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Abstract: Lung adenocarcinoma (LUAD) is the most common histologic type of lung cancer. Muta-
tions of the epidermal growth factor receptor (EGFR) gene are among the most common genetic alterations
in LUAD and are the targets of EGFR tyrosine kinase inhibitors. The enzyme visfatin is involved in
the generation of the oxidized form of nicotinamide adenine dinucleotide (NAD+) and regulation
of intracellular adenosine triphosphate (ATP), critical processes in cancer cell survival and growth.
This study explored the relationship between visfatin single nucleotide polymorphisms (SNPs) with
EGFR status and the clinicopathologic development of LUAD in a cohort of 277 Taiwanese men and
women with LUAD. Allelic discrimination of four visfatin SNPs rs11977021, rs61330082, rs2110385
and rs4730153 was determined using a TaqMan Allelic Discrimination assay. We observed higher
prevalence rates of advanced (T3/T4) tumors and distant metastases in EGFR wild-type patients
carrying the rs11977021 CT + TT and rs61330082 GA + AA genotypes, respectively, compared with
patients carrying the CC and GG genotypes. EGFR wild-type patients carrying the rs11977021 CT
+ TT genotypes were also more likely to develop severe (stage III/IV) malignancy compared with
patients carrying the CC genotype. An analysis that included all patients found that the association
persisted between the rs11977021 CT + TT and rs61330082 GA + AA genotypes and the development
of T3/T4 tumors compared with patients carrying the rs11977021 CC and rs61330082 GG genotypes.
In conclusion, these data indicate that visfatin SNPs may help to predict tumor staging in LUAD,
especially in patients with EGFR wild-type status.

Keywords: visfatin; nicotinamide phosphoribosyltransferase; pre-B-cell colony-enhancing factor;
single nucleotide polymorphism; non-small cell lung cancer

1. Introduction

Lung cancer has the highest mortality rate of all cancers, according to global and
national statistics in Taiwan [1,2] (Ministry of Health and Welfare, Taiwan 2021). Based on
histology, lung cancer can be divided into small cell lung cancer (SCLC) and non-small
cell lung cancer (NSCLC). Lung adenocarcinoma (LUAD) is the most common subtype of
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NSCLC and of lung cancers overall [3]. Major risk factors for lung cancer include cigarette
smoking, secondhand smoking, use of domestic biomass fuels, air pollution, pulmonary
conditions such as chronic obstructive pulmonary disease, and genetic factors [4].

Epidermal growth factor receptor (EGFR) mutations in the tyrosine kinase domain are
common in NSCLC patients, with higher rates particularly in those with adenocarcinoma,
non-smokers, females, and Asian populations [5,6]. Around two-thirds (67.1%) of patients
with EGFR-mutant NSCLC have classical EGFR mutations (exon 21 L858R point mutation
or exon 19 deletions [Ex19del]) [7]. EGFR mutations in the tyrosine kinase domain increase
EGFR kinase activity and signs of tumorigenesis such as cancer cell proliferation, migration,
invasion, and angiogenesis [8,9]. Although no molecular-targeted therapy has shown
any overall survival benefit in early-stage NSCLC with EGFR mutations [10], advanced-
stage NSCLC harboring sensitizing EGFR-positive mutations responds well to tyrosine
kinase inhibitors (TKIs) and these agents have proven more effective than the historical
standard of care, platinum-based chemotherapy [8]. In patients with untreated, EGFR-
mutated advanced NSCLC, overall survival is improved with the third-generation EGFR
TKI osimertinib compared with the first-generation TKIs gefitinib and erlotinib [11].

Given the important role of EGFR mutation status in NSCLC development, we de-
cided to explore interactions amongst crucial genes and EGFR status in NSCLC and LUAD.
Interleukin-17A, the tumor suppressor protein WW domain-containing oxidoreductase,
tissue inhibitor of metalloproteinase 3 (TIMP3), and long noncoding RNA H19 poly-
morphisms have all been associated with clinicopathologic characteristics in lung can-
cers [5,9,12,13]. These four studies have helped to identify subgroups of patients at high
risk for LUAD progression.

