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Abstract: The mechanism behind PM2.5 pollution is complex, and its performance at multi-scales is
still unclear. Based on PM2.5 monitoring data collected from 2015 to 2021, we used the GeoDetector
model to assess the multi-scale effects of meteorological conditions and anthropogenic emissions, as
well as their interactions with PM2.5 concentrations in major cities in the Yellow River Basin (YRB).
Our study confirms that PM2.5 concentrations in the YRB from 2015 to 2021 show an inter-annual
and inter-season decreasing trend and that PM2.5 concentrations varied more significantly in winter.
The inter-month variation of PM2.5 concentrations shows a sinusoidal pattern from 2015 to 2021,
with the highest concentrations in January and December and the lowest from June to August. The
PM2.5 concentrations for major cities in the middle and downstream regions of the YRB are higher
than in the upper areas, with high spatial distribution in the east and low spatial distribution in
the west. Anthropogenic emissions and meteorological conditions have similar inter-annual effects,
while air pressure and temperature are the two main drivers across the whole basin. At the sub-
basin scale, meteorological conditions have stronger inter-annual effects on PM2.5 concentrations,
of which temperature is the dominant impact factor. Wind speed has a significant effect on PM2.5
concentrations across the four seasons in the downstream region and has the strongest effect in
winter. Primary PM2.5 and ammonia are the two main emission factors. Interactions between the
factors significantly enhanced the PM2.5 concentrations. The interaction between ammonia and other
emissions plays a dominant role at the whole and sub-basin scales in summer, while the interaction
between meteorological factors plays a dominant role at the whole-basin scale in winter. Our study
not only provides cases and references for the development of PM2.5 pollution prevention and control
policies in YRB but can also shed light on similar regions in China as well as in other regions of
the world.

Keywords: air pollution; PM2.5; GeoDetector model; interactive effects; the Yellow River Basin

1. Introduction

With the acceleration of industrialization and urbanization, China’s economy has
grown steadily; at the same time, the emissions of greenhouse gases and air pollutants
have also continued to increase [1–3]. As the most urgent threat to public health and
the ecosystem, PM2.5 (particulate matter of less than 2.5µm in diameter) has become a
major air pollutant in China [4–9]. In order to effectively deal with the serious PM2.5
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pollution problem, since 2013, the Chinese government has implemented a series of air
pollution prevention and control measures that have achieved considerable results [10,11].
However, the pollution factors of PM2.5 concentrations are complex and there is variability
at different spatial and temporal scales, which leads to uncertainty in the effectiveness of
the implementation of air pollution prevention and control measures [12]. Therefore, con-
ducting an analysis of PM2.5 pollution impact mechanisms, especially the performance of
PM2.5 concentrations and impact factors in typical regions at different spatial and temporal
scales, will have implications for the formulation of precise air pollution prevention and
control policies.

PM2.5 concentrations are affected by a variety of factors, including natural and so-
cioeconomic factors [3,11]. Meteorological conditions (MCS) are important factors affecting
the accumulation, dispersion, and chemical processes of pollutants. Temperature [13–16],
relative humidity [17–19], precipitation [15,20,21], wind speed [22], sunshine duration [23],
and surface air pressure [14] have significant effects on PM2.5 concentrations. In addi-
tion, anthropogenic emissions (AES) from industrial, transportation, agricultural, and
residential sectors also have a significant influence on PM2.5 concentrations. Anthro-
pogenic precursors, such as sulfur dioxide, nitrogen oxide, volatile organic compounds,
and ammonia, aggravate PM2.5 pollution by generating secondary aerosols through a
series of photochemical reactions [12,16,24,25]. Numerous studies have also analyzed the
impact of PM2.5 concentrations in terms of urbanization [26–28], urban form [29–32], and
industrial structure [33,34].

The Chinese government has been publicly releasing air pollution site-monitoring data
since 2013, which has made it possible for scholars to conduct air pollution-related studies
at a national scale [3,35,36]. Meanwhile, some scholars have also conducted analyses
focusing on developed regions with serious air pollution, such as Beijing-Tianjin-Hebei in
northern China [12,16,37–39], the Yangtze River Delta in central China [40–43], the Pearl
River Delta in southern China [44–47], and the Chengdu-Chongqing urban agglomeration
in southwest China [21,48,49].

