Evaluation of the Effect of Cariprazine on Memory and Cognition in Experimental Rodent Models
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Substances
2.2. Animals
2.3. Experimental Models
2.3.1. Memory Impairment Model
2.3.2. Novel Object Recognition Task (NORT)
2.3.3. T-Maze (Spatial Working Memory) Test
2.3.4. Y-Maze Spontaneous Alternation Test
2.3.5. Step-Down Passive Avoidance Test
2.3.6. Step-Through Passive Avoidance Test
2.4. Statistical Analysis
3. Results
3.1. NORT
3.2. T-Maze and Y-Maze
3.3. Step-Down and Step-Through Tests
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Owen, M.J.; Sawa, A.; Mortensen, P.B. Schizophrenia. Lancet 2016, 388, 86–97. [Google Scholar] [CrossRef] [Green Version]
- WHO-FIC Foundation. ICD-11: 6A20 Schizophrenia. Available online: http://id.who.int/icd/entity/1683919430 (accessed on 23 August 2022).
- Howes, O.D. The Role of Genes, Stress, and Dopamine in the Development of Schizophrenia. Biol. Psychiatry 2017, 81, 9–20. [Google Scholar] [CrossRef] [Green Version]
- Stępnicki, P.; Kondej, M.; Kaczor, A.A. Current Concepts and Treatments of Schizophrenia. Molecules 2018, 23, 2087. [Google Scholar] [CrossRef] [Green Version]
- Pickar, D.; Litman, R.E.; Konicki, P.E.; Wolkowitz, O.M.; Breier, A. Neurochemical and Neural Mechanisms of Positive and Negative Symptoms in Schizophrenia. Mod. Probl. Pharm. 1990, 24, 124–151. [Google Scholar] [CrossRef]
- Liemburg, E.J.; Knegtering, H.; Klein, H.C.; Kortekaas, R.; Aleman, A. Antipsychotic medication and prefrontal cortex activation: A review of neuroimaging findings. Eur. Neuropsychopharmacol. 2012, 22, 387–400. [Google Scholar] [CrossRef] [PubMed]
- Schatzberg, A.F.; DeBattista, C. Antipsychotic drugs. In Schatzberg’s Manual of Clinical Psychopharmacology, 9th ed.; Schatzberg, A.F., DeBattista, C., Eds.; American Psychiatric Association Publishing: Washington, DC, USA, 2019; pp. 189–316. [Google Scholar]
- Adida, M.; Azorin, J.M.; Belzeaux, R.; Fakra, E. Negative Symptoms: Clinical and Psychometric Aspects. Encephale 2015, 41 (Suppl. S1), S15–S17. [Google Scholar] [CrossRef]
- Mach, C.; Dollfus, S. Scale for Assessing Negative Symptoms in Schizophrenia: A Systematic Review. Encephale 2016, 42, 165–171. [Google Scholar] [CrossRef]
- Barry, S.J.; Gaughan, T.M.; Hunter, R. Schizophrenia. Clin. Evid. 2012, 6, 1007. [Google Scholar]
- Scarff, J.R. The prospects of cariprazine in the treatment of schizophrenia. Ther. Adv. Psychopharmacol. 2017, 7, 237–239. [Google Scholar] [CrossRef] [Green Version]
- Vidailhet, P. First-episode psychosis, cognitive difficulties and remediation. Encephale 2013, 39 (Suppl. S2), S83–S92. [Google Scholar] [CrossRef]
- Sokoloff, P.; Le Foll, B. The dopamine D3 receptor, a quarter century later. Eur. J. Neurosci. 2017, 45, 2–19. [Google Scholar] [CrossRef] [PubMed]
- Frank, A.; Kiss, D.J.; Keseru, G.M.; Stark, H. Binding kinetics of cariprazine and aripiprazole at the dopamine D3 receptor. Sci. Rep. 2018, 8, 12509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, M.; He, W.; Kiss, B.; Farkas, B.; Adham, N.; Meltzer, H.Y. The Role of Dopamine D3 Receptor Partial Agonism in Cariprazine-Induced Neurotransmitter Efflux in Rat Hippocampus and Nucleus Accumbens. J. Pharmacol. Exp. Ther. 2019, 371, 517–525. [Google Scholar] [CrossRef] [PubMed]
- Sokoloff, P.; Diaz, J.; Le Foll, B.; Guillin, O.; Leriche, L.; Bezard, E.; Gross, C. The dopamine D3 receptor: A therapeutic target for the treatment of neuropsychiatric disorders. CNS Neurol. Disord. Drug Targets. 2006, 5, 25–43. [Google Scholar] [CrossRef] [PubMed]