Visfatin, a visceral fat-derived adipocytokine, exhibits identical properties to both the
pre-B-cell colony enhancing factor (PBEF) molecule that is secreted by human peripheral
blood lymphocytes [14] and the enzyme nicotinamide phosphoribosyltransferase (NAMPT),
and is therefore capable of synthesizing nicotinamide adenine dinucleotide (NAD+), a key
molecule involved in the generation of adenosine triphosphate (ATP) [15]. EGFR-mutated
NSCLC depends on a large quantity of intracellular ATP for tumor progression, so visfatin
is critical to the survival of EGFR-mutated NSCLC [16].

The aberrant secretion of visfatin is critical for obesity-associated cancers [17,18] and
has been detected in tumor and plasma samples of pancreatic ductal adenocarcinoma, oral
squamous cell carcinoma (OSCC), breast cancer, renal cell carcinoma, thyroid cancer and
also NSCLC [17,19]. Plasma visfatin levels have been correlated with tumor, node, and
metastasis (TNM) staging in gastric cancer and NSCLC, and with the depth of gastric cancer
invasion [17]. High plasma visfatin levels are also a poor prognostic factor in hepatocellular
carcinoma, breast cancer, gastric cancer, and urothelial carcinoma [18]. This evidence
suggests that visfatin could be a potentially useful marker in clinical practice for cancer
diagnosis, prognosis and even for cancer therapy [15,20,21]. In SCLC, high serum visfatin
levels are associated with brain metastases and visfatin appears to promote SCLC cell
migration across the blood–brain barrier [22]. A recently developed dual inhibitor of
visfatin and EGFR has shown excellent antiproliferative activities in various cancer cell
lines, including H1975 NSCLC cells harboring the EGFRL858R/T790M mutation [21].

A previous study from our laboratory described how certain visfatin polymorphisms
in a cohort of Taiwanese males were associated with higher or lower risks of developing
OSCC [23]. In this study, we explored whether certain visfatin polymorphisms play a similar
role in lung adenocarcinoma and act as potential diagnostic or therapeutic targets. Analyses
specifically examined associations between four visfatin single nucleotide polymorphisms
(SNPs) rs11977021, rs61330082, rs2110385, and rs4730153, which have been studied for
their association with risk of developing various cancers [19,23–25], EGFR status and
clinicopathologic characteristics in LUAD. Our results indicate that visfatin polymorphisms
are associated with clinicopathologic staging in LUAD.
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2. Materials and Methods
2.1. Patients

A total of 277 patients with LUAD harboring different EGFR statuses and 277 case–
controls with similar baseline characteristics (Table S1) were recruited from Chung Shan
Medical University Hospital, Taichung, Taiwan. Medical records from each patient were
reviewed and their clinicodemographic details were recorded (age, sex, smoking behavior,
tumor staging, TNM classification and cell differentiation status). Clinical disease staging
was determined according to the rules in the American Joint Committee on Cancer Staging
Manual. Informed written consent was obtained from each patient prior to starting the
study, and the study protocol was approved by the Institute Review Board of Chung Shen
Medical University Hospital (No. CS1-20144).

2.2. Genomic DNA Extraction and EGFR Gene Sequencing

Tumor DNA was extracted from paraffin-embedded tissues using the QIAmp DNA
Mini Kit (Qiangen, Valencia, CA, USA), following the manufacturer’s protocols [26–28].
To classify the DNA samples as EGFR wild-type or EGFR-mutant status, L858R or exon
19 deletions (Ex19del), matrix-assisted laser desorption/ionization-time of flight mass
spectrometry (MALDI-TOF MS) was used, as previously described [9].

2.3. Genotyping of Visfatin Polymorphisms

Peripheral blood samples were collected in ethylenediaminetetraacetic acid (EDTA)
tubes and DNA was extracted using a QIAamp DNA blood mini kit (Qiagen, Valencia, CA,
USA). Three of the four analyzed visfatin SNPs, rs11977021, rs61330082 and rs2110385, are
located in the promoter region. visfatin rs4730153 is located at the intron region between
exon six and seven. Allelic discrimination of four visfatin SNPs: C and T (C/T) alleles
of rs11977021, G/A alleles of rs61330082, G/T alleles of rs2110385, and G/A alleles of
rs4730153 was performed using the TaqMan SNP Genotyping Assay and the ABI StepOne-
Plus Real-Time PCR system (Applied Biosystems, Foster City, CA, USA), as previously
described [23,28]. The context sequences of the four visfatin SNP probes on the plus (sense)
strand are shown in Table S2. The results of the replication plots performed by TaqMan
genotyping assay in this study are shown in Figures S1–S4.