The Yellow River Basin (YRB) is an important energy, chemical, raw material, and
general industrial base in northern China, as well as an ecological corridor connecting
the Qinghai–Tibet Plateau, the Loess Plateau, and the North China Plain. With its accel-
erated urbanization, the YRB faces serious air pollution issues, mainly due to particulate
matter [50]. The Fenwei Plain in the YRB became one of the three key areas for air pol-
lution control in China in 2018, replacing the Pearl River Delta [51]. In recent years,
some scholars have explored the spatial and temporal characteristics and driving mech-
anisms behind air pollution, focusing on key cities [26,52–54], major regions, and urban
agglomerations [51,55–57] in the YRB. Wang et al. [58] studied the causes of heavy haze
pollution in Xi’an, Shaanxi Province, and found that high-intensity anthropogenic emis-
sions, relative humidity, consistent low temperature, and surface air pressure were the main
drivers of heavy pollution formation. He et al. [59] studied the characteristics and source
resolution of water-soluble inorganic ion species in PM2.5 in Taiyuan, Shanxi Province,
China, and found that Mg2+ and Ca2+ were derived not only from soil dust but also from
coal combustion and industrial emissions. Meanwhile, wind speed also affected the trans-
port of dust and, thus, had an impact on PM2.5 and water-soluble inorganic ions. In
general, scholars have conducted studies on scientific issues related to atmospheric pollu-
tion in the YRB. However, due to the complexity of the natural geographical conditions
and anthropogenic emissions in the YRB, the impact mechanisms of air pollution have
still not been sufficiently discussed. Most of the current studies have conducted a relative
analysis based on one aspect of the natural and socioeconomic factors at a single spatial and
temporal scale. However, analyses that explore the multi-scale mechanisms influencing
PM2.5 concentrations in the YRB, which integrate natural and socioeconomic factors, are
still lacking.

Therefore, we took the YRB as the study area and used the GeoDetector model to in-
vestigate the multi-scale effects of meteorological conditions and anthropogenic emissions
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and their interactions on PM2.5 concentrations. The main objectives of this research are as
follows: (1) to identify the spatial and temporal distribution patterns of PM2.5 concentra-
tions in the YRB; (2) to elucidate the effects of meteorological conditions and anthropogenic
emissions on PM2.5 concentrations at different spatial and temporal scales; (3) to analyze
the effect of the interaction between meteorological conditions and anthropogenic emis-
sions on PM2.5 concentrations. Our study could provide insight into the mechanism of
PM2.5 pollution in the YRB and bear out the formulation of air pollution prevention and
control policies, as well as a reference for air pollution management in similar basins in
China and other developing countries.

2. Materials and Methods
2.1. Study Area

The YRB is located in the north of China, with a total length of 5464 km. It holds a
very important position in terms of economic development and ecological security, as an
important ecological barrier, and as an important economic belt in China. We have adopted
the Yellow River Basin boundary identified by the Chinese National Strategy for Ecological
Protection and Quality Development, involving 91 prefectural-level administrative regions.
The region includes the entirety of seven provinces in Qinghai, Gansu, Ningxia, Shaanxi,
Shanxi, Henan, and Shandong, as well as six cities and one union in western Inner Mongolia
and two states in Sichuan, Aba, and Ganzi (Figure 1). We divided the YRB into three sub-
basins, based on provincial administrative units: the Upper Yellow River Basin (UYR),
including 7 cities (leagues) in Qinghai, Gansu, Ningxia, and Inner Mongolia and 2 states
in Sichuan, the Middle Yellow River Basin (MYR), including Shanxi and Shaanxi, and the
downstream area of the Yellow River Basin (DYR), including Henan and Shandong.
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Figure 1. Overview of the Yellow River Basin in China. (YRB denotes the Yellow River Basin; UYR
denotes the Upper Yellow River Basin; MYR denotes the Middle Yellow River Basin; DYR denotes
the downstream area of the Yellow River Basin).

The YRB spans four geomorphic units from west to east, including the Tibetan Plateau,
the Inner Mongolia Plateau, Loess Plateau, and the North China Plain, with high terrain in
the west and low terrain in the east. The average elevation in the western YRB is above
4000 m, with perennial snow and glacial landform development. The central region of
the YRB is between 1000 and 2000 m above sea level, with loess landforms and severe
soil erosion. The eastern YRB mainly consists of the alluvial plain of the Yellow River.
The Yellow River Basin has a temperate monsoon climate, with an annual precipitation of
144–843 mm, and, in most places, it is 200–600 mm. Precipitation shows a pattern with more
in the southeast and less in the northwest, and it gradually decreases from the southwest
to the northeast. The YRB is an important energy, chemical, raw material, and general
industrial base in northern China that has been facing an air pollution problem, primarily
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from particulate matter, in recent years. According to the Chinese ecological environment
status bulletin in 2019, of the top 20 cities with poor air quality in the country, 13 cities are
located in the YRB, mainly in the central and eastern regions of the YRB and the North
China Plain.

2.2. Data

We selected meteorological conditions and anthropogenic emissions as two types
of influencing factors when conducting our analysis. The daily average meteorological
data included six meteorological factors; these were accumulated precipitation (PRE, mm),
surface air pressure (PRS, hPa), 2-meter relative humidity (RHU, %), sunshine duration
(SSD, h), air temperature (TEM, ◦C) and 10-meter wind velocity (WIN, m/s). The anthro-
pogenic emissions included five anthropogenic factors, namely, ammonia (NH3), nitrogen
oxide (NOx), primary PM2.5 (P_PM), volatile organic compounds (VOC), and sulfur diox-
ide (SO2).

Daily average PM2.5 concentrations (2015–2021) were derived from the National Envi-
ronmental Monitoring Center, which included 104 city-monitoring sites in the YRB. Daily
average meteorological monitoring data (2015–2017) were obtained from the China Meteoro-
logical Data Network (http://data.cma.cn/ (accessed on 11 April 2022))
(Figures S1–S6 in the Supplementary Materials), which included 686 meteorological mon-
itoring sites in the YRB. Anthropogenic emissions were derived from the Tsinghua Uni-
versity Emission Inventory (2015–2017) (MEIC, http://meicmodel.org/ (accessed on 11
April 2022)) (Figures S7–S11 in the Supplementary Materials). The raster resolution of the
inventory is 0.25◦ × 0.25◦, and the temporal resolution includes the year and month [6,60].

2.3. GeoDetector Model

The GeoDetector model is a tool to detect and utilize spatial heterogeneity. This
method has no linear assumption and has a clear physical meaning, which means that
the multi-collinearity of input factors can be eliminated or ignored [61]. The GeoDetector
model includes four detectors, comprising factor detection, interaction detection, risk
area detection, and ecological detection. In our study, factor detection and interaction
detection were used to quantify the effects of MCS and AEs and their interactions on PM2.5
concentrations in the YRB.

Factor detectors can express the extent to which the independent variables explain the
spatial differentiation of the dependent variables through q. In our study, the meteorological
emission factors (PRE, PRS, RHU, SSD, TEM, and WIN) and anthropogenic emission
precursors (NH3, NOX, P_PM, SO2, and VOC) were selected as the independent variables
(X), with PM2.5 concentrations as the dependent variables (Y). The numerical variables
were stratified and converted to categorical variables before implementing the variables.
After comparing various classification methods, our study used the quantile method to
classify each variable into 8 classes. These are expressed as:

q = 1− ∑L
h=1 Nhσh

2

Nσ2 = 1− SSW
SST

(1)

SSW =
L

∑
h=1

Nhσh
2 (2)

SST = Nσ2 (3)

The q value, which is between 0 and 1, represents the effect of the driving factor
on spatial heterogeneity in PM2.5 concentrations. If the spatial distribution of PM2.5
concentrations is completely determined by a particular factor X, the q-value is 1; however,
if there is no spatial correlation between PM2.5 concentrations and factor X, then the
q-value is 0. In the formula (1), h = 1 . . . and L represents the number of sub-regions of
the influential factors; N and Nh are the numbers of the whole region and sub-regions in

http://data.cma.cn/
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classification h; σ and σh represent the total variance and the variance of samples from
sub-regions, respectively.

The interaction detector is used to identify the explanatory power of the interaction
between any two influencing factors (X1 ∩ X2) on the dependent variable (Y). We calculated
the q-value of the interaction between any two factors (X1 ∩ X2) on Y and compared it
with the q-values of X1 and X2. The interaction between any two factors falls into five
categories, comprising nonlinearly weakened, one-factor nonlinearly weakened, two-factor-
enhanced, independent, and nonlinearly enhanced categories. For details, please refer to
the literature [62].