- Gross, G.; Drescher, K. The role of dopamine D3 receptors in antipsychotic activity and cognitive functions. Handb. Exp. Pharmacol. 2012, 213, 167–210. [Google Scholar] [CrossRef]
- Campbell, R.H.; Diduch, M.; Gardner, K.N.; Thomas, C. Review of cariprazine in management of psychiatric illness. Ment. Health Clin. 2017, 7, 221–229. [Google Scholar] [CrossRef]
- Stahl, S.M. Mechanism of action of cariprazine. CNS Spectr. 2016, 21, 123–127. [Google Scholar] [CrossRef] [Green Version]
- Citrome, L. Cariprazine: Chemistry, pharmacodynamics, pharmacokinetics, and metabolism, clinical efficacy, safety, and tolerability. Expert Opin. Drug Metab. Toxicol. 2013, 9, 193–206. [Google Scholar] [CrossRef]
- Gyertyán, I.; Sághy, K.; Laszy, J.; Elekes, O.; Kedves, R.; Gémesi, L.I.; Pásztor, G.; Zájer-Balázs, M.; Kapás, M.; Agai-Csongor, E.; et al. Subnanomolar dopamine D3 receptor antagonism coupled to moderate D2 affinity results in favourable antipsychotic-like activity in rodent models: II. Behavioural characterisation of RG-15. Naunyn-Schmiedeb. Arch. Pharmacol. 2008, 378, 529–539. [Google Scholar] [CrossRef]
- Kiss, B.; Laszlovszky, I.; Horvath, A.; Nemethy, Z.; Schmidt, E.; Bugovics, G.; Fazekas, K.; Gyertyán, I.; Agai-Csongor, E.; Domány, G.; et al. Subnanomolar dopamine D3 receptor antagonism coupled to moderate D2 affinity results in favourable antipsychotic-like activity in rodent models: I. Neurochemical characterisation of RG-15. Naunyn-Schmiedeb. Arch. Pharmacol. 2008, 378, 515–528. [Google Scholar] [CrossRef]
- Werner, F.-M.; Coveñas, R. New developments in the management of schizophrenia and bipolar disorder: Potential use of cariprazine. Ther. Clin. Risk Manag. 2015, 11, 1657–1661. [Google Scholar] [CrossRef] [PubMed]
- Gyertyán, I.; Kiss, B.; Sághy, K.; Laszy, J.; Szabó, G.; Szabados, T.; Gémesi, L.I.; Pásztor, G.; Zájer-Balázs, M.; Kapás, M.; et al. Cariprazine (RGH-188), a potent D3/D2 dopamine receptor partial agonist, binds to dopamine D3 receptors in vivo and shows antipsychotic-like and procognitive effects in rodents. Neurochem. Int. 2011, 59, 925–935. [Google Scholar] [CrossRef] [PubMed]
- Zimnisky, R.; Chang, G.; Gyertyán, I.; Kiss, B.; Adham, N.; Schmauss, C. Cariprazine, a Dopamine D3-Receptor-Preferring Partial Agonist, Blocks Phencyclidine-induced Impairments of Working Memory, Attention Set-Shifting, and Recognition Memory in the Mouse. Psychopharmacology 2013, 226, 91–100. [Google Scholar] [CrossRef] [Green Version]
- Neill, J.C.; Grayson, B.; Kiss, B.; Gyertyán, I.; Ferguson, P.; Adham, N. Effects of cariprazine, a novel antipsychotic, on cognitive deficit and negative symptoms in a rodent model of schizophrenia symptomatology. Eur. Neuropsychopharmacol. 2016, 26, 3–14. [Google Scholar] [CrossRef]
- Teixeira, F.C.; de Mattos, B.D.S.; Mello, J.E.; Cardoso, J.; Spohr, L.; Luduvico, K.P.; Soares, M.S.P.; Carvalho, F.B.; Gutierres, J.M.; Felix, A.C.; et al. Protective Effects of Inosine on Memory Consolidation in a Rat Model of Scopolamine-Induced Cognitive Impairment: Involvement of Cholinergic Signaling, Redox Status, and Ion Pump Activities. Neurochem. Res. 2022, 47, 446–460. [Google Scholar] [CrossRef] [PubMed]
- Lueptow, L.M. Novel Object Recognition Test for the Investigation of Learning and Memory in Mice. J. Vis. Exp. 2017, 126, e55718. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Rakoczy, S.; Brown-Borg, H. Assessment of spatial memory in mice. Life Sci. 2010, 87, 521–536. [Google Scholar] [CrossRef] [PubMed]
- Behavioral and Functional Neuroscience Laboratory, Stanford University School of Medicine. Learning and Memory Tests. Available online: https://med.stanford.edu/sbfnl/services/bm/lm.html (accessed on 10 October 2022).