2.4. Statistical Analysis

All data were analyzed for statistical significance using SAS software, version 9.1 (SAS
Institute Inc., Cary, NC, USA). Differences in demographic and clinical characteristics be-
tween EGFR wild-type and EGFR-mutant patients were calculated using the Mann–Whitney
U test and the Fisher’s exact test. Adjusted odds ratios and 95% confidence intervals (CIs)
were estimated by multiple logistic regression models after controlling for age, sex, and
cigarette smoking status. A p-value of <0.05 was regarded as statistically significant.

3. Results
3.1. Baseline Characteristics of the Study Participants

This study recruited 277 Taiwanese men and women with LUAD who were cate-
gorized as either EGFR wild-type (n = 111) or EGFR mutation-positive (n = 166) and
evaluated by age, sex, smoking history, LUAD stage and grade (Table 1). The mean age was
65.36 ± 13.42 years in the EGFR wild-type group and 65.90 ± 13.64 years in the EGFR muta-
tion group, with no statistically significant between-group difference (Table 1). Significantly
higher proportions of EGFR-mutant patients were female versus male (64.5% vs. 35.5%,
p < 0.001) and never-smokers versus ever-smokers (77.1% vs. 22.9%, p < 0.001) (Table 1).
Tumor stage and TNM status did not differ significantly between the EGFR wild-type and
EGFR-mutant groups. However, a comparison of tumor grade revealed that compared
with the EGFR-mutant patients, the EGFR wild-type patients had a higher prevalence of
poor cell differentiation (20.7% vs. 6.0%, p = 0.001) and lower rates of well-differentiated
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cells (7.2% vs. 11.4%, respectively, p = 0.001) and moderately differentiated cells (72.1% vs.
82.5%, p = 0.001) (Table 1).

Table 1. Demographics, clinical characteristics and EGFR status of 277 lung adenocarcinoma patients.

Variable EGFR Wild-Type
(n = 111) n (%)

EGFR Mutation
(n = 166) n (%) p Value

Age
Mean ± SD 65.36 ± 13.42 65.90 ± 13.64 p = 0.420

Sex, n (%)
Male 67 (60.4%) 59 (35.5%) p < 0.001

Female 44 (39.6%) 107 (64.5%)

Cigarette smoking status, n (%)
Never-smoker 50 (45.0%) 128 (77.1%) p < 0.001
Ever-smoker 61 (55.0%) 38 (22.9%)

Stage, n (%)
I/II 26 (23.4%) 46 (27.7%) p = 0.425

III/IV 85 (76.6%) 120 (72.3%)

Tumor status, n (%)
T1/T2 60 (54.1%) 107 (64.5%) p = 0.083
T3/T4 51 (45.9%) 59 (35.5%)

Lymph node status, n (%)
Negative 29 (26.1%) 54 (32.5%) p = 0.254
Positive 82 (73.9%) 112 (67.5%)

Distant metastases, n (%)
Negative 54 (48.6%) 78 (47.0%) p = 0.786
Positive 57 (51.4%) 88 (53.0%)

Cell differentiation, n (%)
Well 8 (7.2%) 19 (11.4%) p = 0.001

Moderate 80 (72.1%) 137 (82.5%)
Poor 23 (20.7%) 10 (6.0%)

Abbreviation: EGFR, epidermal growth factor receptor.

3.2. No Association of Visfatin SNP (rs11977021, rs61330082, rs2110385, and rs4730153)
Distribution Frequency with EGFR Status or LUAD

To examine the potential association of the visfatin SNPs with LUAD, the genotype
frequency of the four visfatin SNPs in 277 LUAD patients were compared with 277 case–
controls. After adjusting for age, sex, and cigarette smoking status using multiple logistic
regression models, none of the genotypes for the four visfatin SNPs were associated with
LUAD (Table 2).

Table 2. Adjusted odds ratios (ORs) with their 95% confidence intervals (CIs) for lung adenocarcinoma
associated with Visfatin genotype frequencies.

Genotypes Control (n = 277) LUAD (n = 277) AOR (95% CI) p Value

rs11977021
CC 71 (25.6%) 72 (26.0%) 1.000 (reference)
CT 130 (46.9%) 133 (48.0%) 1.022 (0.527–1.980) 0.950
TT 76 (27.5%) 72 (26.0%) 0.672 (0.309–1.458) 0.314

CT + TT 206 (74.4%) 205 (74.0%) 0.888 (0.475–1.659) 0.709
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Table 2. Cont.