3. Results
3.1. Temporal Variation of PM2.5 Concentrations

Figure 2 shows the annual and seasonal variations in PM2.5 concentrations in the YRB
from 2015 to 2021. From 2015 to 2021, the inter-annual variation of PM2.5 concentrations in
the YRB demonstrates a decreasing trend, from 60 µg/m3 in 2015 to 38 µg/m3 in 2021. In
terms of inter-season scale, the highest average PM2.5 concentrations occurred in winter,
followed by spring and autumn, while the lowest PM2.5 concentrations occurred in summer.
The highest PM2.5 concentrations occurred in winter 2017, at 97 µg/m3, and the lowest, at
21 µg/m3, in summer 2021. In general, the seasonal variation of PM2.5 concentrations in
the YRB presents a fluctuating downward trend from 2015 to 2021. In addition, compared
with other seasons, the trend in PM2.5 concentrations is more significant in winter.
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Figure 3 shows the inter-month variation of PM2.5 concentrations in YRB from 2015 to
2021. The PM2.5 concentrations in the YRB display significant inter-month variation, with
the lowest PM2.5 concentration value being 18 µg/m3 in July 2021 and the highest PM2.5
concentration value being 115.9 µg/m3 in December 2016. The inter-month variation of
PM2.5 concentrations shows a sinusoidal pattern from 2015 to 2021, with a decreasing
trend from January to May, a stable period from June to August, and an increasing trend
from September to December. The fluctuation in monthly average PM2.5 concentrations
from 2015 to 2021 demonstrates that the fluctuation range is the largest in January and
December and the smallest in August. The kernel density curve shows that the curve for
August is the steepest, with its peak corresponding to lower PM2.5 concentrations than
other months, indicating that PM2.5 concentrations in major cities in the YRB are generally
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lower in August. However, the kernel density curves in December and January are flatter
and have the most peaks, indicating that PM2.5 concentrations in major cities in the YRB
are mostly high during this period, with a high degree of internal polarization.
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3.2. Spatial Variations of PM2.5 Concentrations

The spatial distribution of the annual average PM2.5 concentrations in the YRB from
2015 to 2021 is shown in Figure 4. There are obvious differences in the spatial distribution.
From 2015 to 2021, the annual average PM2.5 concentrations in the YRB display a significant
downward trend. In 2015, the heavily polluted areas were mainly concentrated in the MYR
and DYR areas, including the central and western parts of Shandong, most of Henan, the
central part of Shaanxi, and Shanxi. The annual average PM2.5 concentrations in these areas
exceeded 50 µg/m3, far exceeding the China Ambient Air Quality Standard (CAAQS) Class
II standard (35 µg/m3). Low-pollution areas were mainly concentrated in the UYR, as well
as in southwestern Shanxi and the western Shandong Peninsula. Compared to 2015, PM2.5
concentrations levels decreased significantly in 2018, especially in the MYR and DYR areas.
In 2018, high-pollution areas were concentrated in Henan, western Shandong, and central
Shaanxi. In addition, relatively low pollution areas were mainly concentrated in western
Shandong and southwest Shanxi. In 2021, PM2.5 concentrations were further reduced; the
relatively high-pollution areas at this point were mainly concentrated in Shanxi, Shaanxi,
Henan, and Shandong.

3.3. Multi-Scale Effects of Influencing Factors on PM2.5 Concentrations

At the whole-basin scale, the influence of driving factors on PM2.5 concentrations
demonstrates large inter-annual and inter-season variations (Figure 5 and Table S1 in
the Supplementary Materials). MCS and AES have similar inter-annual effects on PM2.5
concentrations in YRB. PRS (q = 0.112), TEM (q = 0.098), and P_PM (q = 0.083) are thought
to be the major influencing factors on PM2.5 concentrations. PRS plays a dominant role
among MCS, and P_PM is the leading impactor among the AES.
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Figure 5. The inter-annual and inter-season q-values of the driving factors on PM2.5 concentrations
in the Yellow River Basin. (PRE denotes the accumulated precipitation; PRS denotes the surface air
pressure; RHU denotes the 2-meter relative humidity; SSD denotes sunshine duration; TEM denotes
air temperature; WIN denotes the 10-meter wind velocity; NH3 denotes ammonia; NOx denotes
nitrogen oxides; P_PM denotes primary PM2.5; SO2 denotes sulfur dioxide; VOC denotes volatile
organic compounds).

In spring, the dominant factor affecting PM2.5 concentrations in the YRB is PRS
(q = 0.102), followed by NH3 (q = 0.076) and P_PM (q = 0.076). In summer, NH3 (q = 0.085),
PRS (q = 0.082), and TEM (q = 0.080) are the three dominant factors influencing PM2.5
concentrations. In autumn, the dominant emission factors affecting PM2.5 concentrations
are PRS (q = 0.094), P_PM (q = 0.090), and NH3 (q = 0.084). However, the dominant factors
affecting PM2.5 concentrations in winter are RHU (q = 0.184), SSD (q = 0.158), and PRS
(q = 0.143), respectively. In general, AE factors and MCS have a similar influence on PM2.5
concentrations in spring, summer, and autumn, while MCS have a greater influence on
PM2.5 concentrations than AES in winter.

Figure 6 and Table S2 in the Supplementary Materials show that MCS have a stronger
inter-annual effect on PM2.5 concentrations than AES at the sub-basin scale, and TEM is
the dominant influencing factor on PM2.5 concentrations. In the UYR, TEM (q = 0.093)
is the dominant factor for PM2.5 concentrations, followed by SO2 (q = 0.052) and P_PM
(q = 0.051). In the MYR, TEM (q = 0.17), SSD (q = 0.09), and P_PM (q = 0.06) are the three
dominant factors affecting PM2.5 concentrations. However, the dominant factor affecting
PM2.5 concentrations is TEM (q = 0.15), followed by WIN (q = 0.06) and SSD (q = 0.06) in
the DYR. In general, TEM has similar inter-annual effects on the three sub-basins of the
YRB, and the effect on PM2.5 concentrations is the largest of all the influencing factors.
However, P_PM has a dominant inter-annual effect on PM2.5 concentrations among the
MCS in the three sub-basins.
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Figure 6. The inter-annual and inter-season q-values of the driving factors on PM2.5 concentrations in
the sub-basin of the Yellow River Basin. (UYR denotes the Upper Yellow River Basin; MYR, denotes
the Middle Yellow River Basin; DYR, denotes the downstream area of the Yellow River Basin; PRE
denotes accumulated precipitation; PRS denotes surface air pressure; RHU denotes 2-m relative
humidity; SSD denotes sunshine duration; TEM denotes air temperature; WIN denotes 10-m wind
velocity; NH3 denotes ammonia; NOx denotes nitrogen oxides; P_PM denotes primary PM2.5; SO2

denotes sulfur dioxide; VOC denotes volatile organic compounds).

There are significant inter-season variations in the factors influencing PM2.5 concen-
trations at the sub-basin scale (Figure 6 and Tables S3–S6 in the Supplementary Materials).
In the UYR, MCS and AES have a stronger influence on PM2.5 in autumn and winter,
compared to spring and summer. AES have the greatest influence on PM2.5 concentrations
in autumn, ranked first by SO2 (q = 0.12), followed by VOC (q = 0.10), P_PM (q = 0.10), and
NOx (q = 0.10). In the MYR, MCS and AES have an equal influence on PM2.5 concentrations
in summer and autumn. However, MCS have a stronger effect compared to AES on PM2.5
concentrations in spring and winter, and MCS have the strongest effect on PM2.5 in winter
for all four seasons. In the DYR, MCS and AES have similar effects on PM2.5 concentrations
in summer. However, MCS are the dominant factors regarding PM2.5 concentrations in
spring, autumn and winter, and MCS are the strongest in winter.

3.4. Multi-Scale Effects of Interactions on PM2.5 Concentrations

We explored the effect of the interaction between 55 pairs of influencing factors on
PM2.5 concentrations, based on an interaction detector. The interaction between any
two factors was analyzed by comparing the contribution of individual factors to PM2.5
concentrations, with the integrated contribution being between the influencing factors.
Figure 7 shows the interactive q-values and interaction types between the influencing
factors at the whole-basin scale. The interactions of 23 pairs of influencing factors are
two-factor-enhanced, while the remaining 32 pairs belong to non-linear enhancement.
Among them, the interaction between PRS and TEM at the inter-annual scale (q = 0.23)
plays a dominant role in PM2.5 concentrations, followed by PRE ∩ SSD (q = 0.20) and
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TEM ∩ P_PM (q = 0.20). There is also a large seasonal difference in the interaction between
potential influencing factors (Figure S12 in the Supplementary Materials). On a seasonal
scale, the interaction between AES plays a dominant role in summer. In contrast, the
interaction between MCS plays a dominant role in PM2.5 concentrations in spring, autumn,
and winter, with the strongest interaction between RHU and PRS in winter. There is also a
significant influence between MCS and AES, with the strongest interaction shown between
RHU and P_PM and NH3 in winter (q = 0.27).
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Figure 7. The inter-annual interaction in the factors influences the spatial pattern of PM2.5 con-
centrations in the Yellow River Basin. Note: “+” means that the type of interaction belongs to
nonlinear enhancement; otherwise, it belongs to bivariate enhancement. (PRE denotes accumulated
precipitation; PRS denotes surface air pressure; RHU denotes 2-m relative humidity; SSD denotes
sunshine duration; TEM denotes air temperature; WIN denotes 10-m wind velocity; NH3 denotes
ammonia; NOx denotes nitrogen oxides; P_PM denotes primary PM2.5; SO2 denotes sulfur dioxide;
VOC denotes volatile organic compounds).

Figures S13–S18 in the Supplementary Materials show the significant regional varia-
tions in the interactions at the sub-basin scale. In the UYR, the inter-annual interactions
between MCS have a similar effect as those between MCS and AES. In the MYR, the inter-
annual interactions between MCS play a dominant role in PM2.5 concentrations, with the
strongest interactions occurring between TEM and SSD. Similar to MYR, the inter-annual
interaction between MCS plays a dominant role in terms of PM2.5 concentrations in the
DYR region, with the strongest interactions between TEM and WIN. In addition, Figures
S13–S18 also show the q-values of the inter-season interaction between the impact fac-
tors in the sub-basin, indicating that there is also significant inter-season variation in the
interaction between the impact factors in the sub-basin.

4. Discussion

The inter-annual PM2.5 concentrations in the YRB displayed a steady downward
trend from 2015 to 2021, which is consistent with a series of atmospheric pollution control
policies that China has implemented in recent years. For example, the Chinese gov-
ernment promulgated the Air Pollution Prevention and Control Action Plan in 2013
and the Three-Year Action Plan to Win the Blue Sky Defense War in 2018. The imple-
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mentation of these air-quality policies has had a significant effect on reducing PM2.5
concentrations [10,11,63,64]. The inter-season variation of PM2.5 concentrations in the YRB
shows a fluctuating downward trend, and the trend of PM2.5 concentrations in winter is
more obvious. At the inter-month scale, PM2.5 concentrations demonstrate a U-shaped
distribution from January to December, with January and December at the peak and June
to August at the bottom of the curve, which is consistent with previous studies [56,65]. In
terms of spatial distribution, PM2.5 concentrations in the YRB display a spatial distribution
pattern that is high in the east and low in the west. The high PM2.5 concentrations are
mainly concentrated in Henan, Shandong, Shanxi, and Shaanxi, and are located in the MYR
and DYR. This may be due to the dense population in the region; the related industries are
mainly for energy and basic raw materials, and the energy consumption structure is mainly
with coal [30,66,67].

We quantified the multi-scale effects of MCS and AES and their interactions on PM2.5
concentrations in the YRB, based on a GeoDetector model. We found that there are sig-
nificant inter-annual and inter-season variations in the effects of MCS and AES on PM2.5
concentrations at the whole-basin scale. The inter-annual effects of MCS and AES on PM2.5
concentrations are similar, and PRS and TEM are the two main factors affecting PM2.5
concentrations. TEM and PRS influence particulate matter transport and accumulation
by affecting convection [21]. Air pressure is positively correlated with PM2.5 concentra-
tions [14]. Air pressure affects the dispersion and accumulation of PM2.5 by creating
low-level wind convergence. High-pressure systems can lead to environmental stagnation,
which affects PM2.5 transport and is detrimental to PM2.5 dispersion [68]. Comparing
relevant studies in other regions of China, previous scholars have found that air pressure
also has a dominant effect on PM2.5 concentrations in Tibet and China [69,70].

A strong relationship between temperature and PM2.5 concentrations has been demon-
strated in the literature [3,14,15,71]. Strong thermal activity, such as turbulence, at high
temperatures will accelerate the dispersion of PM2.5 [72]. In contrast, a low temperature
reduces atmospheric convection and enhances PM2.5 agglomeration. In general, tempera-
tures decrease as altitude increases, and temperature inversion occurs when temperatures
increase with altitude [73]. Temperature inversion weakens PM2.5 scattering and disper-
sion, resulting in higher local PM2.5 concentrations [3,74,75]. Comparing relevant studies in
other regions of China, some scholars found that temperature also has a dominant effect on
PM2.5 concentrations in regions such as the Yangtze River delta [76], Pearl River delta [77],
and northeast China [78]. In winter, however, MCS play the dominant role and RHU is
the most important factor, which is consistent with the results from previous studies. One
possible reason is that aqueous-phase aerosol chemistry drives secondary pollution [79–82].
The finding of RHU as the dominant influencing factor of PM2.5 concentrations has also
been verified in relevant studies on the Beijing-Tianjin-Hebei region [83], the Yangtze River
delta [40], and the Pearl River delta [84] in China.

We found that there are spatial and seasonal variations in the effects of anthropogenic
and meteorological factors on PM2.5 concentrations in the sub-basins. MCS have a stronger
inter-annual influence on PM2.5 concentrations than AES in the sub-basins. TEM is
the dominant influencing factor in each sub-basin, which is consistent with previous
studies [39,58,59]. On the inter-season scale, MCS play a dominant role in winter in the
MYR and UYR, which is different from previous studies. In northern China the influence
of AES on PM2.5 concentrations in winter has been found to be greater than MCS, which
is due to high coal consumption and high industrial and vehicular emissions during the
heating period, resulting in severe regional PM2.5 pollution. The Fenwei Plain is located
in the MYR, and PM2.5 pollution is severe in this region. PM2.5 concentrations that are
attributable to vehicle exhaust, biomass combustion, substances from coal combustion,
and dust have been reported in previous studies [51,85]. WIN has a significant effect on
PM2.5 concentrations in the four seasons of the DYR, with the strongest effects in winter,
which finding is also consistent with previous studies [53,58,86]. Some major cities in the
DYR are located in the Beijing-Tianjin-Hebei atmospheric pollution transport channel, in
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which wind speed affects PM2.5 transmission across the region. As a result, the formation
of heavy PM2.5 pollution is driven by lower wind speeds in winter in the region. Related
studies have confirmed that at low wind speeds, increasing wind speed may lead to less
turbulence intensity, weak horizontal atmospheric motion, and a dominant subsidence
motion in the upper air, which creates unfavorable dispersion conditions for PM2.5 [87–90].

Compared with other anthropogenic emissions, P_PM has significant effects on PM2.5
concentrations at whole-basin and sub-basin scales. In recent years, anthropogenic emis-
sions in the YRB have shown a decreasing trend over the years, indicating that reducing
anthropogenic emissions can effectively reduce P_PM emissions, while pollution control
measures are effective in reducing PM2.5 pollution. We find that NH3 is the dominant
factor regarding PM2.5 in the YRB in summer. NH3, as an alkaline gas, has an important
influence on the formation of PM2.5, as has been demonstrated in China and elsewhere in
the world [91–93]. Agricultural activities, as well as relatively high temperatures, result in
peak agricultural ammonia emissions in summer. Henan and Shandong in the DYR are
both important agricultural provinces with much higher agricultural NH3 emissions than
other regions [10,94,95]. Among all anthropogenic ammonia emission sources in Henan
Province, livestock and nitrogen fertilizer are the main sources of total NH3 emissions, with
an average share of about 46.5% and 42.9% [96]. Previous studies have demonstrated that
the mitigation of agricultural ammonia emissions can help reduce PM2.5 pollution [24],
and ammonia emission reduction is more cost-effective than NOx emission reduction [52].
Compared with MCS, AEs are more controllable. Therefore, we should focus on the corre-
sponding policies for ammonia emission reduction in the future, which is important for the
effective mitigation of PM2.5 pollution.

The interaction detector showed that the types of interactions between the influenc-
ing factors mainly included non-linear enhancement and bivariate enhancement, with
non-linear enhancement dominating, indicating that interactions between factors had a
significant enhancing effect on PM2.5 concentrations. In the whole basin and sub-basin, the
interaction between NH3 and anthropogenic emissions have a dominant effect on PM2.5
concentrations in summer, which may be due to the accelerated chemical reactions between
NH3 and other anthropogenic emissions under higher temperature conditions, which
have an impact on PM2.5 concentrations [97,98]. At the whole-basin scale, the interaction
between MCS plays a dominant role in winter (RHU ∩ PRS), which may be due to sec-
ondary pollution driven by aqueous-phase aerosol chemistry in the YRB in winter [79,80].
Meanwhile, low pressure is often accompanied by low wind speed and higher domestic
heating emissions in winter in the YRB, which together accelerate the rapid accumulation
of PM2.5 [73,87,99,100].

