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Abstract: Bi2WO6-based heterojunction photocatalyst for antibiotic degradation has been a research
hotspot, but its photocatalytic performance needs to be further improved. Therefore, 2D/2D P-doped
g-C3N4/Bi2WO6 direct Z-scheme heterojunction photocatalysts with different composition ratios
were prepared through three strategies of phosphorus (P) element doping, morphology regulation,
and heterojunction, and the efficiency of its degradation of tetracycline hydrochloride (TC-HCl) under
visible light was studied. Their structural, optical, and electronic properties were evaluated, and
their photocatalytic efficiency for TC-HCl degradation was explored with a detailed assessment of
the active species, degradation pathways, and effects of humic acid, different anions and cations,
and water sources. The 30% P-doped g-C3N4/Bi2WO6 had the best photocatalytic performance for
TC-HCl degradation. Its photocatalytic rate was 4.5-, 2.2-, and 1.9-times greater than that of g-C3N4,
P-doped g-C3N4, and Bi2WO6, respectively. The improved photocatalytic efficiency was attributed
to the synergistic effect of P doping and 2D/2D direct Z-scheme heterojunction construction. The
stability and reusability of the 30% P-doped C3N4/Bi2WO6 were confirmed by cyclic degradation
experiments. Radical scavenging experiments and electron spin resonance spectroscopy showed that
the main active species were •O2

− and h+. This work provides a new strategy for the preparation of
direct Z-scheme heterojunction catalysts with high catalytic performance.

Keywords: P-doped g-C3N4; Bi2WO6; 2D/2D direct Z-scheme heterojunction; photocatalytic degra-
dation; tetracycline hydrochloride

1. Introduction

Tetracycline hydrochloride (TC-HCl) is one of the commonly used antibiotics. It is
widely used in human medicine, animal husbandry, and agriculture to prevent disease
and promote growth [1,2]. TC-HCl is difficult to be absorbed and utilized by organisms.
About 70–90% of unutilized or incompletely utilized TC-HCl is discharged into natural
waterbodies and soils. In recent years, it has been frequently detected in surface water,
groundwater, soil, vegetables, fruits, and other foods around the world [3,4]. Owing to its
good water solubility, easy accumulation and migration, stable structure, poor degradability,
bio-resistance, and chronic toxicity, this poses serious harm to natural ecosystems and
human health [5]. Therefore, there is an urgent need to develop a safe and effective method
of disposing of TC-HCl. Photocatalytic degradation has a high degradation rate and high
mineralization rate, environmental friendliness, and the ability to degrade TC-HCl into
low-toxic byproducts, namely, CO2 and H2O; therefore, it has emerged as a promising
research topic in recent years [6–8].

Int. J. Environ. Res. Public Health 2022, 19, 14935. https://doi.org/10.3390/ijerph192214935 https://www.mdpi.com/journal/ijerph

https://doi.org/10.3390/ijerph192214935
https://doi.org/10.3390/ijerph192214935
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijerph
https://www.mdpi.com
https://orcid.org/0000-0001-5113-9158
https://orcid.org/0000-0002-9583-0773
https://orcid.org/0000-0001-5264-8464
https://doi.org/10.3390/ijerph192214935
https://www.mdpi.com/journal/ijerph
https://www.mdpi.com/article/10.3390/ijerph192214935?type=check_update&version=2


Int. J. Environ. Res. Public Health 2022, 19, 14935 2 of 22

Bi2WO6 is a visible light-responsive photocatalyst that is widely used in fields such
as energy generation and pollutant degradation owing to its stable physical and chemical
properties, narrow band gap, non-toxicity, and low cost [9,10]. However, it has a limited
range of visible light absorption, and the photogenerated carriers easily recombine between
the W 5d orbital and the hybrid orbitals of Bi 6s and O 2p, which reduces the quantum
efficiency of its protons and limits its practical applications [11]. The photocatalytic perfor-
mance of Bi2WO6 can be effectively improved by morphological control to produce diverse
morphologies, including three-dimensional (3D) nanoflowers [12], two-dimensional (2D)
nanosheets [13], one-dimensional (1D) nanofibers [14], and zero-dimensional (0D) quantum
dots [15]. Among these, 1D and 0D Bi2WO6 materials have unsatisfactory photocatalytic
performance; and 3D Bi2WO6 has a large specific surface area with many channels, which is
conducive to the adsorption of reactants, but no current synthesis method allows the precise
adjustment of its porosity and active sites, and the photocatalytic performance needs to be
further improved. In contrast, 2D Bi2WO6 has shorter charge transport pathways, a larger
specific surface area, higher adsorption, and more abundant active sites, which facilitate the
separation of photogenerated electron–hole pairs, making it the preferred morphology for
morphological control [16]. However, morphological control alone does not solve the issue
of easy recombination of photogenerated electrons and holes, which means it is difficult to
achieve satisfactory photocatalytic performance.

Combining 2D Bi2WO6 and other catalysts to form heterojunctions can effectively solve
the issue of electron–hole recombination and greatly improve the catalytic performance.
Compared with 0D/2D and 1D/2D heterojunction photocatalysts, 2D/2D heterojunctions
have higher specific surface areas, lower transport resistance, higher charge transfer effi-
ciency, more active sites, and better photocatalytic performance, making them an important
research topic [17]. Depending on the photocatalytic mechanism, 2D/2D Bi2WO6 het-
erojunction photocatalysts can be classified into two types, namely, Z-scheme [18] and
type-II [19]. Among them, the photogenerated electrons and holes of Z-scheme heterojunc-
tions are more negative and positive, respectively, than these of type-II heterojunctions,
and the resulting redox ability is far superior. Therefore, these materials have considerable
potential for use in pollutant degradation applications.

