Arterial Stiffness following Endurance and Resistance Exercise Sessions in Older Patients with Coronary Artery Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Design
2.3. Exercise Sessions
2.4. Central and Peripheral Arterial Stiffness Indices
2.5. Statistical Analysis
3. Results
4. Discussion
4.1. Arterial Stiffness Indices Immediately after Exercise (5 min)
4.2. Arterial Stiffness Indices after Exercise (15–30 min)
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shirwany, N.A.; Zou, M.H. Arterial stiffness: A brief review. Acta Pharmacol. Sin. 2010, 31, 1267–1276. [Google Scholar] [CrossRef] [Green Version]
- Ikonomidis, I.; Makavos, G.; Lekakis, J. Arterial stiffness and coronary artery disease. Curr. Opin. Cardiol. 2015, 30, 422–431. [Google Scholar] [CrossRef] [PubMed]
- Benetos, A.; Waeber, B.; Izzo, J.; Mitchell, G.; Resnick, L.; Asmar, R.; Safar, M. Influence of age, risk factors, and cardiovascular and renal disease on arterial stiffness: Clinical applications. Am. J. Hypertens. 2002, 15, 1101–1108. [Google Scholar] [CrossRef]
- Oliveira, N.L.; Ribeiro, F.; Alves, A.; Campos, L.; Oliveira, J. The effects of exercise training on arterial stiffness in coronary artery disease patients: A state-of-the-art review. Clin. Physiol. Funct. Imaging 2014, 34, 254–262. [Google Scholar] [CrossRef] [PubMed]
- Ashor, A.W.; Lara, J.; Siervo, M.; Celis-Morales, C.; Mathers, J.C. Effects of exercise modalities on arterial stiffness and wave reflection: A systematic review and meta-analysis of randomized controlled trials. PLoS ONE 2014, 9, e110034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeVan, A.E.; Anton, M.M.; Cook, J.N.; Neidre, D.B.; Cortez-Cooper, M.Y.; Tanaka, H. Acute effects of resistance exercise on arterial compliance. J. Appl. Physiol. 2005, 98, 2287–2291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lefferts, K.W.; Augustine, J.A.; Heffernan, K.S. Effect of acute resistance exercise on carotid artery stiffness and cerebral blood flow pulsatility. Front Physiol. 2014, 5, 101. [Google Scholar] [CrossRef] [Green Version]
- Namgoong, H.; Lee, D.; Hwang, M.-H.; Lee, S. The relationship between arterial stiffness and maximal oxygen consumption in healthy young adults. J. Exerc. Sci. Fit. 2018, 16, 73–77. [Google Scholar] [CrossRef]
- Siasos, G.; Athanasiou, D.; Terzis, G.; Stasinaki, A.; Oikonomou, E.; Tsitkanou, S.; Kolokytha, T.; Spengos, K.; Papavassiliou, A.G.; Tousoulis, D. Acute effects of different types of aerobic exercise on endothelial function and arterial stiffness. Eur. J. Prev. Cardiol. 2016, 23, 1565–1572. [Google Scholar] [CrossRef]
- Donley, D.A.; Fournier, S.B.; Reger, B.L.; DeVallance, E.; Bonner, D.E.; Olfert, I.M.; Frisbee, J.C.; Chantler, P.D. Aerobic exercise training reduces arterial stiffness in metabolic syndrome. J. Appl. Physiol. 2014, 116, 1396–1404. [Google Scholar] [CrossRef]