Genotypes Control (n = 277) LUAD (n = 277) AOR (95% CI) p Value

rs61330082
GG 69 (24.9%) 71 (25.6%) 1.000 (reference)
GA 131 (47.3%) 129 (46.6%) 0.926 (0.473–1.813) 0.822
AA 77 (27.8%) 77 (27.8%) 0.676 (0.313–1.461) 0.320

GA + AA 208 (75.1%) 206 (74.4%) 0.829 (0.440–1.562) 0.563

rs2110385
GG 225 (81.2%) 228 (82.3%) 1.000 (reference)
GT 52 (18.8%) 45 (16.2%) 0.570 (0.259–1.254) 0.162
TT 0 (0.0%) 4 (1.4%) - -

GT + TT 52 (18.8%) 49 (17.7%) 0.637 (0.299–1.356) 0.242

rs4730153
GG 223 (80.5%) 230 (83.0%) 1.000 (reference)
GA 54 (19.5%) 44 (15.9%) 0.630 (0.297–1.336) 0.228
AA 0 (0.0%) 3 (1.1%) - -

GA + AA 54 (19.5%) 47 (17.0%) 0.667 (0.319–1.393) 0.281
The AORs with 95% CIs were estimated by multiple logistic regression models after controlling for age, gen-
der and cigarette smoking status. Abbreviations: AOR, adjusted odds ratio; CI, confidence interval; LUAD,
lung adenocarcinoma.

To examine potential associations between visfatin SNPs and EGFR mutation status,
the frequencies of four visfatin SNP genotypes (rs11977021 CT, rs61330082 GA, rs2110385
GT and rs4730153 GA) were compared with EGFR status (Table 3). After adjusting for age,
sex, and cigarette smoking status, none of the four visfatin SNPs were associated with a
statistically higher prevalence of either EGFR wild-type or EGFR mutation status (Table 3).

Table 3. Distribution frequency of visfatin genotypes and multiple logistic regression analysis of
EGFR mutation status in lung adenocarcinoma patients.

Visfatin Genotypes EGFR
Wild-Type (n = 111)

EGFR Mutation
(n = 166) AOR (95% CI) p Value

rs11977021
CC 30 (27.0%) 42 (25.3%) 1.000 (reference)
CT 54 (48.6%) 79 (47.6%) 1.126 (0.608–2.088) 0.706
TT 27 (24.4%) 45 (27.1%) 1.247 (0.613–2.535) 0.542

CT + TT 81 (73.0%) 124 (74.7%) 1.080 (0.809–1.442) 0.601

rs61330082
GG 28 (25.2%) 43 (25.9%) 1.000 (reference)
GA 54 (48.6%) 75 (45.2%) 0.992 (0.531–1.857) 0.981
AA 29 (26.2%) 48 (28.9%) 1.116 (0.554–2.250) 0.759

GA + AA 83 (74.8%) 123 (74.1%) 1.018 (0.760–1.363) 0.904

rs2110385
GG 93 (83.8%) 135 (81.3%) 1.000 (reference)
GT 17 (15.3%) 28 (16.9%) 1.065 (0.530–2.140) 0.859

TT 1 (0.9%) 3 (1.8%) 3.833
(0.370–39.768) 0.260

GT + TT 18 (16.2%) 31 (18.7%) 1.089 (0.777–1.527) 0.619
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Table 3. Cont.

Visfatin Genotypes EGFR
Wild-Type (n = 111)

EGFR Mutation
(n = 166) AOR (95% CI) p Value

rs4730153
GG 93 (83.8%) 137 (82.5%) 1.000 (reference)
GA 17 (15.3%) 27 (16.3%) 1.027 (0.509–2.072) 0.941

AA 1 (0.9%) 2 (1.2%) 3.241
(0.281–37.379) 0.346

GA + AA 18 (16.2%) 29 (17.5%) 1.057 (0.751–1.487) 0.751
AORs with 95% CIs were estimated using multiple logistic regression models after controlling for age, sex, and
cigarette smoking status. Abbreviations: AOR, adjusted odds ratio; CI, confidence interval; EGFR, epidermal
growth factor receptor.

3.3. