |
---|---|---|---|---|
30-s chair stand (rep) | 7.3 ± 3.7 | 7.1 ± 3.8 | 7.6 ± 3.6 | 0.497 |
Arm curl (rep) | 10.0 ± 4.1 | 10.0 ± 4.4 | 10.1 ± 3.5 | 0.869 |
8 ft up-and-go (s) | 16.4 ± 10.7 | 17.4 ± 11.7 | 14.3 ± 8.1 | 0.143 |
6 min walk (m) | 192.2 ± 95.1 | 175.8 ± 81.7 | 226.3 ± 111.9 | 0.008 |
Phase angle (°) | 3.7 ± 0.9 | 3.8 ± 0.9 | 3.6 ± 0.8 | 0.669 |
Phase Angle | |||
---|---|---|---|
Physical Fitness Tests | Total (n = 111) | Women (n = 75) | Men (n = 36) |
30-s chair stand (rep) | 0.288 ** | 0.234 * | 0.443 ** |
Arm curl (rep) | 0.058 | −0.020 | 0.305 |
8 ft up-and-go (s) | −0.328 ** | −0.284 * | −0.535 ** |
6 min walk (m) | 0.310 ** | 0.274 * | 0.460 ** |
Beta | t | p Value | R2 | |
---|---|---|---|---|
Model 1 | 0.001 | |||
8 ft up-and-go (s) | −0.220 | −1.882 | 0.428 | 0.125 |
6 min walk (m) | 0.170 | 1.455 | 0.606 | |
Model 2 | 0.002 | 0.129 | ||
8 ft up-and-go (s) | −0.185 | −1.469 | 0.145 | |
6 min walk (m) | 0.137 | 1.091 | 0.278 | |
30-s chair stand (rep) | 0.090 | 0.731 | 0.467 | |
Model 3 | 0.005 | 0.131 | ||
8 ft up-and-go (s) | −0.179 | −1.407 | 0.162 | |
6 min walk (m) | 0.151 | 1.174 | 0.243 | |
30-s chair stand (rep) | 0.099 | 0.795 | 0.428 | |
Arm curl (rep) | −0.050 | −0.517 | 0.606 |
Beta | t | p Value | R2 | |
---|---|---|---|---|
Model 1 | 0.030 | |||
8 ft up-and-go (s) | −0.182 | −1.199 | 0.235 | 0.093 |
6 min walk (m) | 0.152 | 0.988 | 0.321 | |
Model 2 | 0.067 | 0.095 | ||
8 ft up-and-go (s) | −0.158 | −0.964 | 0.338 | |
6 min walk (m) | 0.133 | 0.830 | 0.409 | |
30-s chair stand (rep) | 0.059 | 0.393 | 0.695 | |
Model 3 | 0.105 | 0.102 | ||
8 ft up-and-go (s) | −0.143 | −0.865 | 0.390 | |
6 min walk (m) | 0.160 | 0.972 | 0.334 | |
30-s chair stand (rep) | 0.069 | 0.455 | 0.650 | |
Arm curl (rep) | −0.089 | −0.751 | 0.455 |
Beta | t | p Value | R2 | |
---|---|---|---|---|
Model 1 | 0.002 | |||
8 ft up-and-go (s) | −0.407 | −2.194 | 0.035 | 0.312 |
6 min walk (m) | 0.205 | 1.109 | 0.276 | |
Model 2 | 0.006 | 0.316 | ||
8 ft up-and-go (s) | −0.375 | −1.854 | 0.073 | |
6 min walk (m) | 0.164 | 0.770 | 0.447 | |
30-s chair stand (rep) | 0.089 | 0.409 | 0.685 | |
Model 3 | 0.016 | 0.316 | ||
8 ft up-and-go (s) | −0.374 | −1.818 | 0.079 | |
6 min walk (m) | 0.160 | 0.729 | 0.471 | |
30-s chair stand (rep) | 0.082 | 0.355 | 0.725 | |
Arm curl (rep) | 0.018 | 0.098 | 0.923 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morais, A.; Ferreira, S.; Martins, A.D.; Tomas-Carus, P.; Marmeleira, J.; Parraca, J.A. Phase Angle as a Predictor for Physical Function in Institutionalized Independent Older Adults. Int. J. Environ. Res. Public Health 2022, 19, 14615. https://doi.org/10.3390/ijerph192114615
Morais A, Ferreira S, Martins AD, Tomas-Carus P, Marmeleira J, Parraca JA. Phase Angle as a Predictor for Physical Function in Institutionalized Independent Older Adults. International Journal of Environmental Research and Public Health. 2022; 19(21):14615. https://doi.org/10.3390/ijerph192114615
Chicago/Turabian StyleMorais, Ana, Soraia Ferreira, Alexandre Duarte Martins, Pablo Tomas-Carus, José Marmeleira, and Jose A. Parraca. 2022. "Phase Angle as a Predictor for Physical Function in Institutionalized Independent Older Adults" International Journal of Environmental Research and Public Health 19, no. 21: 14615. https://doi.org/10.3390/ijerph192114615
APA StyleMorais, A., Ferreira, S., Martins, A. D., Tomas-Carus, P., Marmeleira, J., & Parraca, J. A. (2022). Phase Angle as a Predictor for Physical Function in Institutionalized Independent Older Adults. International Journal of Environmental Research and Public Health, 19(21), 14615. https://doi.org/10.3390/ijerph192114615