- Sung, J.; Choi, S.H.; Choi, Y.H.; Kim, D.K.; Park, W.H. The relationship between arterial stiffness and increase in blood pressure during exercise in normotensive persons. J. Hypertens. 2012, 30, 587–591. [Google Scholar] [CrossRef] [PubMed]
- Tomoto, T.; Maeda, S.; Sugawara, J. Relation between arterial stiffness and aerobic capacity: Importance of proximal aortic stiffness. Eur. J. Sport Sci. 2017, 17, 571–575. [Google Scholar] [CrossRef] [PubMed]
- Vlachopoulos, C.; Aznaouridis, K.; Stefanadis, C. Prediction of cardiovascular events and all-cause mortality with arterial stiffness: A systematic review and meta-analysis. J. Am. Coll. Cardiol. 2010, 55, 1318–1327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janić, M.; Lunder, M.; Sabovič, M. Arterial stiffness and cardiovascular therapy. BioMed Res. Int. 2014, 2014, 621437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahmud, A.; Feely, J. Beta-Blockers reduce aortic stiffness in hypertension but nebivolol, not atenolol, reduces wave reflection. Am. J. Hypertens. 2008, 21, 663–667. [Google Scholar] [CrossRef] [Green Version]
- Kingwell, B.A.; Berry, K.L.; Cameron, J.D.; Jennings, G.L.; Dart, A.M. Arterial compliance increases after moderate-intensity cycling. Am. J. Physiol. Content 1997, 273, H2186–H2191. [Google Scholar] [CrossRef]
- Heffernan, K.; Collier, S.; Kelly, E.; Jae, S.; Fernhall, B. Arterial stiffness and baroreflex sensitivity following bouts of aerobic and resistance exercise. Int. J. Sports Med. 2007, 28, 197–203. [Google Scholar] [CrossRef]
- Pierce, D.R.; Doma, K.; Raiff, H.; Golledge, J.; Leicht, A.S. Influence of Exercise Mode on Post-exercise Arterial Stiffness and Pressure Wave Measures in Healthy Adult Males. Front. Physiol. 2018, 9, 1468. [Google Scholar] [CrossRef] [Green Version]
- Melo, X.; Santos, D.A.; Ornelas, R.; Fernhall, B.; Santa-Clara, H.; Sardinha, L.B. Pulse pressure tracking from adolescence to young adulthood: Contributions to vascular health. Blood Press. 2018, 27, 19–24. [Google Scholar] [CrossRef]
- Mutter, A.F.; Cooke, A.B.; Saleh, O.; Gomez, Y.-H.; Daskalopoulou, S.S. A systematic review on the effect of acute aerobic exercise on arterial stiffness reveals a differential response in the upper and lower arterial segments. Hypertens. Res. 2017, 40, 146–172. [Google Scholar] [CrossRef]
- Schroeder, E.C.; Ranadive, S.M.; Yan, H.; Lane-Cordova, A.D.; Kappus, R.M.; Cook, M.D.; Fernhall, B. Effect of acute maximal exercise on vasodilatory function and arterial stiffness in African-American and white adults. J. Hypertens. 2019, 37, 1262–1268. [Google Scholar] [CrossRef] [PubMed]
- Schroeder, E.C.; Lane-Cordova, A.D.; Ranadive, S.M.; Baynard, T.; Fernhall, B. Influence of fitness and age on the endothelial response to acute inflammation. Exp. Physiol. 2018, 103, 924–931. [Google Scholar] [CrossRef] [PubMed]