- Ramalho, J.B.; Izaguirry, A.P.; Soares, M.B.; Spiazzi, C.C.; Pavin, N.F.; Affeldt, R.F.; Lüdtke, D.S.; Pinton, S.; Santos, F.W.; Prigol, M. Selenofuranoside improves long-term memory deficits in rats after exposure to monosodium glutamate: Involvement of Na+, K+-ATPase activity. Physiol. Behav. 2018, 184, 27–33. [Google Scholar] [CrossRef]
- de Meireles, L.C.F.; Bertoldi, K.; Cechinel, L.R.; Schallenberger, B.L.; da Silva, V.K.; Schröder, N.; Siqueira, I.R. Treadmill exercise induces selective changes in hippocampal histone acetylation during the aging process in rats. Neurosci. Lett. 2016, 634, 19–24. [Google Scholar] [CrossRef]
- Eagle, A.L.; Wang, H.; Robinson, A.J. Sensitive assessment of hippocampal learning using temporally dissociated passive avoidance task. Bio-Protocol 2016, 6, e1821. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Lin, M.T.; Zha, X. GPR68 deletion impairs hippocampal long-term potentiation and passive avoidance behavior. Mol. Brain. 2020, 13, 132. [Google Scholar] [CrossRef] [PubMed]
- Watson, D.; King, M.; Gyertyán, I.; Kiss, B.; Adham, N.; Fone, K. The dopamineD3-preferringD2/D3 dopamine receptor partial agonist, cariprazine, reverses behavioural changes in a rat neurodevelopmental model for schizophrenia. Eur. Neuropsychopharmacol. 2016, 26, 208–224. [Google Scholar] [CrossRef] [PubMed]
- Barnes, S.A.; Young, J.W.; Markou, A.; Adham, N.; Gyertyán, I.; Kiss, B. The Effects of Cariprazine and Aripiprazole on PCP-Induced Deficits on Attention Assessed in the 5-Choice Serial Reaction Time Task. Psychopharmacology 2018, 235, 1403–1414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ko, I.-G.; Kim, C.-J.; Kim, H. Treadmill exercise improves memory by up-regulating dopamine and down-regulating D2 dopamine receptor in traumatic brain injury rats. J. Exerc. Rehabil. 2019, 15, 504–511. [Google Scholar] [CrossRef] [Green Version]
- Frankel, J.S.; Schwartz, T.L. Brexpiprazole and cariprazine: Distinguishing two new atypical antipsychotics from the original dopamine stabilizer aripiprazole. Ther. Adv. Psychopharmacol. 2017, 7, 29–41. [Google Scholar] [CrossRef] [Green Version]
- Duric, V.; Banasr, M.; Franklin, T.; Lepack, A.; Adham, N.; Kiss, B.; Gyertyán, I.; Duman, R.S. Cariprazine Exhibits Anxiolytic and Dopamine D3 Receptor-Dependent Antidepressant Effects in the Chronic Stress Model. Int. J. Neuropsychopharmacol. 2017, 20, 788–796. [Google Scholar] [CrossRef] [Green Version]
- Nakajima, S.; Gerretsen, P.; Takeuchi, H.; Caravaggio, F.; Chow, T.; Le Foll, B.; Mulsant, B.; Pollock, B.; Graff-Guerrero, A. The potential role of dopamine D3 receptor neurotransmission in cognition. Eur. Neuropsychopharmacol. 2013, 23, 799–813. [Google Scholar] [CrossRef] [Green Version]
- Papp, M.; Gruca, P.; Lasoń-Tyburkiewicz, M.; Adham, N.; Kiss, B.; Gyertyán, I. Attenuation of anhedonia by cariprazine in the chronic mild stress model of depression. Behav. Pharmacol. 2014, 25, 567–574. [Google Scholar] [CrossRef]
- Stahl, S.M.; Laredo, S.; Morrissette, D.A. Cariprazine as a treatment across the bipolar I spectrum from depression to mania: Mechanism of action and review of clinical data. Ther. Adv. Psychopharmacol. 2020, 10, 151–161. [Google Scholar] [CrossRef]