The most common types of 2D/2D Bi2WO6 Z-scheme heterojunctions are all-solid-
state materials with a solid medium, such as 2D/2D AgBr/GO/Bi2WO6 [20] and 2D/2D
TiO2/Au/Bi2WO6 [21], and direct Z-scheme heterojunctions without any medium, such
as 2D/2D Bi2WO6/ZnIn2S4 [22] and 2D/2D WS2/Bi2WO6 [18]. Direct Z-scheme hetero-
junctions have lower cost, faster photogenerated electron transfer, prevention of reverse
reactions, and no light-shielding effect, and they have been proven to be the most promising
third-generation heterojunction catalysts [23]. However, there is a need to identify superior
co-catalysts to combine with 2D Bi2WO6 to form 2D/2D direct Z-scheme heterojunctions
to guarantee optimal photocatalytic performance.

Graphitic carbon nitride (g-C3N4), as a non-toxic, inexpensive, and metal-free 2D
semiconductor with a graphite-like structure, has been widely used for the photocatalytic
degradation of pollutants. However, its rapid photogenerated carrier recombination rate
and low visible-light utilization lead to low photocatalytic performance. Methods such
as doping and heterojunction formation are commonly used to improve its photocatalytic
activity. Since the valence and conduction bands of g-C3N4 and Bi2WO6 are well matched,
the forming of direct Z-scheme heterojunctions with Bi2WO6 can greatly improve the
photocatalytic performance of g-C3N4 [24–26]. However, the catalytic performance of
g-C3N4/Bi2WO6 needs to be further improved. In addition, non-metallic elements are
often used to modify g-C3N4 because of their low cost and environmental friendliness.
P doping is promising because P atoms can form chemical bonds with adjacent C and
N atoms, resulting in planar coordination, enhanced active centers, improved electrical
conductivity and charge transfer capabilities, a significant reduction in the band-gap width
of g-C3N4, a broadened range of visible light absorption, and improved photocatalytic
performance [27–29]. Based on these factors, we hypothesized that 2D/2D P-doped g-
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C3N4/Bi2WO6 heterojunction catalysts, which combine P doping, morphological control,
and heterojunction construction, will present excellent photocatalytic performance. At
present, there are no reports on the photocatalytic degradation of TC-HCl by P-doped
g-C3N4/Bi2WO6.

In this study, 2D P-doped g-C3N4 was prepared by calcination, and samples of 2D/2D
P-doped g-C3N4/Bi2WO6 were prepared at different ratios using a hydrothermal method.
The catalyst was characterized using various techniques, and the catalytic activity to-
ward TC-HCl degradation was evaluated under visible light illumination. Further, the
effects of coexisting ions and different water sources on the degradation efficiency were
studied, and finally, the reaction pathways and mechanism of photocatalytic degradation
were proposed.

2. Materials and Methods
2.1. Materials

Dicyandiamide and 96% hydroxyethylidene diphosphonic acid (HEDP) were pur-
chased from Shanghai Macklin Biochemical Co., Ltd. (Shanghai, China); bismuth nitrate
pentahydrate, sodium bicarbonate, sodium chloride, and sodium sulfate were purchased
from Tianjin Kemiou Chemical Reagent Co., Ltd. (Tianjin, China); 96% TC-HCl was pur-
chased from Shanghai Aladdin Biochemical Technology Co., Ltd. (Shanghai, China); 95%
ethanol, ascorbic acid, isopropanol, sodium nitrate, and magnesium sulfate were purchased
from Xilong Scientific Co., Ltd. (Shantou, China); sodium tungstate dihydrate, ethylenedi-
aminetetraacetic acid disodium salt (EDTA-2Na), calcium sulfate, aluminum sulfate, and
manganese sulfate were purchased from Tianjin Damao Chemical Reagent Factory (Tianjin,
China); and humic acid was purchased from Tianjin Guangfu Fine Chemical Research
Institute (Tianjin, China). All of the above reagents were of analytical grade.

2.2. Preparation of P-Doped g-C3N4

P-doped g-C3N4 was prepared by a two-step calcination process. Dicyandiamide
(15 g) and HEDP (0.5 g) were dissolved in ethanol (30 mL) and then stirred in a water bath
at 70 ◦C until the ethanol evaporated completely. The dried product was placed in a 100 mL
covered ceramic crucible and calcined at 550 ◦C for 4 h in a muffle furnace (heating rate:
3 ◦C/min). After cooling, the product was ground for 10 min, then placed in a 100 mL
uncapped ceramic crucible and calcined at 550 ◦C for 2 h (heating rate: 3 ◦C/min). P-doped
g-C3N4 (PCNS) was obtained after cooling. For comparison, g-C3N4 nanosheets (CNS)
were prepared under the same conditions without the addition of HEDP.

2.3. Preparation of P-Doped g-C3N4/Bi2WO6

P-doped g-C3N4/Bi2WO6 was prepared by a hydrothermal method. Na2WO4·2H2O
(0.3299 g) and Bi(NO3)3·5H2O (0.9701 g) were dissolved separately in deionized water
(30 mL). The two solutions were then mixed (Na2WO4·2H2O/Bi(NO3)3·5H2O molar ratio
of 1:2), and PCNS (0.2093 g) was added. Complete mixing was ensured by magnetic stirring
three times for 30 min, each with sonication for 30 min between each stirring step. The
obtained solution was transferred to a 100 mL Teflon-lined autoclave and held at 170 ◦C for
20 h. After cooling, the solution was centrifuged at 7500 cycles/min for 10 min, followed
by washing with ethanol and deionized water alternately three times. Finally, the sample
was dried at 80 ◦C overnight to obtain 30 wt% P-doped g-C3N4/Bi2WO6 (denoted as 30%
PCNS/BWO). Samples with 0.5 wt%, 10 wt%, 50 wt%, and 67 wt% PCNS (denoted as 0.5%
PCNS/BWO, 10% PCNS/BWO, 50% PCNS/BWO, and 67% PCNS/BWO, respectively)
were prepared in the same way using different amounts of PCNS. For comparison, BWO
was prepared without the addition of PCNS, and 30% CNS/BWO was prepared by replac-
ing PCNS with CNS. The quantities of the reagents used in the preparation of all catalysts
are listed in Table S1.
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2.4. Characterization of the Catalysts

For each catalyst, the crystal structure was determined using X-ray diffractometry
(XRD; Bruker D8); the morphology was determined by scanning electron microscopy (SEM;
JEOL JSM-7500F) and transmission electron microscopy (TEM; JEOL JEM-2100F); the sur-
face functional groups and chemical bonds were determined by Fourier-transform infrared
spectroscopy (FTIR; Nicolet 460); the optical properties were determined by ultraviolet-
visible diffuse reflectance spectroscopy (UV-vis DRS; Shimadzu UV2700); photolumines-
cence (PL) spectra and fluorescence lifetimes were determined using a spectrofluoropho-
tometer (Edinburgh Instruments FLS980); the elemental composition and valence states
were analyzed by X-ray photoelectron spectroscopy (XPS; Thermo Fisher Escalab 250Xi); the
specific surface area and pore size distribution were evaluated using the Brunauer–Emmett–
Teller (BET) method (Micromeritics ASAP2020); electrochemical impedance spectroscopy
(EIS) and photocurrent response curves were obtained using an electrochemical workstation
(Shanghai Chenhua, CHI1030B).

2.5. Evaluation of Photocatalytic Performance

For each catalyst, 0.02 g of catalyst was added to 100 mL of a 20 mg/L TC-HCl solution,
followed by stirring in the dark for 20 min. Thereafter, photodegradation experiments were
conducted under the irradiation of a xenon lamp (PLS-SXE300D, Perfect Light, Beijing,
China) at 300 W and λ > 420 nm. The samples were collected every 15 min and filtered
with a 0.22 µm filter. The absorbance of each sample at 357 nm was measured to calculate
the degradation efficiency.

To evaluate the reusability of the 30% PCNS/BWO photocatalyst, the TC-HCl degrada-
tion experiment was repeated four times. After each degradation experiment, the catalyst
was collected by centrifugation, washed three times with deionized water and ethanol
alternately, and dried at 80 ◦C for the next degradation experiment.

To explore the effects of coexisting ions and different water sources, which influences
the practical use of the 30% PCNS/BWO photocatalyst, the effects of humic acid (10 mg/L),
5 mM of different anions and cations (HCO3

−, Cl−, NO3
−, SO4

2−, Ca2+, Mg2+, Al3+, and
Mn2+), and different water sources (river water, final effluent of a sewage treatment plant,
lake water, and deionized water) on the TC-HCl degradation efficiency were studied. The
experimental conditions were the same as those for the photodegradation experiments.

The intermediates of the TC-HCl photocatalytic degradation process using the 30%
PCNS/BWO photocatalyst were identified by high-resolution accurate mass liquid chro-
matography with tandem mass spectrometry (HRAM LC-MS/MS; Thermo Scientific, Q
Exactive). The secondary mass spectra of the intermediates were obtained by comparison
with the standard library, and then the mass-to-charge ratios of the intermediates were
determined by comparison with similar literature.

2.6. Detection of Active Substances

To explore the main active species during the degradation of TC-HCl using the 30%
PCNS/BWO photocatalyst, 1 mM ascorbic acid, 1 mM EDTA-2Na, and 1 mM isopropanol
(IPA) were added during the photocatalytic process to scavenge superoxide radicals (•O2

−),
holes (h+), and hydroxyl radicals (•OH), respectively. In addition, the free radicals pro-
duced during the degradation process were determined by electron spin resonance (ESR)
spectroscopy (Bruker E-500). The experimental conditions were the same as those for the
photodegradation experiments.

3. Results and Discussion
3.1. Characterization

The crystal structures and properties of the catalysts were analyzed by XRD, as shown
in Figure 1. The XRD patterns of the CNS and PCNS samples contained similar diffraction
peaks. Specifically, both contained characteristic peaks at 13.1◦ and 27.7◦, which correspond
to the (100) and (002) planes of g-C3N4, respectively (JCPDS 87-1526). The (100) plane
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represents the triazine ring structural unit of g-C3N4, while the (002) plane represents the
layered arrangement of materials with graphite-like phases [30]. Thus, PCNS maintained
a good g-C3N4 structure. No phosphorus peak was found in PCNS, probably because of
the low phosphorus content. The peak intensities in the PCNS pattern were significantly
weaker than those in the CNS pattern. Notably, this is indicative of reduced transport
time for the electrons to travel from the interior to the surface of the material [26]. The
characteristic peaks of BWO at 28.4◦, 33.0◦, 47.2◦, 56.0◦, 58.7◦, 76.0◦, and 78.5◦ correspond
to the (131), (200), (202), (133), (262), (333), and (240) planes of Bi2WO6, respectively
(JCPDS 73-1126) [31]. In addition, the diffraction peaks of the PCNS/BWO samples with
different ratios were similar to those of BWO. As the content of PCNS increased, the
intensity of the peak corresponding to the (002) plane of PCNS gradually increased, and
the intensities of peaks corresponding to all planes of BWO gradually reduced, indicating
that the PCNS/BWO composite catalysts were successfully prepared.

Int. J. Environ. Res. Public Health 2022, 19, x FOR PEER REVIEW 5 of 24 
 

 

The crystal structures and properties of the catalysts were analyzed by XRD, as 

shown in Figure 1. The XRD patterns of the CNS and PCNS samples contained similar 

diffraction peaks. Specifically, both contained characteristic peaks at 13.1° and 27.7°, 

which correspond to the (100) and (002) planes of g-C3N4, respectively (JCPDS 87-1526). 

The (100) plane represents the triazine ring structural unit of g-C3N4, while the (002) plane 

represents the layered arrangement of materials with graphite-like phases [30]. Thus, 

PCNS maintained a good g-C3N4 structure. No phosphorus peak was found in PCNS, 

probably because of the low phosphorus content. The peak intensities in the PCNS pattern 

were significantly weaker than those in the CNS pattern. Notably, this is indicative of 

reduced transport time for the electrons to travel from the interior to the surface of the 

material [26]. The characteristic peaks of BWO at 28.4°, 33.0°, 47.2°, 56.0°, 58.7°, 76.0°, and 

78.5° correspond to the (131), (200), (202), (133), (262), (333), and (240) planes of Bi2WO6, 

respectively (JCPDS 73-1126) [31]. In addition, the diffraction peaks of the PCNS/BWO 

samples with different ratios were similar to those of BWO. As the content of PCNS in-

creased, the intensity of the peak corresponding to the (002) plane of PCNS gradually in-

creased, and the intensities of peaks corresponding to all planes of BWO gradually re-

duced, indicating that the PCNS/BWO composite catalysts were successfully prepared.  

10 20 30 40 50 60 70 80

In
te

n
si

ty
 (

a
.u

.)

2 Theta (degree)

CNS

PCNS

BWO

0.5%PCNS/BWO

10%PCNS/BWO

30%PCNS/BWO

50%PCNS/BWO

67%PCNS/BWO

(100)

(002)

(131)
(200) (202) (133)

(262) (333)

(240)

(002)

 

Figure 1. XRD patterns of the synthesized samples. 

The surface compositions and valence states of the samples were analyzed by XPS. 

From the XPS survey spectra shown in Figure 2a, PCNS contained C, N, O, and P; BWO 

contained O, Bi, and W; and 30% PCNS/BWO contained C, N, O, Bi, and W. The absence 

of P in the 30% PCNS/BWO survey spectrum is probably due to the low phosphorus con-

tent. The C 1s spectrum of 30% PCNS/BWO (Figure 2b) contained peaks at 284.8, 286.2, 

and 288.28 eV, which correspond to C–C, C–N, and N–C=N bonds with sp2 hybridized C 

atoms, respectively [32]. The N 1s spectra (Figure 2c) contained peaks at 398.68, 400.19, 

and 401.38 eV, corresponding to C–N=C, N–(C)3, and C–NH2 bonds, respectively [33]. The 

O 1s spectra (Figure 2d) contained a single peak at 530.08 eV representing the Bi–O bond 

[34]. In the P 2p spectra (Figure 2e), three peaks at 133.27, 134.07, and 135.32 eV were 

observed, which correspond to P–N, P=N, and P=O bonds, respectively. This demon-

strates that P–N and P=N covalent bonds form between the substitutional P atoms and 
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The surface compositions and valence states of the samples were analyzed by XPS.
From the XPS survey spectra shown in Figure 2a, PCNS contained C, N, O, and P; BWO
contained O, Bi, and W; and 30% PCNS/BWO contained C, N, O, Bi, and W. The absence
of P in the 30% PCNS/BWO survey spectrum is probably due to the low phosphorus
content. The C 1s spectrum of 30% PCNS/BWO (Figure 2b) contained peaks at 284.8, 286.2,
and 288.28 eV, which correspond to C–C, C–N, and N–C=N bonds with sp2 hybridized C
atoms, respectively [32]. The N 1s spectra (Figure 2c) contained peaks at 398.68, 400.19, and
401.38 eV, corresponding to C–N=C, N–(C)3, and C–NH2 bonds, respectively [33]. The O 1s
spectra (Figure 2d) contained a single peak at 530.08 eV representing the Bi–O bond [34]. In
the P 2p spectra (Figure 2e), three peaks at 133.27, 134.07, and 135.32 eV were observed,
which correspond to P–N, P=N, and P=O bonds, respectively. This demonstrates that P–N
and P=N covalent bonds form between the substitutional P atoms and adjacent N, and P=O
bonds form between the P atoms and O from the air during the hydrothermal synthesis
process [35]. These findings indicate that P was successfully doped into the CNS. The Bi 4f
spectra (Figure 2f) contained Bi 4f7/2 and Bi 4f5/2 peaks at 159.26 and 164.51 eV, respectively,
indicating the existence of Bi3+ [36], while the W 4f spectra (Figure 2 g) contained W 4f7/2
and W 4f5/2 peaks at 35.44 and 37.54 eV, respectively, indicating the existence of W6+ [11].
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Importantly, the binding energies of the C 1s, N 1s, and P 2p peaks of 30% PCNS/BWO all
shifted toward higher binding energies compared with those of PCNS, while the binding
energies of the O 1s, Bi 4f, and W 4f peaks of 30% PCNS/BWO all shifted toward lower
binding energies compared with those of BWO. Generally, if an element gains electrons,
its binding energy decreases, and if it loses electrons, its binding energy increases [24].
These findings indicate that there was efficient electron transfer between PCNS and BWO,
confirming the existence of a heterojunction structure.

The chemical structures of the samples were further analyzed by FTIR spectroscopy, as
shown in Figure 3. The spectra of CNS and PCNS were very similar. The absorption bands
at 3000–3600, 1200–1650, and 810 cm−1 correspond to N–H stretching vibrations, C–N
heterocyclic stretching vibrations, and the triazine structure of g-C3N4 [37], respectively.
This result confirms that P doping did not change the triazine ring structure of CNS, which
is consistent with the XRD results. As the PCNS/BWO ratio increased, the intensities
of all the peaks gradually increased. In the BWO spectrum, the absorption bands at 579,
731, 827, and 1380 cm−1 correspond to Bi–O–Bi stretching vibrations, W–O–W bonds,
Bi–O stretching vibrations [38], and the vibration of the adsorbed water molecules [39],
respectively. With increasing PCNS content, the peaks at 1380 and 827 cm−1 gradually
disappeared, while those at 579 and 731 cm−1 gradually reduced. The characteristic peaks
of PCNS and BWO coexisted in the spectra of the PCNS/BWO composites, indicating the
successful construction of PCNS/BWO heterojunctions.
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Figure 2. XPS data of PCNS, BWO, and 30% PCNS/BWO: (a) survey, (b) C 1s, (c) N 1s, (d) O 1s, (e) 

P 2p, (f) Bi 4f, and (g) W 4f spectra. 
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The morphologies and microstructures of the catalysts were characterized by SEM
(Figure 4) and TEM (Figure 5). Figures 4a,b and 5a,b demonstrate that the CNS and PCNS
samples comprised large nanosheets with a 2D-layered structure. BWO was composed of
smaller nanosheets with a 2D-layered structure, as shown in Figures 4c and 5c. The 30%
PCNS/BWO sample had a 2D/2D-layered structure, where the smaller BWO sheets were
attached to the larger PCNS sheets (Figures 4d and 5d). Figure 5e shows a high-resolution
(HR)-TEM image of 30% PCNS/BWO. Clear lattice fringes can be seen, which were at-
tributed to monolayer Bi2WO6 nanosheets (m-BWO), with a lattice spacing of 0.315 nm,
corresponding to the (131) plane of orthorhombic Bi2WO6 [40]. The lattice at the edge of
the image is PCNS. Notably, the interface between PCNS and BWO demonstrates that
these components are in close contact, which is beneficial for the transfer of photogener-
ated carriers between them. In addition, from the energy-dispersive X-ray spectroscopy
elemental mapping images in Figure 5g–l, it was confirmed that C, N, P, O, W, and Bi
were uniformly distributed across the 30% PCNS/BWO sample, which further proves the
successful preparation of the composite catalyst. The corresponding atomic composition is
listed in Table S2.
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The BET specific surface areas of the samples were calculated from the N2 adsorp-
tion/desorption isotherms shown in Figure 6. All of the samples had type IV isotherms
with H3 type hysteresis, and the pore sizes were all less than 20 nm, indicating that the cat-
alyst surfaces had mesoporous structures [41]. The specific surface areas of the CNS, PCNS,
BWO, and 30% PCNS/BWO samples were 29.5653, 15.9839, 17.9569, and 47.1471 m2/g,
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respectively, and the relative pore volumes were 0.1634, 0.0735, 0.0781, and 0.1492 cm3/g,
respectively. The specific surface area and relative pore volume of the 30% PCNS/BWO
composite catalyst were significantly larger than those of PCNS and BWO. This indicates
that the composite catalyst will exhibit better photocatalytic activity because the larger
the specific surface area, the higher the adsorption capacity. Notably, these results are
consistent with the photocatalytic activity measurements in Section 3.3.
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Figure 6. N2 adsorption/desorption isotherms of CNS, PCNS, BWO, and 30% PCNS/BWO.

3.2. Optical Properties

To explore the light absorption behavior of the samples, UV-vis DRS was performed.
The results are shown in Figure 7a. All of the catalysts were responsive to visible light,
and the absorption edges of CNS, PCNS, BWO, and 30% PCNS/BWO were 457, 507, 446,
and 471 nm, respectively. PCNS was more responsive to visible light than CNS, indicating
that P doping effectively broadened the range of visible light absorption. The PCNS/BWO
composite catalysts with different PCNS contents were all more responsive to visible
light than BWO, indicating that the construction of 2D/2D PCNS/BWO heterojunctions
prepared by combining morphological control and heterojunction construction effectively
broadened the range of visible light absorption. The band gaps (Eg) of the photocatalysts
were calculated using Equation (1), from which the Eg values of PCNS and BWO were
calculated to be 2.45 and 2.78 eV, respectively. The valence bands of PCNS and BWO were
studied using XPS-VB spectroscopy, as shown in Figure 7b, and calculated to be 2.32 and
2.00 eV (relative to the Fermi level), respectively. The valence band edge potentials (EVB)
relative to a normal hydrogen electrode (NHE) were calculated using Equation (2) [42], and
the conduction band potentials (ECB) were calculated using Equation (3). The EVB values of
PCNS and BWO were calculated as 2.40 and 2.08 eV, respectively, and the ECB values were
calculated as −0.05 and −0.70 eV (vs. NHE, pH = 0), respectively.

Eg = 1240/λ (1)

EVB = Ψ + VBXPS − 4.44 (2)

ECB = EVB − Eg (3)

where λ is the absorption edge of the catalyst and Ψ is the electronic work function of the
XPS instrument (4.52 eV).
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PL spectroscopy was performed at 428 nm to study the separation efficiencies of the
photoinduced charge carriers in CNS, PCNS, BWO, and 30% PCNS/BWO. As shown in
Figure 8a, CNS had the highest PL intensity, followed by PCNS, and 30% PCNS/BWO
had the lowest PL intensity. Generally, a lower PL intensity corresponds to a higher
electron–hole separation efficiency [43], indicating that 30% PCNS/BWO has the highest
electron–hole separation efficiency. To further study the optoelectronic properties, photocur-
rent response (i–t) curves were constructed, and electrochemical impedance spectroscopy
(EIS) was performed. As shown in Figure 8b,c, 30% PCNS/BWO had the largest photocur-
rent density and the smallest EIS arc radius, further confirming that 30% PCNS/BWO
has the highest photogenerated electron–hole separation efficiency, which is one of the
characteristics of excellent photocatalysts [44]. To further demonstrate the suppression
of photogenerated electron–hole recombination, the carrier lifetimes in the reaction sys-
tem were measured and analyzed. The time-resolved fluorescence spectra are shown in
Figure 8d. The total lifetime of photogenerated charge carriers in 30% PCNS/BWO was
7.08 ns, which is larger than that for PCNS and BWO. A longer lifetime of photogenerated
charge carriers means that they have more time to participate in the photocatalytic reaction,
which is beneficial for improving photocatalytic efficiency [45]. From the discussion above,
P doping effectively reduces the recombination rate of photoinduced electron–hole pairs,
and the 2D/2D morphological control and heterojunction construction were also conducive
to the effective separation of photoinduced electron–hole pairs, which was attributed to the
optimized electronic band structure providing a more efficient electron transfer process [46].

3.3. Study of Photocatalytic Performance

To evaluate the photocatalytic activities of the prepared samples, TC-HCl degradation
experiments were performed in aqueous media under visible light irradiation. Currently,
TC-HCl concentrations greater than 10 mg/L and catalyst concentrations greater than
0.2 g/L were used in similar published literature (see Table S3). In order to highlight the
advanced nature of the catalysts used in this study, a higher concentration of TC-HCl
(20 mg/L) and a lower concentration of catalyst (0.2 g/L) were chosen. It is expected to
obtain the desired TC-HCl degradation rate with a higher concentration of TC-HCl and a
lower concentration of catalyst. As shown in Figure 9a, under dark conditions, the reaction
system reached adsorption–desorption equilibrium within 20 min. The PCNS/BWO
composite catalysts had stronger adsorption capacities than PCNS, with 30% PCNS/BWO
showing the highest adsorption capacity owing to its large specific surface area. The
adsorption results were consistent with the BET analysis. After 60 min under visible light
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illumination, the degradation efficiency of PCNS was 51.2%, which was higher than that of
CNS (30.9%), indicating that P doping significantly improved the photocatalytic efficiency.
In the composite catalysts, as the content of PCNS was increased, the degradation efficiency
of TC-HCl catalyzed by 2D/2D PCNS/BWO heterojunction gradually increased. However,
when the PCNS content was too high, the separation of photogenerated carriers was
inhibited, which gradually reduced the TC-HCl degradation efficiency. Nonetheless, the
degradation efficiencies of all the composite catalysts were higher than those of BWO and
PCNS, with 30% PCNS/BWO exhibiting the highest degradation efficiency of 76.7%. This
corresponds to a significant improvement compared with that of BWO and PCNS owing
to the optimized energy band structure and optical properties of the composite catalyst.
For comparison, the degradation efficiency of the 30% CNS/BWO (without P) was 62.1%,
confirming that P doping improved the photocatalytic efficiency.
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The kinetic rate constants of TC-HCl degradation under visible light irradiation are
shown in Figure 9b. All kinetic equations were linear, indicating that the degradations
followed the pseudo-first-order kinetic model. The rate constants of degradations catalyzed
by CNS, PCNS, BWO, and 30% PCNS/BWO were 0.0059, 0.0121, 0.0138, and 0.0266 min−1,
respectively. The degradation rate constant of the 30% PCNS/BWO catalyst was 4.5 times
greater than that of the CNS catalyst and effectively improved compared with those of
PCNS and BWO. These results suggest that P doping and the construction of 2D/2D hetero-
junctions are effective approaches to enhance photocatalytic performance. In addition, the
measured TC-HCl degradation efficiency of 30% PCNS/BWO is higher than the reported
values of most BWO-based photocatalysts (Table S3), indicating that 30% PCNS/BWO is a
good photocatalyst for the removal of organic pollutants.

