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Abstract: Industrial parks are functional urban areas that carry the capacity to support highly
concentrated production activities. The robustness and anti-interference ability of these areas are of
great importance to maintaining economic vitality of a country. Focusing on the rate of production
recovery (RPR), this paper examines the recovery of 436 major industrial parks in mainland China
during the first wave of COVID-19. Leveraging spatio-temporal big data, we measured 14 attributes
pertaining to industrial parks, covering four categories, namely spatial location, central city, park
development, and public service. We focused on the spatial association and heterogeneity of the
recovery patterns and identified the factors that truly affected the recovery of industrial parks with
quantitative evaluation of their effects. The results reveal that: (1) RPR of industrial parks are
significantly spatially clustered, with an obvious “cold spot” in the early outbreak area of Hubei
Province and a prominent “center-periphery” pattern in developed areas, which is highly correlated
with the spread of the epidemic. (2) The mechanisms driving the resumption of industrial parks are
complex and versatile. All four categories in the variable matrix are related to RPR, including up to
eight effective influencing factors. The effect of influencing factors is spatially heterogeneous, and
its intensity varies significantly across regions. What is more interesting is that some impact factors
show positive effects in some industrial parks while inhibiting the recovery in others. On the basis of
the discussion of those findings with practical experiences, the planning and construction strategies
of industrial park are suggested to mitigate the impact of similar external shocks.

Keywords: industrial parks; production recovery; spatial heterogeneity; COVID-19

1. Introduction

Industrial parks have significant capacities in hosting economic activities [1]. Con-
centrating on specialized industries, industrial parks can effectively take advantages of
agglomeration economy, becoming powerful engines of urban and reginal economic growth.
As of October 2019, there were over 15,000 industrial parks of various industries in China
mainland, contributing more than 30 percent of the Chinese economy [2]. In Spring Festival
2020, the outbreak of COVID-19 exerted a severe shock on the production of industrial
parks and put them under huge risks [3–5]. It is of great importance to studying the pro-
duction recovery of industrial parks under risk, and the influencing factors that targeted
supporting policies for recovery can be suggested with the consideration of controlling the
pandemic at the same time.

The study on the capacity of socioeconomic entities to recover facing unexpected
shocks mainly focuses on three aspects. The first aspect is the scientific assessment on the
recovery level and resilience of the economy [6]. Wu et al. [7] evaluated the post-disaster
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resilience of Louisiana after Hurricane Katrina in 2005 in terms of infrastructure, economy,
society, and natural environment. Some studies made more refined assessments from the
perspective of spatial-temporal heterogeneity [8,9]. For example, Zhou, Liu, and Fan [10]
conducted a study on the efficiency of economic recovery of Wenchuan earthquake-stricken
areas in the short, medium, and long term, respectively. The second aspect is the study
of the influencing factors of recovery [11]. Jha et al. [12], the Rockefeller Foundation and
Arup [13], divided the driving factors into several categories and subcategories, such as
regional status, economic structure, and management system. Martin et al. [14] analyzed
various factors that related to social vulnerability, including economy, population, and
community structure, in Boston’s post-disaster recovery. Thirdly, a number of studies
were carried out on the planning strategies for resilient cities and communities [15]. One
representative work in this area is the Resilient City Planning Framework, or RCPF, pro-
posed by [16]. The framework takes into account complexity and uncertainty and covers
economic, social, spatial, and physical factors, involving a diverse range of stakeholders.
The framework consists of four concepts, namely urban vulnerability matrix analysis,
uncertainty-oriented planning, urban governance, and prevention. Each of the four con-
cepts can be subdivided into 3–4 components, and each component is linked to a specific
key question, providing systematic policy recommendations for resilient urban planning
in the areas of risk perception, preparedness, implementation strategies, prevention, and
recovery, respectively.

After the outbreak of COVID-19, the recovery of cities in the face of major public
health emergencies has become a research hotspot [17]. Studies have shown that the
factors contributing to the fight against the pandemic are concentrated on a few specific
types. First, the organizational capability and efficiency of the government [18]. A study of
276 prefecture-level cities in China [19] found that the capacity of the governance matters
more than the size of the city. Besides, the configuration and management of workforce,
financial, and material resources play a key role. Second, the built environment of the city.
Diversified factors, including urban form, facilities, land use, and road traffic, have been
proved to play a non-negligible part in allocating epidemic prevention-related resources
efficiently, reducing localized population concentrations, and supporting the operation of
the urban epidemic prevention system [20–22]. The third dimension is the means of urban
management. Technology-driven policies and measures can increase social engagement
and connectivity and help maintain the functions of public health, education, and economic
systems, thus effectively underpinning crisis management and enhancing the resilience
and well-being of cities and communities [23–25].

Despite the systematic and in-depth efforts of previous studies, most of them take
cities as the basic research unit. However, the recovery of industrial parks is distinctly
different from that of cities, in that they mainly function as centers of highly specialized
production activities rather than urban life. The implementation of regulatory policies is
usually more efficient and consistent due to the centralized and closed management mode
within a limited boundary. Moreover, the recovery of industrial parks cannot rely solely
on their own capabilities, but it requires external policies and resources from surrounding
regions and cities. For these reasons, the findings of city-based research cannot be directly
applied to industrial parks. The lack of targeted research has led to a lack of in-depth
knowledge of the rules and insufficient basis for decision making, which seriously limits the
risk-resistance and recovery ability of industrial parks as engines of economic development.

With the help of the emerging multi-source spatiotemporal big data technologies [26–28],
this study delves into the driving factors of industrial park resilience and their pathways of
functioning, with a view to filling the above-mentioned research gaps. The study focuses on
three main issues: (1) depicting the spatial patterns of recovery of industrial parks; (2) identifying
key influencing factors in the recovery from a number of characteristics at different scales (region,
city and park); and (3) investigating their global and local impacts from the perspectives of
spatial dependence and heterogeneity. To achieve the objectives, this paper took 436 major
industrial parks in China mainland as the research object. Specifically, the return proportion of
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work population in industrial parks was used to represent RPR after the first wave of COVID-19,
and its spatial distribution patterns were analyzed from the angle of spatial dependence. Then,
with the help of OLS and SLM models, the significance and size of global effects of various
factors were examined. Furthermore, the MWGR model was employed to investigate the
varying local effects of factors over space. This was followed by an in-depth discussion on
the driving mechanisms and their spatial heterogeneity of industrial park resilience. Finally,
planning and management countermeasures are suggested to improve the performance of
industrial parks in the face of external shocks.

2. Data and Methodology
2.1. Study Area and Data
2.1.1. Study Area

This paper takes industrial parks within China mainland as the object of study, and
the boundaries of parks are subject to Baidu Maps. The spatial distribution of industrial
parks and basic statistical indexes are shown in Figure 1. In order to keep the analysis
robust, the parks with less than 50 hectares of land or less than 10 employees (based on the
number of Baidu App users) were excluded, and finally 436 major industrial parks were
selected, covering a total area of 911.4 square kilometers and an employment population of
1.5 million people.
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Figure 1. Spatial distribution of industrial parks and basic statistical indexes.

2.1.2. Data

(1) Dependent variable: RPR

The return proportion of work population provided by Baidu Maps was used to
characterize RPR of industrial parks. The data were collected on 23 March 2020. For a park
i, the recovery rate Rit on the date t after the outbreak of the pandemic can be defined as:

Rit =
P_ workit
P_ worki
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where P_ worki denotes the stablized size of work population in park i before the outbreak,
and P_workit is the size of the work population that returned to original jobs in the park on
the date t.

The numerical distribution of RPR is skewed (Figure 2), and mostly concentrated in
the range of 82–86%. This indicates that on 23 March 2020, most of the main industrial parks
have restored their production organization to some extent, but a considerable number of
parks are not promising in terms of recovery.

Int. J. Environ. Res. Public Health 2022, 19, x FOR PEER REVIEW 4 of 16 
 

 

2.1.2. Data 

(1) Dependent variable: RPR 

The return proportion of work population provided by Baidu Maps was used to char-

acterize RPR of industrial parks. The data were collected on 23 March 2020. For a park i, 

the recovery rate 𝑅𝑖𝑡 on the date t after the outbreak of the pandemic can be defined as: 

𝑅𝑖𝑡 =
𝑃_ 𝑤𝑜𝑟𝑘𝑖𝑡

𝑃_ 𝑤𝑜𝑟𝑘𝑖
 

where 𝑃_ 𝑤𝑜𝑟𝑘𝑖 denotes the stablized size of work population in park i before the out-

break, and 𝑃_𝑤𝑜𝑟𝑘𝑖𝑡 is the size of the work population that returned to original jobs in 

the park on the date t. 

The numerical distribution of RPR is skewed (Figure 2), and mostly concentrated in 

the range of 82–86%. This indicates that on 23 March 2020, most of the main industrial 

parks have restored their production organization to some extent, but a considerable num-

ber of parks are not promising in terms of recovery. 

 

Figure 2. Numerical distribution of recovery rates in industrial parks (The abscissa represents the 

recovery rate in parks, and the ordinate the number of parks whose recovery rates are in a certain 

range). 

(2) Independent variables 

Many previous works [13,29–31] have discussed the relationship between city and 

community resilience with various factors, including infrastructures, public services, mo-

bility and transportation, management, and so on. Combining the evidence with the au-

thors’ own experience, this paper constructs a variable matrix containing four categories 

and fourteen factors (Table 1). The four categories include spatial location, central city, 

park development, and public service, each of which contains several candidate variables. 

The actual effects of these factors were tested, and effective factors that really influence 

the recovery of industrial parks were further screened out. All variables in the matrix are 

logarithmic and normalized to ensure that their effect sizes are comparable. 

The spatial location category refers to the adjacency of transportation facilities of each 

park. Two indexes were selected for measurement. (1) Accessibility of high-speed railway 

(HSR) (A_hsr). HSRs are one of the main means of labor transport for most industrial 

parks in mainland China; (2) Accessibility of airport (A_air). It affects the passenger and 

freight capacity of parks, especially the external contacts at a distance. 

The central city category represents the intensity of the intervention effect of the cen-

tral city to which a park belongs to. Four indexes were selected for measurement: (1) 
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certain range).

(2) Independent variables

Many previous works [13,29–31] have discussed the relationship between city and
community resilience with various factors, including infrastructures, public services, mobil-
ity and transportation, management, and so on. Combining the evidence with the authors’
own experience, this paper constructs a variable matrix containing four categories and
fourteen factors (Table 1). The four categories include spatial location, central city, park
development, and public service, each of which contains several candidate variables. The
actual effects of these factors were tested, and effective factors that really influence the
recovery of industrial parks were further screened out. All variables in the matrix are
logarithmic and normalized to ensure that their effect sizes are comparable.

The spatial location category refers to the adjacency of transportation facilities of each
park. Two indexes were selected for measurement. (1) Accessibility of high-speed railway
(HSR) (A_hsr). HSRs are one of the main means of labor transport for most industrial parks
in mainland China; (2) Accessibility of airport (A_air). It affects the passenger and freight
capacity of parks, especially the external contacts at a distance.

The central city category represents the intensity of the intervention effect of the central
city to which a park belongs to. Four indexes were selected for measurement: (1) Epidemic
intensity of the central city (C_epi), indicating how badly the city has been hit by the
pandemic; (2) proximity of the central city (C_loc), closely related to the spatial interaction
between central cities and parks; (3) regulation intensity of the central city (C_Regu), i.e.,
the strength of travel restriction policies in the city where industrial parks are located;
and (4) permanent resident population of the central city (C_res), equivalent to the size
of the city.



Int. J. Environ. Res. Public Health 2022, 19, 15035 5 of 15

Table 1. Basic situation of variables.

Category Influencing Factors Code Unit Description Data Source Acquisition Time

Spatial location Accessibility of
high-speed railway A_hsr Nr./sq.km The number of HSR stations

within 20 km of the park Baidu Maps 23 March 2020

Airport accessibility A_air Nr./sq.km The number of airports
within 20 km of the park

Central city Epidemic intensity C_epi %

The proportion of cumulative
number of confirmed cases as

of 23 March 2020 in the
park-located city to the total

urban population

Official statistics
released by each

city’s CDC

24 January 2020 to
23 March 2020

Permanent resident
population C_res Thousand Total permanent resident

population in the city Baidu Maps 23 March 2020

Proximity C_loc km

The distance from the central
point of the industrial park to
the government residence of

the central city

Regulation intensity C_Regu times/person

The difference between the
number of travel times per

capita in the city on 23 March
2019 and 23 March 2020

23 March 2019 and
23 March 2020

Park development Vitality under
normal state P_vital -

The production intensity of
the park in absence of the

pandemic, represented by the
average night light intensity

of the park in November 2019
[32]

Earth Observation
Group

1 November 2019 to
30 November 2019

Scale of land use P_area km2 Total area of the park

Baidu Maps 23 March 2020
Normal work

population P_work Thousand

The total size of work
population in all industries

under normal conditions
within the park

Share of work
population in LI P_indL %

The proportion of the normal
work population in the food

processing, textile, and
clothing, building materials
and home furnishing within
the park to the total normal

work population

Share of work
population in MMI P_indM %

The proportion of the normal
work population in the

machinery manufacturing
within the park to the total
normal work population

Share of work
population in EMCI P_indF %

The proportion of the normal
work population in the

energy, mining, and chemical
industry within the park to

the total normal work
population

Public service Level of medical
services S_med Nr./sq.km

Per capita access to
community service facilities

by the work population
within a 15-min living circle

(1 km) in the park and
surrounding areas [33]

Level of community
services S_serv Nr./sq.km

Per capita access to general
hospitals within a 15-min
living circle (1 km) in the

park and surrounding areas

Park development category measures the development conditions and industrial
characteristics of industrial parks. Six indexes are selected: (1) vitality under normal state
(P_vital), related to the production capacity and organization ability of the park; (2) park
area (P_area), to the extent that sufficient land resources can improve the ability of park to
optimize the spatial layout of production activities; (3) the work population under normal
condition (P_work), reflecting the normal scale of labor force in the park; (4)–(6) are the
shares of work population in light industry (LI), machinery manufacturing industry (MMI)
and the energy, mining, and chemical industry (EMCI) of the park, respectively, reflecting
the industrial structure characteristics.

The public service category represents the service level of living and medical care of
each park. Two indexes are formulated: (1) level of medical services (S_med), indicating
the park’s ability to diagnose and control diseases, especially response to the pandemic;
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and (2) level of community services (S_serv), showing the park’s ability to guarantee the
livelihood of employees.

2.2. Methodology
2.2.1. Spatial Autocorrelation Analysis

Given the similarity of epidemic control and work resumption policies in neighboring
cities and regions, spatial autocorrelation analysis was used to characterize the spatial
pattern of RPR [34]. The measurement falls into global and local spatial autocorrelation
depending on the scale of analysis. The former focuses on the spatial distribution character-
istics of a certain geographical attribute in the whole study area, while the latter reflects the
degree of association between a local spatial unit and its surrounding areas, also known
as local indicators of spatial association (LISA). In this study, Moran’s I and Local Moran’s I
were used to reflect the two types of spatial autocorrelation above [35].

Moran′s I =
n ∑n

i=1 ∑n
j=1(xi − x)

(
xj − x

)
∑n

i=1 ∑n
j=1 Wij ∑n

i=1
(
xj − x

)
Local Moran′s I =

(
xi − x

m

) n

∑
i=1

Wij
(
xj − x

)
where n denotes the total sample count of industrial parks. xi and xj are the recovery rates
of park i and park j, respectively. x is the mean recovery rate in all parks. Wij denotes the

spatial weight matrix, and m =
(

∑n
j=1,j 6=i x2

j

)
/(n− 1)− x2.

The values of the two indicators both range from −1 to 1. The positive value indicates
a significant spatial agglomeration of high/low recovery rate, which are called H-H type
and L-L type. However, negative values indicate significant spatial disparities among
evaluation units, namely H-L type and L-H type.

2.2.2. Global Factor Impact Analysis: OLS and SLM Models

(1) OLS

In order to quantitatively evaluate the impact of various factors on the resilience of
industrial parks, the OLS model was introduced to explore the correlation between the
14 variables (Table 2) and RPR.

y = β0 +
14

∑
k=1

βkxk + ε

where β0 denotes the intercept, xk denotes the observed value of the k-th factor, βk denotes
the global regression coefficient of the k-th factor, and ε denotes the residual of the model.

Table 2. Statistical characteristics of variables.

Category Influencing Factors Mean Std Min Max

Spatial location A_hsr 0.71 0.92 0.00 5.00
A_air 0.22 0.41 0.00 1.00

Central city C_epi 1.53 × 10−4 7.85 × 10−4 0.00 4.95 × 10−3

C_res 7526.28 5155.83 542.16 20,370.20
C_loc

C_Regu 0.20 0.08 0.04 0.49
Park development P_vital 13.45 14.42 0.00 159.80

P_area 2.10 18.59 0.50 385.40
P_work 3.38 5.45 0.01 51.35
P_indL 0.08 0.06 0.00 1.00
P_indM 0.05 0.05 0.00 1.00
P_indF 0.05 0.04 0.00 1.00

Public service S_med 1.46 × 10−4 1.25 × 10−3 0.00 2.50 × 10−2

S_serv 0.04 0.13 0.00 2.60
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(2) SLM

There is a risk of ineffectiveness of the OLS model when spatial autocorrelation exists
between variables. In this case, it is necessary to consider spatial dependence to boost
the performance of the model. The SLM model can mitigate the spatial bias of OLS
by considering the attribute values of adjacent geographical units into the model and
constructing the spatial lagged variables.

y = ρWy +
14

∑
k=1

βkxk + ε

where Wy denotes the spatial lags of the dependent variable. ρ denotes the spatial au-
toregressive coefficient, which represents the influence of the dependent variable in the
adjacent units on the dependent variable in the focal area.

2.2.3. Local Factor Impact Analysis: MGWR Model

OLS and SLM models estimated the global impact of various factors on the recovery
rates. Allowing for the vast geographical area of China and the great differences in the
characteristics and levels of economic and social status, the resilience mechanism of indus-
trial parks may be spatially heterogeneous. The MGWR model was employed in this paper
to further explore this nonstationarity at the local scale.

Different from the traditional GWR model, in which variables share the same optimal
bandwidth, the MGWR model employs a multi-bandwidth method, which allows the
bandwidth of different variables to vary, ending up with different spatial smoothing levels.
Meanwhile, the bandwidth of each variable is used to characterize its spatial process, which
makes the model more credible [36].

y =
14

∑
k=1

βbk(u, v)xk + ε

where βbki denotes the regression coefficient of the local variable, bki denotes the bandwidth
corresponding to the regression coefficient of variable k, and (ui, vi) denotes the geospatial
coordinates of industrial park i.

3. Results
3.1. Spatial Autocorrelation of Recovery Rates

Figure 3a shows the spatial distribution of the average RPR for cities in the study
area. RPR is distinctly low in Hubei province and surrounding areas. Hubei was the
most affected by the outbreak, and they were still under strict restrictions at the time this
study was conducted, which means most industrial parks in them are unable to recover
successfully. In developed regions such as Beijing, Tianjin, Hebei, Pearl River Delta, and
Yangtze River Delta, the spatial distribution of RPR shows the pattern of “low rates in
the center and high ones in the periphery”. On the one hand, RPR in Beijing, Shanghai,
Guangzhou, Shenzhen, and other core cities mostly range from 60% to 80%, indicating that
a considerable number of industrial parks in the above cities have not fully resumed. On
the other hand, around these central cities, a significant number of cities feature high levels
of recovery, and some have even largely completed the resumption of work. Other regions
are generally characterized by the spatial heterogeneity of “imbalanced resumption”. Apart
from Qinghai, Gansu, and Tibet, most provinces have some parks basically achieve full
resumption of production, becoming the “engine” to boost the regional economy.
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Figure 3. The spatial distribution (a) and the LISA indices (b) of the average recovery rate of main
industrial parks in each city.

The calculated Global Moran’s I is 0.418, given the neighborhood setting as a distance-
band weights matrix using an adaptive Gaussian kernel, indicating a generally high level of
spatial autocorrelation for the recovery rate of all the industrial parks in the study area. In
addition, the local indicator of spatial association shows local clusters of high and low rates
of recovery, unraveling the variation of degree in spatial autocorrelation of recovery rates
across places. Figure 3b shows that H-H and L-L clusters are dominant. With the largest
number, H-H clusters are mainly distributed in the eastern coastal regions of mainland
China, especially around Liaoning and Shandong Provinces in the northeast, and around
Guangdong and Hunan Provinces in the southeast, indicating that industrial parks in
these regions recovered the most. L-L clusters are mainly distributed in Hubei province,
especially around Wuhan, which was the epicenter of the first wave of COVID-19 and was
the most severely impacted. Under the strict travel ban policy, the resumption of these
industrial parks was lagging behind. In addition, Guangxi, as a neighboring province of
Hubei, has a very low RPR. Besides, a small number of H-L and L-H clusters are scattered
in Chongqing municipality and Jiangxi province.

3.2. Global Regression Results

The results of OLS model (Table 3) show that there is a significant correlation between
some socioeconomic factors and RPR. (1) In the central city category, the epidemic intensity
and permanent resident population affects the restoration speed. (2) Among factors in the
park development category, the size of work population and the share of work population
in MMI are significantly correlated with RPR, while the vitality under normal state also
shows some effect at significance level of 0.1. (3) In the public service category, the level of
community services is somewhat correlated with park resilience. Moreover, the two indices
of spatial location factors are not significant.

Further diagnosis of OLS model results showed that Moran’s I of OLS model calcu-
lations, LM LAG and LM ERROR obtained by Lagrange Multiplier tests, were highly
significant, indicating that the spatial dependence in the dependent variable of RPR poses
specification problems for the OLS model and that it should be handled in further analyses.
Given the significant Robust LM (lag) index, the SLM model is preferred.

The results of SLM model (Table 4) prove that it is more suitable than the OLS model.
The model explains 56.6% of the model variation, and the AIC also decreases. Mean-
while, the results of SLM model revealed unbiased findings compared to those from
the OLS model.
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Table 3. The results of OLS model.

Category Variable Coefficient Std Error t-Value p-Value

Spatial location A_hsr −0.023 0.039 −0.583 0.560
A_air 0.032 0.023 1.395 0.163

Central city C_epi −0.635 *** 0.039 −16.370 0.000
C_res. 0.072 † 0.043 1.665 0.097
C_loc 0.022 0.039 0.580 0.562

C_Regu −0.031 0.027 −1.142 0.253
Park development P_vital 0.077 † 0.041 1.855 0.064

P_area 0.026 0.038 0.690 0.491
P_work −0.161 *** 0.044 −3.623 0.000
P_indL 0.017 0.037 0.461 0.645
P_indM 0.111 ** 0.037 2.986 0.003
P_indF 0.037 0.036 1.049 0.295

Public service S_med −0.070 0.059 −1.200 0.230
S_serv 0.072 † 0.043 1.665 0.097

Adjusted R-squared 0.534954
AICc 928.496

Moran’s I (error) 4.8224 0.000
Lagrange Multiplier (lag) 13.7655 0.000

Lagrange Multiplier (error) 9.3654 0.000
Robust LM (lag) 4.657 0.031

Robust LM (error) 0.257 0.613
† p < 0.1, ** p < 0.01, *** p < 0.001.

Table 4. SLM model results.

Category Variable Coefficient Std Error t-Value p-Value

Spatial location A_hsr −0.020 0.037 −0.537 0.592
A_air 0.043 † 0.024 1.85 0.064

Central city C_epi −0.652 *** 0.038 −17.746 0.000
C_res 0.030 † 0.019 1.665 0.096
C_loc 0.022 0.039 0.580 0.562

C_Regu −0.053 ** 0.021 −2.742 0.006
Park development P_vital 0.035 † 0.041 1.779 0.075

P_area 0.028 0.019 0.771 0.441
P_work −0.134 ** 0.042 −3.166 0.002
P_indL 0.005 0.003 1.484 0.138
P_indM 0.123 ** 0.036 3.416 0.001
P_indF 0.036 0.037 0.982 0.236

Public service S_med −0.027 0.058 −0.465 0.642
S_serv 0.075 * 0.038 2.165 0.030

R-squared 0.566
AICc 905.875

† p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001.

(1) Among the two indexes representing the characteristics of spatial location, the airport
accessibility has a positive correlation with RPR in parks at 10% significance level.

(2) Similar to the results of OLS model, the two variables of epidemic intensity and
permanent resident population in the central city are significant, in which the former
inhibits the work resumption in the park, while the latter plays the opposite role.
Meantime, the intensity of travel control policy of the central city shows a certain
effect of restraining the work resumption.

(3) Among factors of the park development category, the coefficients of three variables
are statistically significant. The vitality under normal state is significantly positively
correlated at the 10% level, the size of work population in the park is negatively
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correlated with RPR at the 1% significance, and the share of work population in MMI
promotes the work resumption in the park at the 1% significance level.

(4) In the public service category, the level of community services significantly enhances
the facilitation of the resumption process in the park at the 5% significance level, while
the level of medical services is insignificant.

3.3. Spatial Variation of Factor Influence

This section further examines the spatial variation of the effects of the eight factors
showing global significance in the SLM model, as they are not necessarily significant at the
local level. This study shows the coefficients for those samples with statistical significance
(Figure 4).
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In the spatial location category, (1) the airport accessibility is significantly positively
correlated with RPR in Chengdu and Chongqing in the southwestern inland region, Shan-
dong province in the northern coastal region, and Fujian province in the southeastern
coastal area. The above areas are commonly featured by remote location and high devel-
opment level of high-tech industry. Among them, airport accessibility has the strongest
positive impact in the southwestern inland region, leaving weak effects in other regions.

In the central city category, (1) the epidemic intensity is the only factor that shows
coefficient significance in all parks. The intensity of the inhibitory effect of this factor on
RPR in industrial parks is centered in Wuhan, Hubei, and gradually decays outward with
the increasing distance. (2) The impact of permanent resident population on park resilience
in central cities varies greatly from place to place. In Beijing and Hebei province, the higher
the population size of the central cities, the more unfavorable it is for the industrial park
to resume production. On the contrary, in the southern provinces of Hubei and Anhui,
this index plays a significant role in promoting the restoration. (3) On the whole, the
regulation intensity policies in central cities are not conducive to the work resumption,
which is more significant in the Yangtze River Delta and Fujian province. On the other
hand, in the periphery of Hubei and Anhui provinces, high intensity of regulation favors
the resumption of work, indicating the same spatial heterogeneity in the role of this factor,
indicating that the effect of this factor also spatially heterogeneous.

In the park development category, (1) the vitality under normal state generally con-
tributes to the park resilience. In Hubei and Hunan provinces, the positive effect is particu-
larly obvious, and in Sichuan, Guangdong, Guangxi, and other regions, the factor also plays
a role to some extent. (2) On the contrary, the size of normal work population in the park
shows the inhibitory effect on production recovery in different regions, especially in Hubei
and Hunan provinces. (3) The effect of the share of work population in MMI has strong
spatial disparities. The parks with significant local coefficients are mainly concentrated
in the Beijing–Tianjin–Hebei region and the Yangtze River Delta, in which the former is
negatively affected by this factor, while in the latter, those parks with a high share of work
population in MMI have a significantly high RPR.

In the public service category, (1) the level of community public services plays an
effective role in guaranteeing and promoting the resumption of work in parks, covering a
wide area. In the Beijing–Tianjin–Hebei region, the Yangtze River Delta region, the Pearl
River Delta region, Chengdu–Chongqing region, and central Hubei and Hunan provinces,
this factor has played a positive effect, especially in the Pearl River Delta region.

4. Discussion

The results of spatial autocorrelation, OLS model, SLM model, and MGWR model
show that the recovery of industrial parks is characterized by complex spatial patterns and
can be associated with different influencing factors. One or more factors in each of four
categories may have a significant impact on the production recovery, indicating that RPR
is subject to a synergy effect from diversified factors at the scales of region, city, and park.
All significant factors play distinguishing roles in different regions; that is, some factors
promote work resumption in some regions while exerting negative effects in other regions.

(1) Spatial location category

As major regional transport facilities, airports are characterized by limited carrying
capacity and strong flexibility, which means that air transport is more suitable for industries
such as the manufacturing of precision instrument or high-tech electronic equipment with
low demand of raw materials and goods and low density of work population. Therefore,
they have a strong support for industrial parks with remote locations and a high degree
of industrial science and technology. In terms of space, Chengdu and Chongqing, located
in the southwestern inland region, are less convenient for transportation, so airports play
a more significant role. Focusing on the characteristics of easy management, strong anti-
jamming capability, and low sensitivity to distance under abnormal conditions, China has
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been improving the impact of airports as the powerhouses of surrounding regions and as
“lifeline” projects to secure the operation of industrial parks [37].

(2) Central city category

There are complex interactions and counterbalances among the epidemic intensity, the
policy response of the government to the pandemic, and the recovery rate. On the one hand,
a large number of existing studies [38,39] have shown that social interaction is the main
driving factor of the transmission of COVID-19. Therefore, less travel and crowd gathering
became the main non-pharmaceutical intervention measures adopted by local governments
in mainland China during the first wave of COVID-19 [40]. As a closed and centralized
production environment, industrial parks feature higher risks of transmission. As a result,
the government tends to impose stronger controls, resulting in slow resumption of work. In
terms of the spatial distribution of factors, the epidemic intensity has a universal influence,
because China’s epidemic prevention and control policies are highly coordinated across the
country, to the extent that many regions are still required to implement certain prevention
and control policies despite low risks of outbreak.

Meanwhile, the impact of the pandemic on the work resumption of industrial parks
is also moderated by policy control factors. When the epidemic intensity is low, the
control measures will directly inhibit the arrival of the work population and the start
of normal production [41]. When the epidemic is severe, however, the high intensity of
control will help bring the outbreak under control quickly so as to guarantee the gradual
recovery of production [42]. The remarkable effect of regulatory policies in the Yangtze
River Delta region suggests that emergent controls have a stronger impact on the relatively
well-established manufacturing system in the region. In the process of fighting against the
epidemic, both central and local governments have begun to recognize the above regulatory
role. Therefore, the interaction mechanism between the epidemic intensity and the park
resilience during the epidemic prevention and control is now taken into full account to
formulate more flexible policies for work resumption [43].

It is worth noting that the park tends to recover faster when there is a central urban area
with a high permanent population around it. This may be because the large population size
can provide a larger pool of labor force for parks nearby. Concerned by this phenomenon,
encouraging the integration of industrial parks and cities has become a fundamental
principle in practical urban planning [44]. During the pandemic, cross-regional labor
transportation and deployment during the outbreak was extremely impeded, and the
supply of local labor has become the most important reliance for the restoration. This
mechanism is particularly evident in central China, which was the most affected by the
epidemic. On the other hand, the population aggregation in central cities may also lead to an
escalation of epidemic prevention and control efforts. In Beijing and its surrounding areas
with high safety protection requirements, this potential negative impact is highlighted.

(3) Park development category

The vitality under normal state has a significant positive impact on the resilience.
Parks with high production vitality generally feature stable market demand and production
capacity, and their mature production organization contributes to their strong ability to
resist external risks [45].

The size of the normal work population of the park has a negative impact. The reason
is that with the increase of population size, the difficulty of maintaining a reasonable social
interaction intensity has increased dramatically, resulting in a relative lack of flexibility
in the operation of such parks, making it difficult to adjust production management and
advance the resumption process in a timely manner.

From an overall point of view, the share of work population in MMI under normal
conditions is conducive to RPR. The possible reason may be that MMI is not labor-intensive,
with low density of work population in the production process. In recent years, China
has vigorously promoted the informatization and intelligence of manufacturing, which
has further reduced the intensity of social contact spatially, so that the risks of epidemic
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transmission are reduced in MMI enterprises, favoring the resumption of work. The MMI
in the Yangtze River Delta is featured by faster upgrading, higher degree of organization,
resulting in faster resumption. Contrarily, the development of MMI is relatively out of pace
in the Beijing–Tianjin–Hebei region, coupled with stronger regulation, to the extent that it
impedes the production recovery.

(4) Public service category

The higher level of community services around the park, the more complete urban life
and production service functions of the park, and the higher feasibility of its independent
management and operation have thus improved the park’s ability to resist shocks [29,46].
In recent years, the concept of “industrial neighborhood” has been widely valued in the
planning of industrial parks. It emphasizes the concept of walkability and proximity to
services, and is a logical way to improve the performance of facilities [47].

5. Conclusions

Taking advantage of spatiotemporal big data, this paper conducted an in-depth inves-
tigation of the spatial patterns of the recovery status of major industrial parks in mainland
China and examined 14 factors from four categories exerting significant influences on the
resumption of industrial parks. This effort aims to gain insights for the decision support of
the planning and management process.

The main findings are as follows: (1) eight factors from categories: spatial location,
central city, park development, and public service, have significant impacts on the recovery
rate of industrial parks. (2) Different factors have distinguishing effects on recovery rates of
industrial parks, featuring a spatial heterogeneity in their influencing effects. These findings
suggest that the resilience mechanism of industrial parks can be optimized based on the
identification of influencing factors, and the risk resistance and resilience of industrial
parks in the face of public health emergencies can be effectively improved by proposing
reasonable planning optimization and guidance strategies.

The analysis of model results provides several implications for the improvement of
industrial park resilience. (1) Strengthening the “point-to-point” air transport network and
promoting the spatial integration of airports and cities. It is required to fully consider the
correspondence with industrial parks, coordinate the spatial relationship between airports,
cities, and industrial parks, and build the corridors between airports and industrial parks
with high standards, leaving the possibility of implementing closed management when
necessary. (2) Keeping the epidemic prevention policies more targeted, and appropriately
promoting the jobs–housing balance. In order to formulate and implement a more flexible
policy of returning to work, the intensity of control should be determined scientifically
according to the intensity of epidemic. Economic vitality is maintained with relatively
lenient policies in areas with low risk, while safety is the primary prerequisite for resuming
work in areas with severe epidemics. On the other hand, to support the mode of industry-
city integration, commuting efficiency and the reduction of infection risk during commuting
must be guaranteed. Meantime, efforts shall be made to improve the matching of local
labor supply and demand. (3) Promoting the maturity of organization and advancement of
industrial structure. Industrial parks should focus on the quality of development rather
than the size simply and implement the concept of “smart growth” in the construction
and operation. On the other hand, to minimize the risks of outbreak arising from crowd
gathering, it is necessary to propel the automation and intelligence of industries and the
digitalization of park management. (4) Building comprehensive industrial parks with the
concept of “industrial neighborhood”. The planning should, firstly, reasonably divide
the service areas of industrial neighborhoods according to the walking distance of work
population, determine the scale of industrial neighborhoods, allocate service centers, and
establish the overall layout structure. The second is to clarify the composition features
of various industrial populations and their preferences for public services for the precise
allocation of public service resources.
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There are limitations in this study which can be further improved in the following two
aspects. First, the monitoring data currently used are of a cross-sectional nature and fail to
reflect the complete process of resumption. It is planned to extend the time span of the data,
investigating the factor effects over time. Second, this study focuses on the domestic factors
within mainland China and does not take into account foreign factors that may affect RPR,
such as the foreign order demand for protective gears during the pandemic. We leave this
for future studies.
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