There are some limitations to our study at present since it is limited by data accessibil-
ity; we used PM2.5 site monitoring data from 2015 to 2021 and meteorological conditions
and emission inventory data from 2015 to 2017, which could conduce some uncertainty in
the results. In the future, we will update meteorological conditions and emission inventory
data to be consistent with PM2.5 concentrations. In the future, we will also focus on eval-
uating the effectiveness of air pollution policies and the impact of the implementation of
air pollution policies on PM2.5 concentrations in the YRB in recent years. Relevant studies
have demonstrated that PM2.5 reduction may lead to an ozone increase, which will bring
uncertainty regarding the effectiveness of policy implementation. Therefore, we will com-
bine PM2.5 with ozone measurements to conduct research on their synergistic management,
in order to provide insight into the future development of precise air pollution prevention
and control policies.

5. Conclusions

We analyzed the multi-scale variations of PM2.5 concentrations in the YRB and eluci-
dated the multi-scale effects of meteorological conditions and anthropogenic emissions,
as well as their interactions, on PM2.5 concentrations in the YRB. The results contribute
to a better understanding of the driving mechanisms of PM2.5 concentrations in the YRB
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and provide insight into the future development of regional air pollution policies. We
verified that the PM2.5 concentrations in the YRB displayed significant spatial and temporal
variations from 2015 to 2021. The inter-annual variation of PM2.5 concentrations in the YRB
from 2015 to 2021 displays a steadily decreasing trend. The PM2.5 concentrations in terms
of inter-season scale show a fluctuating decreasing trend, and the variation is more obvious
in winter. The PM2.5 inter-month concentrations display a sinusoidal pattern from 2015 to
2021, with January and December at the peak and June to August at the bottom. The PM2.5
concentrations in the YRB demonstrate a spatial distribution pattern that is high in the east
and low in the west, while the high PM2.5 concentrations are mainly concentrated in the
MYR and DYR.

MCs and AEs have similar inter-annual effects on PM2.5 concentrations across the
whole basin, with PRS and TEM being the two most dominant factors. In contrast, MCs
play a dominant role in winter, and RHU is the most important factor. At the sub-basin
scale, MCs have stronger inter-annual effects on PM2.5 concentrations than AEs, while TEM
is the dominant impact factor. Wind speed has a significant effect on PM2.5 concentrations
across all four seasons in the DYR and has the strongest effect in winter. P_PM and
NH3 are the two main anthropogenic emission factors affecting PM2.5 concentrations.
The interaction between NH3 and other anthropogenic emissions plays a dominant role
in PM2.5 concentrations at the whole-basin and sub-basin scales in summer, while the
interaction between meteorological factors (RHU ∩ PRS) plays a dominant role at the
whole-basin scale in winter.

This study can provide a policy reference for the mitigation of PM2.5 pollution. The
influence of atmospheric processes on PM2.5 concentrations is complex. We found that
MCs such as PRS, TEM, WIN, and RHU have important effects on PM2.5 concentrations in
the Yellow River Basin. It is important to formulate a reasonable spatial planning policy
for green spaces, establish and improve ecological landscapes and conservation corridors,
utilize artificial precipitation enhancement, and build urban ventilation corridors to reduce
regional PM2.5 concentrations [101].

Among the AEs, the influence of P_PM and NH3 on PM2.5 concentrations in the
Yellow River Basin is more obvious. Primary PM2.5 and secondary PM2.5 have different
pathways of formation; controlling primary PM2.5 emissions is effective in mitigating
PM2.5 pollution. Therefore, in the future, it will be necessary to strengthen the regulation
of emission reduction measures, strengthen the management of vehicle emission control
policies, promote the optimization and adjustment of high energy-consuming and high-
polluting industries, adjust the energy consumption structure, and optimize industrial
processes in the Yellow River Basin to reduce the emissions of primary particulate matter.
In the case of ammonia, it is necessary to target agricultural ammonia sources to reduce
emissions, optimize farm management patterns, improve fertilizer quality, improve fertil-
izer application techniques and increase fertilizer utilization efficiency. In addition, more
attention should be paid to non-agricultural sources of ammonia emissions, and the model
of combining cultivation and farming is the key to ammonia reduction in farming.
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