To evaluate the suitability of the 30% PCNS/BWO composite photocatalyst for practi-
cal applications, the effects of humic acid, different anions and cations (HCO3

−, Cl−, NO3
−,

SO4
2−, Ca2+, Mg2+, Al3+, Mn2+), and different water sources (river water, effluent of the

sewage treatment plant, lake water, deionized water) on the photocatalytic degradation
efficiency of TC-HCl were studied. The results of humic acid and different anions and
cations are shown in Figure 10a. Humic acid severely inhibited the TC-HCl degradation
ability. Humic acid contains chromophores such as benzene rings, carboxyl groups, and
carbonyl groups that compete with the catalyst for light, which inhibits photodegrada-
tion [47]. For the anions, HCO3

− promoted the degradation of TC-HCl. This is reasonable
considering that HCO3

− could react with •OH to generate •CO3
−, that •OH was not the

main active species in the reaction system (see Section 3.4), and that •CO3
− could accelerate

the degradation of TC-HCl [48]. Cl− had little effect on the degradation of TC-HCl, while
NO3

− and SO4
2− significantly inhibited the degradation of TC-HCl. This might be because

the anionic charges compete with pollutants for active sites on the catalyst surface, thereby
inhibiting the degradation of TC-HCl [49]. The cations, including Ca2+, Mg2+, Al3+, and
Mn2+, all seriously inhibited the degradation of TC-HCl because they can combine with
TC-HCl to form metal complexes, thus reducing the rate of degradation [50]. The results of
using different water sources are shown in Figure 10b. When using river water, the effluent
of a sewage treatment plant, and lake water, the TC-HCl degradation was slightly inhibited
compared with that in deionized water. This might be caused by dissolved organic matter
and ions in these water sources. However, the degradation ability remained high. This
indicates that the 30% PCNS/BWO photocatalyst can be used in the practical treatment of
TC-HCl-containing wastewater, which is promising for industrial applications.
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Figure 10. TC-HCl degradation catalyzed by 30% PCNS/BWO (a) with humic acid (10 mg/L) and
different anions and cations (5 mM), and (b) with different water sources (20 mg/L).

The reusability and stability of photocatalysts are important for industrial applications.
To evaluate this, the same 30% PCNS/BWO composite was used in four repeat TC-HCl
degradation experiments, and the catalyst was characterized by XRD and FTIR before the
first run and after the fourth run. As shown in Figure 11, the rate of TC-HCl degradation
decreased slightly after four runs but still reached 73%, indicating that the photocatalyst
had high stability and good performance. As shown in Figure 12a,b, the XRD patterns and
FTIR spectra of the 30% PCNS/BWO composite after cycling were almost the same as those
of the pristine catalyst, indicating that the structure and chemical surface properties of the
composite photocatalyst remained stable.
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3.4. Mechanism and Pathway of Degradation

Free radicals play a major role in photocatalytic degradation. Here, scavenging ex-
periments were performed to analyze the active species in the photocatalytic degradation
of TC-HCl catalyzed by the 30% PCNS/BWO composite. Ascorbic acid, EDTA-2Na, and
IPA were used to scavenge •O2

−, h+, and •OH, respectively [51,52]. The results are shown
in Figure 13a. When ascorbic acid was added to the reaction system, the photocatalytic
process was greatly inhibited, and the removal rate of TC-HCl decreased from 76.7% to
20.3%, indicating that •O2

− has a great influence on the degradation of TC-HCl. Similarly,
the TC-HCl degradation ability was greatly suppressed after adding EDTA-2Na, with a
removal rate of just 25.0%, indicating that h+ also plays a crucial role in the degradation
of TC-HCl. In contrast, when IPA was added, the removal rate of TC-HCl decreased only
slightly (75.3%), which indicates that while •OH participates in the photodegradation, it is
not the main active species. These results indicate that •O2

− and h+ are the main active
species in the photocatalytic reaction, while •OH plays a participating role.

To further confirm the participation of free radicals in the photocatalytic degradation of
TC-HCl, ESR spectroscopy was performed by adding DMPO to the reaction system, and the
results are shown in Figure 13b,c. Neither 30% PCNS/BWO nor BWO systems produced
DMPO-•OH or DMPO-•O2

− signals under dark conditions, but both produced obvious
DMPO-•OH and DMPO-•O2

− signals after 15 min of visible light illumination, indicating
that •OH and •O2

− were generated by a photocatalytic process. The signal intensities
in the 30% PCNS/BWO spectrum were higher than those in the BWO spectrum, which
indicates that the 30% PCNS/BWO composite had a stronger oxidizing ability than BWO.

The mechanism of photocatalytic TC-HCl degradation using the 30% PCNS/BWO
composite catalyst under visible light irradiation was proposed based on the above analysis,
as shown in Figure 14. The EVB values of PCNS and BWO were 2.4 and 2.08 eV, respectively,
and the ECB values were −0.05 and −0.7 eV (vs. NHE, pH = 0), respectively (Figure 7).
Thus, both PCNS and BWO are excited by visible light irradiation. The photogenerated
electrons transfer from the valence band to the conduction band while the photogenerated
holes remain on the valence band.
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−.