- Carlini, V.P.; Schioth, H.B.; deBarioglio, S.R. Obestatin improves memory performance and causes anxiolytic effects in rats. Biochem. Biophys. Res. Commun. 2007, 352, 907–912. [Google Scholar] [CrossRef]
- Antunes, M.; Biala, G. The novel object recognition memory: Neurobiology, test procedure, and its modifications. Cogn. Process. 2012, 13, 93–110. [Google Scholar] [CrossRef] [PubMed]
- Balderas, I.; Rodriguez-Ortiz, C.J.; Bermudez-Rattoni, F. Retrieval and reconsolidation of object recognition memory are independent processes in the perirhinal cortex. Neuroscience 2013, 253, 398–405. [Google Scholar] [CrossRef] [PubMed]
- Brown, M.W.; Barker, G.R.I.; Aggleton, J.P.; Warburton, E.C. What pharmacological interventions indicate concerning the role of the perirhinal cortex in recognition memory. Neuropsychologia 2012, 50, 3122–3140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moore, S.J.; Deshpande, K.; Stinnett, G.S.; Seasholtz, A.F.; Murphy, G.G. Conversion of short-term to long-term memory in the novel object recognition paradigm. Neurobiol. Learn. Mem. 2013, 105, 174–185. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.-G. Specific tau phosphorylation sites in hippocampus correlate with impairment of step-down inhibitory avoidance task in rats. Behav. Brain Res. 2005, 158, 277–284. [Google Scholar] [CrossRef]
- Hafting, T.; Fyhn, M.; Molden, S.; Moser, M.; Moser, E. Microstructure of a spatial map in the entorhinal cortex. Nature 2005, 436, 801–806. [Google Scholar] [CrossRef]
- Porsolt, R.D.; McArthur, R.A.; Lenègre, A. Psychotropic Screening Procedures. In Methods in Behavioral Pharmacology, 1st ed.; van Haaren, F., Ed.; Elsevier Science: Amsterdam, The Netherlands, 1993; pp. 23–51. [Google Scholar]
- Ingram, D.K. Rodent Models of Age-Related Memory Impairment. In Functional Neurobiology of Aging, 1st ed.; Hof, P., Mobbs, C., Eds.; Academic Press: Cambridge, MA, USA, 2001; pp. 373–386. [Google Scholar]
- Meneses, A. The Role of 5-HT Systems on Memory and Dysfunctional Memory, 1st ed.; Academic Press: Cambridge, MA, USA, 2014; pp. 7–16. [Google Scholar]
- Lorenzini, C.A.; Baldi, E.; Buchirelli, C.; Sacchetti, B.; Tassoni, G. Role of dorsal hippocampus in acquisition, consolidation and retrieval of rat’s passive avoidance response: A tetrodotoxin functional inactivation study. Brain Res. 1996, 730, 32–39. [Google Scholar] [CrossRef]
- Maren, S. Emotional Learning: Animals. In Learning and Memory: A Comprehensive Reference, 2nd ed.; Byrne, J.H., Ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 391–410. [Google Scholar]
- Caccia, S.; Invernizzi, R.W.; Nobili, A.; Pasina, L. A new generation of antipsychotics: Pharmacology and clinical utility of cariprazine in schizophrenia. Ther. Clin. Risk Manag. 2013, 9, 319–328. [Google Scholar] [CrossRef] [Green Version]
- Delcourte, S.; Ashby, C.R., Jr.; Rovera, R.; Kiss, B.; Adham, N.; Farkas, B.; Haddjeri, N. The novel atypical antipsychotic cariprazine demonstrates dopamine D2 receptor-dependent partial agonist actions on rat mesencephalic dopamine neuronal activity. CNS Neurosci. Ther. 2018, 24, 1129–1139. [Google Scholar] [CrossRef] [Green Version]