- Mak, W.Y.; Lai, W.K. Acute Effect on Arterial Stiffness after Performing Resistance Exercise by Using the Valsalva Manoeuvre during Exertion. BioMed Res. Int. 2015, 2015, 343916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoon, E.S.; Jung, S.J.; Cheun, S.K.; Oh, Y.S.; Kim, S.H.; Jae, S.Y. Effects of acute resistance exercise on arterial stiffness in young men. Korean Circ. J. 2010, 40, 16–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kingsley, J.D.; Mayo, X.; Tai, Y.L.; Fennell, C. Arterial Stiffness and Autonomic Modulation After Free-Weight Resistance Exercises in Resistance Trained Individuals. J. Strength Cond. Res. 2016, 30, 3373–3380. [Google Scholar] [CrossRef] [PubMed]
- Fahs, C.A.; Heffernan, K.S.; Fernhall, B. Hemodynamic and vascular response to resistance exercise with L-arginine. Med. Sci. Sports Exerc. 2009, 41, 773–779. [Google Scholar] [CrossRef]
- Kobayashi, R.; Hatakeyama, H.; Hashimoto, Y.; Okamoto, T. Acute effects of accumulated aerobic exercise on aortic and peripheral pulse wave velocity in young males. J. Phys. Ther. Sci. 2018, 30, 181–184. [Google Scholar] [CrossRef] [Green Version]
- Benjamin, E.J.; Virani, S.S.; Callaway, C.W.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Chiuve, S.E.; Cushman, M.; Delling, F.N.; Deo, R.; et al. Heart Disease and Stroke Statistics-2018 Update: A Report From the American Heart Association. Circulation 2018, 137, e67–e492. [Google Scholar] [CrossRef]
- Trachsel, Y.; Herzig, D.; Marcin, T.; Zenger, N.; Dysli, M.; Trachsel, L.D.; Wilhelm, M.; Eser, P. Response of peripheral arterial pulse wave velocity to acute exercise in patients after recent myocardial infarction and healthy controls. PLoS ONE 2019, 14, e0219146. [Google Scholar] [CrossRef]
- Sung, J.; Yang, J.H.; Cho, S.J.; Hong, S.H.; Huh, E.H.; Park, S.W. The effects of short-duration exercise on arterial stiffness in patients with stable coronary artery disease. J. Korean Med. Sci. 2009, 24, 795–799. [Google Scholar] [CrossRef]
- Dasilva, S.G.; Guidetti, L.; Buzzachera, C.F.; Elsangedy, H.M.; Krinski, K.; DE Campos, W.; Goss, F.L.; Baldari, C. Psychophysiological responses to self-paced treadmill and overground exercise. Med. Sci. Sports Exerc. 2011, 43, 1114–1124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Focht, B.C. Affective responses to 10-minute and 30-minute walks in sedentary, overweight women: Relationships with theory-based correlates of walking for exercise. Psychol. Sport Exerc. 2013, 14, 759–766. [Google Scholar] [CrossRef]
- Heffernan, S.K.; Jae, S.Y.; Fernhall, B. Racial differences in arterial stiffness after exercise in young men. Am. J. Hypertens. 2007, 20, 840–845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bunsawat, K.; Ranadive, S.M.; Lane-Cordova, A.D.; Yan, H.; Kappus, R.M.; Fernhall, B.; Baynard, T. The effect of acute maximal exercise on postexercise hemodynamics and central arterial stiffness in obese and normal-weight individuals. Physiol. Rep. 2017, 5, e13226. [Google Scholar] [CrossRef] [PubMed]
- Casillas, J.-M.; Gudjoncik, A.; Gremeaux, V.; Aulagne, J.; Besson, D.; Laroche, D. Assessment tools for personalizing training intensity during cardiac rehabilitation: Literature review and practical proposals. Ann. Phys. Rehabil. Med. 2017, 60, 43–49. [Google Scholar] [CrossRef] [PubMed]
- American College of Sports Medicine. ACSM’s Guidelines for Exercise Testing and Prescription, 10th ed.; American College of Sports Medicine: Indianapolis, IN, USA, 2017; p. 472. [Google Scholar]
- Williams, M.A.; Haskell, W.L.; Ades, P.A.; Amsterdam, E.A.; Bittner, V.; Franklin, B.A.; Gulanick, M.; Laing, S.T.; Stewart, K.J.; American Heart Association Council on Clinical Cardiology; et al. Resistance exercise in individuals with and without cardiovascular disease: 2007 update: A scientific statement from the American Heart Association Council on Clinical Cardiology and Council on Nutrition, Physical Activity, and Metabolism. Circulation 2007, 116, 572–584. [Google Scholar] [CrossRef] [Green Version]
- Hannan, A.L.; Hing, W.; Simas, V.; Climstein, M.; Coombes, J.S.; Jayasinghe, R.; Byrnes, J.; Furness, J. High-Intensity interval training versus moderate-intensity continuous training within cardiac rehabilitation: A systematic review and meta-analysis. Open Access J. Sports Med. 2018, 9, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Keteyian, S.J.; Hibner, B.A.; Bronsteen, K.; Kerrigan, D.; Aldred, H.A.; Reasons, L.M.; Saval, M.A.; Brawner, C.A.; Schairer, J.R.; Thompson, T.M.; et al. Greater improvement in cardiorespiratory fitness using higher-intensity interval training in the standard cardiac rehabilitation setting. J. Cardiopulm. Rehabil. Prev. 2014, 34, 98–105. [Google Scholar] [CrossRef]
- Bramwell, J.; Hill, A. The velocity of the pulse wave in man. Proc. R. Soc. Lond. Ser. B 1922, 93, 298–306. [Google Scholar]
- Heffernan, K.S.; Jae, S.Y.; Echols, G.H.; Lepine, N.R.; Fernhall, B. Arterial stiffness and wave reflection following exercise in resistance-trained men. Med. Sci. Sports Exerc. 2007, 39, 842–848. [Google Scholar] [CrossRef]
- Melo, X.; Fernhall, B.; Santos, D.; Pinto, R.; Pimenta, N.; Sardinha, L.; Santa-Clara, H. The acute effect of maximal exercise on central and peripheral arterial stiffness indices and hemodynamics in children and adults. Appl. Physiol. Nutr. Metab. 2016, 41, 266–276. [Google Scholar] [CrossRef] [PubMed]
- Morishita, S.; Tsubaki, A.; Takabayashi, T.; Fu, J.B. Relationship between the rating of perceived exertion scale and the load intensity of resistance training. Strength Cond. J. 2018, 40, 94–109. [Google Scholar] [CrossRef] [PubMed]
- Edwards, S. High performance training and racing. In The Heart Rate Monitor Book; Edwards, S., Ed.; Fleet Feet Press: Sacramento, CA, USA, 1993; pp. 113–123. [Google Scholar]
- McClean, C.M.; Clegg, M.; Shafat, A.; Murphy, M.H.; Trinick, T.; Duly, E.; Mc Laughlin, J.; Fogarty, M.; Davison, G.W. The impact of acute moderate intensity exercise on arterial regional stiffness, lipid peroxidation, and antioxidant status in healthy males. Res. Sports Med. 2011, 19, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Sugawara, J.; Otsuki, T.; Tanabe, T.; Maeda, S.; Kuno, S.; Ajisaka, R.; Matsuda, M. The effects of low-intensity single-leg exercise on regional arterial stiffness. Jpn. J. Physiol. 2003, 53, 239–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sugawara, J.; Maeda, S.; Otsuki, T.; Tanabe, T.; Ajisaka, R.; Matsuda, M. Effects of nitric oxide synthase inhibitor on decrease in peripheral arterial stiffness with acute low-intensity aerobic exercise. Am. J. Physiol. Circ. Physiol. 2004, 287, H2666–H2669. [Google Scholar] [CrossRef]
- Tordi, N.; Mourot, L.; Colin, E.; Regnard, J. Intermittent versus constant aerobic exercise: Effects on arterial stiffness. Eur. J. Appl. Physiol. 2010, 108, 801–809. [Google Scholar] [CrossRef]
- Naka, K.K.; Tweddel, A.C.; Parthimos, D.; Henderson, A.; Goodfellow, J.; Frenneaux, M.P. Arterial distensibility: Acute changes following dynamic exercise in normal subjects. Am. J. Physiol. Circ. Physiol. 2003, 284, H970–H978. [Google Scholar] [CrossRef] [Green Version]
- Nieman, D.; Dew, D.; Krasen, P. Gender difference in the acute influence of a 2-hour run on arterial stiffness in trained runners. Res. Sports Med. 2013, 21, 66–77. [Google Scholar] [CrossRef]
- Munir, S.; Jiang, B.; Guilcher, A.; Brett, S.; Redwood, S.; Marber, M.; Chowienczyk, P. Exercise reduces arterial pressure augmentation through vasodilation of muscular arteries in humans. Am. J. Physiol. Circ. Physiol. 2008, 294, H1645–H1650. [Google Scholar] [CrossRef] [Green Version]
- Müller, J.; Wilms, M.; Oberhoffer, R. Acute effects of submaximal endurance training on arterial stiffness in healthy middle- and long-distance runners. J. Clin. Hypertens. 2015, 17, 371–374. [Google Scholar] [CrossRef] [Green Version]
- Campbell, R.; Fisher, J.P.; E Sharman, J.; McDonnell, B.J.; Frenneaux, M.P. Contribution of nitric oxide to the blood pressure and arterial responses to exercise in humans. J. Hum. Hypertens. 2011, 25, 262–270. [Google Scholar] [CrossRef] [PubMed]
- Nitzsche, N.; Weigert, M.; Baumgärtel, L.; Auerbach, T.; Schuffenhauer, D.; Nitzsche, R.; Schulz, H. Acute Effects of Different Strength Training Protocols on Arterial Stiffness in Healthy Subjects. Int. J. Sport. Sci. 2016, 6, 195–202. [Google Scholar] [CrossRef]
- Thiebaud, R.S.; Fahs, C.A.; Rossow, L.M.; Loenneke, J.P.; Kim, D.; Mouser, J.G.; Beck, T.W.; Bemben, D.A.; Larson, R.D.; Bemben, M.G. Effects of age on arterial stiffness and central blood pressure after an acute bout of resistance exercise. Eur. J. Appl. Physiol. 2016, 116, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Angarten, V.; Melo, X.; Pinto, R.; Santos, V.; Marôco, J.L.; Fernhall, B.; Santa-Clara, H. Acute effects of exercise on cardiac autonomic function and arterial stiffness in patients with stable coronary artery disease. Scand. Cardiovasc. J. 2021, 55, 371–378. [Google Scholar] [CrossRef] [PubMed]
- Alonso-Domínguez, R.; Recio-Rodríguez, J.I.; Patino-Alonso, M.C.; Sánchez-Aguadero, N.; García-Ortiz, L.; Gómez-Marcos, M.A. Acute effect of healthy walking on arterial stiffness in patients with type 2 diabetes and differences by age and sex: A pre-post intervention study. BMC Cardiovasc. Disord. 2019, 19, 56. [Google Scholar] [CrossRef] [Green Version]
- Heffernan, K.S.; Rossow, L.; Jae, S.Y.; Shokunbi, H.G.; Gibson, E.M.; Fernhall, B. Effect of single-leg resistance exercise on regional arterial stiffness. Eur. J. Appl. Physiol. 2006, 98, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Rakobowchuk, M.; Stuckey, M.I.; Millar, P.J.; Gurr, L.; MacDonald, M.J. Effect of acute sprint interval exercise on central and peripheral artery distensibility in young healthy males. Eur. J. Appl. Physiol. 2009, 105, 787–795. [Google Scholar] [CrossRef]
- Lefferts, W.K.; DeBlois, J.P.; Receno, C.N.; Barreira, T.; Brutsaert, T.D.; Carhart, R.L.; Heffernan, K.S. Effects of acute aerobic exercise on arterial stiffness and cerebrovascular pulsatility in adults with and without hypertension. J. Hypertens. 2018, 36, 1743–1752. [Google Scholar] [CrossRef]
- Heffernan, K.S.; Jae, S.Y.; Edwards, D.G.; Kelly, E.E.; Fernhall, B. Arterial stiffness following repeated Valsalva maneuvers and resistance exercise in young men. Appl. Physiol. Nutr. Metab. 2007, 32, 257–264. [Google Scholar] [CrossRef]
- Mäki-Petäjä, K.M.; Barrett, S.M.; Evans, S.V.; Cheriyan, J.; McEniery, C.M.; Wilkinson, I.B. The Role of the Autonomic Nervous System in the Regulation of Aortic Stiffness. Hypertension 2016, 68, 1290–1297. [Google Scholar] [CrossRef]
- Holwerda, S.W.; Luehrs, R.E.; DuBose, L.; Collins, M.T.; Wooldridge, N.A.; Stroud, A.K.; Fadel, P.J.; Abboud, F.M.; Pierce, G.L. Elevated Muscle Sympathetic Nerve Activity Contributes to Central Artery Stiffness in Young and Middle-Age/Older Adults. Hypertension 2019, 73, 1025–1035. [Google Scholar] [CrossRef] [PubMed]
- Doonan, R.J.; Mutter, A.; Egiziano, G.; Gomez, Y.-H.; Daskalopoulou, S.S. Differences in arterial stiffness at rest and after acute exercise between young men and women. Hypertens. Res. 2013, 36, 226–231. [Google Scholar] [CrossRef] [PubMed]
Variables | n = 18 Patients |
---|---|
Age (years) | 71.8 ± 10.2 |
Sex | Male |
Weight (kg) | 74.0 ± 9.9 |
Height (m2) | 1.68 ± 0.1 |
BMI (kg/m2) | 26.2 ± 2.8 |
Brachial SBP at rest (mmHg) | 119.9 ± 12.4 |
Brachial DBP at rest (mmHg) | 65.4 ± 8.4 |
Hypertension (%) | 79 |
Hyperlipidemia (%) | 86 |
Overweight/obesity (%) | 28 |
>1 year ex-depression (%) | 33 |
CAD summary | |
>1 year CABG (%) | 0 |
>1 year diagnosis (%) | 10 |
PCI (%) | 86 |
STEMI (%) | 86 |
Previous MI (%) | 86 |
Medication | |
Beta-blocker (%) | 100 |
ACEI/ARB (%) | 78 |
Statin (%) | 78 |
Antiplatelet (%) | 100 |