The transfer of electrons and holes between PCNS and BWO might follow type-II or
direct Z-scheme heterojunction behavior. If type-II heterojunction behavior occurs, then the
electrons would transfer from the conduction band of BWO to that of PCNS, while the holes
would transfer from the valence band of PCNS to that of BWO. However, since the ECB of
PCNS (−0.05 eV) is more positive than the standard redox potential of O2/•O2

− (−0.33 eV
vs. NHE) [53], the reaction between e− in the conduction band of PCNS and O2 would
not produce •O2

−, which contradicts the findings of the scavenging experiments and ESR
spectroscopy. Thus, the transfer of electrons and holes between PCNS and BWO does not
follow type-II heterojunction behavior. If direct Z-scheme heterojunction behavior occurs,
then the electrons in the conduction band of PCNS would transfer to the valence band
of BWO, which would effectively reduce the electron–hole pair recombination rate and
improve the photocatalytic activity. As the ECB of BWO (−0.7 eV) is more negative than
the standard redox potential of O2/•O2

− (−0.33 eV vs. NHE) [53], the reaction between e−

in the conduction band of BWO and O2 could produce •O2
−. Furthermore, as the ECB of

PCNS (+2.4 eV) is more positive than the standard redox potential of •OH/OH− (+1.99 eV
vs. NHE) [54], the reaction between h+ and H2O or OH− could produce •OH. These
findings are consistent with the scavenging experiments and ESR spectroscopy, which
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confirms that the transfer of electrons and holes between PCNS and BWO occurs by direct
Z-scheme heterojunction behavior.
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The active species generated during the photocatalytic process (i.e., h+, •OH in the
valence band of PCNS, and •O2

− in the conduction band of BWO) then oxidized and
decomposed TC-HCl into intermediates, CO2, and H2O, respectively. The possible reactions
are described in Equations (4)–(8):

PCNS + hν→ PCNS(e− + h+) (4)

BWO + hν→ BWO(e− + h+) (5)

BWO(e−) + O2 → •O2
− (6)

PCNS(h+) + H2O/OH− → •OH (7)

PCNS(h+ + •OH) + BWO(•O2
−) + TC-HCl→ intermediates + CO2 + H2O (8)

To further explore the degradation of TC-HCl, HRAM LC-MS/MS was used to detect
the degradation intermediates after 60 min of visible light illumination. Because H+ and Cl−

from TC-HCl exist in the system as free ions, only P0 (m/z = 445) could be photocatalyzed
and detected. A total of 10 intermediates were detected during the degradation (Figure S1,
m/z values of 459, 433, 417, 403, 399, 282, 277, 242, 231, and 223). Two possible degradation
pathways were proposed (Figure 15). In degradation pathway I, –CH3 on P0 (m/z = 445)
is oxidized to –CHO by the active species generated during the photocatalytic process to
produce P1 (m/z = 459) [55]. P1 is then deamidated to produce P3 (m/z = 417) [56]. Through
the ring opening of benzene, P3 becomes P7 (m/z = 277) [57]. Through demethylation and
dehydroxylation, P7 becomes P8 (m/z = 242) and then P9 (m/z = 231) [58]. In degradation
pathway II, P0 becomes P2 (m/z = 433) through demethylation [59]. P2 then becomes
P4 (m/z = 403) and P5 (m/z = 399) through demethylation and oxidation by hydroxyl
and active species, followed by ring opening to produce P6 (m/z = 282) [60]. Through
various processes, including the loss of C=C bonds, carbonylation, and dehydroxylation,
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P6 becomes P10 (m/z = 223) [61]. Finally, all these intermediates are oxidized to substances
such as CO2 and H2O.
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4. Conclusions

In conclusion, 2D/2D P-doped g-C3N4/Bi2WO6 direct Z-scheme heterojunction cata-
lysts were prepared using a hydrothermal method, with 2D Bi2WO6 nanosheets loaded
on 2D P-doped g-C3N4 nanosheets. The efficiency of the synthesized 30% P-doped g-
C3N4/Bi2WO6 catalyst for the photocatalytic degradation of tetracycline hydrochloride
under visible light irradiation was much higher than that of P-doped g-C3N4 and Bi2WO6.
Through doping, P atoms replaced C atoms in the g-C3N4 nanosheets and covalently
bonded to the adjacent N atoms, which effectively broadened the range of visible light
absorption of g-C3N4. The heterojunction constructed between 2D P-doped g-C3N4 and 2D
Bi2WO6 increased the specific surface area, and the close contact at the interface accelerated
the transfer of photogenerated charge carriers, reduced the recombination rate of photoin-
duced electrons and holes, increased the lifetimes of the charge carriers, and optimized
the electronic band structure. Therefore, it synergistically improved the photocatalytic
performance along with P doping. •O2

− and h+ were the main active species in the photo-
catalytic reaction system, and •OH also participated in the process. Using high-resolution
accurate mass liquid chromatography with tandem mass spectrometry, it was found that
tetracycline hydrochloride produced a total of 10 degradation intermediates in the pho-
tocatalytic process, and two degradation pathways were proposed, mainly involving the
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processes of deamidation, ring opening of benzene, demethylation, and dehydroxylation.
Importantly, the degradation of tetracycline hydrochloride was only slightly inhibited when
using different water sources, including river water, the effluent of a sewage treatment
plant, and lake water, which indicates that the 30% P-doped g-C3N4/Bi2WO6 photocatalyst
has great application potential for the treatment of sewage. This work provides insight
into the preparation of high-performance photocatalysts by combining multiple strategies
simultaneously, including morphological control, doping, and heterojunction construction.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ijerph192214935/s1, Table S1. Feedstock dosage for each catalyst.
Table S2. Atomic percentage of different elements present in 30%PCNS/BWO samples. Table S3.
Comparison with other BWO-based photocatalysts for the degradation of TC-HCl [31,38,62–70]. Figure
S1. HRAMLC-MS/MS secondary ion mass spectra of TC-HCl photocatalytic degradation products.
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