- Kiss, B.; Némethy, Z.; Fazekas, K.; Kurkó, D.; Gyertyán, I.; Sághy, K.; Laszlovszky, I.; Farkas, B.; Kirschner, N.; Bolf-Terjéki, E.; et al. Preclinical pharmacodynamic and pharmacokinetic characterization of the major metabolites of cariprazine. Drug Des. Devel. Ther. 2019, 13, 3229–3248. [Google Scholar] [CrossRef] [Green Version]
- Citrome, L. Cariprazine in Schizophrenia: Clinical Efficacy, Tolerability, and Place in Therapy. Adv. Ther. 2013, 30, 114–126. [Google Scholar] [CrossRef] [PubMed]
- Herman, A.; Mansari, M.E.; Adham, N.; Kiss, B.; Farkas, B.; Blier, P. Involvement of 5-HT1A and 5-HT2A receptors but not α2-adrenoceptors in the acute electrophysiological effects of cariprazine in the rat brain in vivo. Mol. Pharmacol. 2018, 94, 1363–1370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kehr, J.; Yoshitake, T.; Ichinose, F.; Yoshitake, S.; Kiss, B.; Gyertyán, I.; Adham, N. Effects of cariprazine on extracellular levels of glutamate, GABA, dopamine, noradrenaline and serotonin in the medial prefrontal cortex in the rat phencyclidine model of schizophrenia studied by microdialysis and simultaneous recordings of locomotor activity. Psychopharmacology 2018, 235, 1593–1607. [Google Scholar] [CrossRef] [PubMed]
Group | Mean ± SEM | p | Mean1 ± SEM1 | p1 |
---|---|---|---|---|
Saline | 52.90 ± 3.65 | <0.001 * | 53.76 ± 3.58 | <0.001 * |
Saline + SCP | 7.29 ± 0.62 | - | 8.49 ± 1.03 | - |
Cariprazine 0.25 mg/kg b.w. + SCP | 32.73 ± 3.36 | 0.001 * | 28.16 ± 4.00 | 0.031 * |
Cariprazine 0.5 mg/kg b.w. + SCP | 36.55 ± 2.99 | <0.001 * | 33.68 ± 5.36 | 0.013 * |
Cariprazine 1 mg/kg b.w. + SCP | 34.51 ± 3.76 | 0.001 * | 38.63 ± 6.38 | 0.012 * |
Group | Mean ± SEM | p | Mean1 ± SEM1 | p1 |
---|---|---|---|---|
Saline | 175.20 ± 2.62 | <0.001 * | 177.73 ± 0.28 | <0.001 * |
Saline + SCP | 30.28 ± 5.20 | - | 54.50 ± 7.20 | - |
Cariprazine 0.25 mg/kg b.w. + SCP | 137.30 ± 14.97 | 0.001 * | 153.60 ± 16.22 | 0.002 * |
Cariprazine 0.5 mg/kg b.w. + SCP | 140.13 ± 12.44 | <0.001 * | 149.60 ± 18.59 | 0.007 * |
Cariprazine 1 mg/kg b.w. + SCP | 146.39 ± 15.44 | <0.001 * | 164.01 ± 13.99 | <0.001 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zlatanova, H.I.; Georgieva-Kotetarova, M.T.; Vilmosh, N.B.; Kandilarov, I.K. Evaluation of the Effect of Cariprazine on Memory and Cognition in Experimental Rodent Models. Int. J. Environ. Res. Public Health 2022, 19, 14748. https://doi.org/10.3390/ijerph192214748
Zlatanova HI, Georgieva-Kotetarova MT, Vilmosh NB, Kandilarov IK. Evaluation of the Effect of Cariprazine on Memory and Cognition in Experimental Rodent Models. International Journal of Environmental Research and Public Health. 2022; 19(22):14748. https://doi.org/10.3390/ijerph192214748
Chicago/Turabian StyleZlatanova, Hristina Ivanova, Maria Todorova Georgieva-Kotetarova, Natalia Borisova Vilmosh, and Ilin Kostadinov Kandilarov. 2022. "Evaluation of the Effect of Cariprazine on Memory and Cognition in Experimental Rodent Models" International Journal of Environmental Research and Public Health 19, no. 22: 14748. https://doi.org/10.3390/ijerph192214748
APA StyleZlatanova, H. I., Georgieva-Kotetarova, M. T., Vilmosh, N. B., & Kandilarov, I. K. (2022). Evaluation of the Effect of Cariprazine on Memory and Cognition in Experimental Rodent Models. International Journal of Environmental Research and Public Health, 19(22), 14748. https://doi.org/10.3390/ijerph192214748