Diuretics (%) | 64 |
Calcium channel blockers (%) | 43 |
EES | RES | |
---|---|---|
Heart rate rest (bpm) | 62 ± 5 | 62 ± 5 |
Peak heart rate (bpm) | 113 ± 13 * | 87 ± 8 * |
TRIMP | 104.9 ± 9.8 | 43.3 ± 10.6 |
RPE | 8 ± 1 | 8 ± 1 |
Heart rate recovery 5 min (bpm) | 104 ± 9 * | 83 ± 8 * |
Heart rate recovery 15 min (bpm) | 89 ± 4 * | 77 ± 7 * |
Heart rate recovery 30 min (bpm) | 63 ± 4 * | 64 ± 4 * |
Variables | Sessions | Rest | 5 min after | 15 min after | 30 min after | Main Effect of the Session | Main Effect of Time |
---|---|---|---|---|---|---|---|
Heart rate (% of difference) | EES | - | −17.7 ± 4.0 | −29.7 ± 7.5 | −49.2 ± 8.5 | RES > EES * | rest < 5, 15 5 > 15, 30 15 > 30 * |
RES | - | −33.6 ± 10.6 | −38.5 ± 9.4 | −48.7 ± 7.6 | rest < 5, 15 5 > 15, 30 15 > 30 * | ||
Brachial SBP (mmHg) | EES | 120.0 ± 11.3 | 117.9 ± 19.5 | 107.9 ± 11.3 | 109.0 ± 11.7 | NS | NS |
RES | 120.9 ± 13.8 | 123.1 ± 17.4 | 119.8 ± 10.2 | 120.0 ± 12.0 | NS | ||
Brachial DBP (mmHg) | EES | 65.0 ± 8.0 | 68.5 ± 12.1 | 64.4 ± 7.4 | 62.1 ± 7.4 | NS | NS |
RES | 65.7 ± 9.0 | 63.6 ± 9.9 | 63.1 ± 10.2 | 63.9 ± 9.8 | NS | ||
Brachial MAP (mmHg) | EES | 82.9 ± 7.6 | 84.7 ± 13.6 | 78.7 ± 8.0 | 77.8 ± 7.9 | NS | NS |
RES | 83.9 ± 8.8 | 83.1 ± 9.7 | 81.7 ± 8.5 | 82.4 ± 8.8 | NS | ||
Brachial PP (mmHg) | EES | 54.1 ± 11.5 | 49.4 ± 12.8 | 43.8 ± 8.8 | 46.5 ± 9.9 | NS | NS |
RES | 55.1 ± 13.9 | 59.5 ± 18.1 | 56.6 ± 11.8 | 56.2 ± 12.2 | NS | ||
Central SBP (mmHg) | EES | 109.5 ± 10.5 | 108.9 ± 15.4 | 103.1 ± 12.4 | 103.6 ± 11.8 | NS | NS |
RES | 113.4 ± 13.4 | 111.8 ± 16.0 | 109.9 ± 9.5 | 110.2 ± 8.0 | NS | ||
Central DBP (mmHg) | EES | 65.4 ± 6.6 | 65.7 ± 13.1 | 64.6 ± 9.5 | 62.6 ± 9.7 | NS | NS |
RES | 65.7 ± 9.0 | 62.0 ± 10.6 | 62.9 ± 10.6 | 63.4 ± 9.9 | NS | ||
Central MAP (mmHg) | EES | 82.6 ± 6.7 | 82.9 ± 13.1 | 79.4 ± 9.2 | 78.2 ± 9.0 | NS | NS |
RES | 83.8 ± 8.9 | 82.7 ± 10.5 | 81.6 ± 8.7 | 81.6 ± 8.2 | NS | ||
Central PP (mmHg) | EES | 44.1 ± 8.3 | 43.2 ± 10.7 | 38.9 ± 11.7 | 41.3 ± 10.6 | NS | NS |
RES | 47.6 ± 14.2 | 49.9 ± 16.9 | 47.0 ± 13.4 | 46.9 ± 10.7 | NS |
Pearson Correlation Coefficient (p-Value) | ||||||
---|---|---|---|---|---|---|
EES | RES | |||||
5 min | 15 min | 30 min | 5 min | 15 min | 30 min | |
Δ PWV Carotid | ||||||
Brachial SBP | 0.32 (0.26) | 0.28 (0.34) | 0.14 (0.64) | −0.15 (0.62) | −0.23 (0.43) | 0.04 (0.90) |
Brachial DBP | 0.18 (0.54) | 0.05 (0.86) | 0.11 (0.70) | 0.05 (0.86) | −0.03 (0.92) | −0.26 (0.06) |
Brachial PP | 0.19 (0.51) | 0.24 (0.41) | 0.06 (0.85) | −0.18 (0.54) | −0.21 (0.47) | 0.43 (0.13) |
Brachial MAP | 0.30 (0.30) | 0.19 (0.52) | 0.16 (0.60) | 0.03 (0.91) | −0.14 (0.64) | −0.41 (0.14) |
Carotid PWV | 0.39 (0.17) | 0.48 (0.08) | 0.11 (0.70) | 0.37 (0.19) | 0.19 (0.52) | 0.72 (<0.001) * |
Aortic PWV | 0.05 (0.86) | 0.19 (0.52) | −0.03 (0.92) | 0.34 (0.23) | 0.17 (0.56) | 0.52 (0.06) |
Femoral PWV | 0.15 (0.60) | 0.20 (0.50) | −0.02 (0.96) | 0.11 (0.72) | −0.12 (0.70) | 0.68 (0.01) * |
Δ PWV Aortic | ||||||
Brachial SBP | −0.43 (0.12) | −0.51 (0.06) | −0.25 (0.39) | −0.23 (0.42) | −0.07 (0.81) | 0.014 (0.63) |
Brachial DBP | −0.37 (0.20) | −0.41 (0.15) | −0.06 (0.83) | 0.06 (0.84) | 0.10 (0.74) | −0.00 (0.99) |
Brachial PP | −0.17 (0.56) | −0.22 (0.45) | −0.20 (0.49) | −0.27 (0.35) | −0.13 (0.65) | 0.14 (0.63) |
Brachial MAP | −0.47 (0.09) | −0.54 (0.05) * | −0.17 (0.57) | −0.09 (0.77) | 0.03 (0.92) | 0.07 (0.82) |
Carotid PWV | 0.03 (0.93) | −0.15 (0.62) | 0.05 (0.88) | −0.02 (0.96) | −0.04 (0.89) | 0.09 (0.76) |
Aortic PWV | 0.39 (0.17) | 0.13 (0.66) | 0.54 (0.05) * | 0.07 (0.81) | −0.04 (0.90) | 0.22 (0.45) |
Femoral PWV | −0.02 (0.94) | −0.23 (0.44) | 0.15 (0.62) | −0.05 (0.85) | −0.11 (0.72) | −0.30 (0.92) |
Δ PWV Femoral | ||||||
Brachial SBP | 0.21 (0.48) | 0.23 (0.42) | −0.09 (0.76) | 0.17 (0.56) | 0.23 (0.43) | −0.09 (0.75) |
Brachial DBP | 0.28 (0.33) | 0.35 (0.22) | 0.41 (0.14) | −0.36 (0.21) | −0.49 (0.07) | −0.45 (0.10) |
Brachial PP | 0.01 (0.98) | −0.01 (0.97) | −0.38 (0.18) | 0.40 (0.16) | 0.25 (0.14) | 0.20 (0.49) |
Brachial MAP | 0.32 (0.27) | 0.37 (0.20) | 0.26 (0.36) | −0.18 (0.55) | −0.24 (0.41) | −0.38 (0.19) |
Carotid PWV | 0.28 (0.33) | 0.30 (0.30) | 0.68 (0.01) * | 0.57 (0.03) * | 0.52 (0.06) | 0.41 (0.15) |
Aortic PWV | −0.15 (0.61) | −0.09 (0.76) | 0.09 (0.77) | 0.50 (0.07) | 0.41 (0.15) | 0.35 (0.22) |
Femoral PWV | −0.02 (0.95) | 0.36 (0.20) | 0.32 (0.26) | 0.54 (0.04) * | 0.62 (0.02) * | 0.37 (0.19) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, V.; Massuça, L.M.; Angarten, V.; Melo, X.; Pinto, R.; Fernhall, B.; Santa-Clara, H. Arterial Stiffness following Endurance and Resistance Exercise Sessions in Older Patients with Coronary Artery Disease. Int. J. Environ. Res. Public Health 2022, 19, 14697. https://doi.org/10.3390/ijerph192214697
Santos V, Massuça LM, Angarten V, Melo X, Pinto R, Fernhall B, Santa-Clara H. Arterial Stiffness following Endurance and Resistance Exercise Sessions in Older Patients with Coronary Artery Disease. International Journal of Environmental Research and Public Health. 2022; 19(22):14697. https://doi.org/10.3390/ijerph192214697
Chicago/Turabian StyleSantos, Vanessa, Luís Miguel Massuça, Vitor Angarten, Xavier Melo, Rita Pinto, Bo Fernhall, and Helena Santa-Clara. 2022. "Arterial Stiffness following Endurance and Resistance Exercise Sessions in Older Patients with Coronary Artery Disease" International Journal of Environmental Research and Public Health 19, no. 22: 14697. https://doi.org/10.3390/ijerph192214697
APA StyleSantos, V., Massuça, L. M., Angarten, V., Melo, X., Pinto, R., Fernhall, B., & Santa-Clara, H. (2022). Arterial Stiffness following Endurance and Resistance Exercise Sessions in Older Patients with Coronary Artery Disease. International Journal of Environmental Research and Public Health, 19(22), 14697. https://doi.org/10.3390/ijerph192214697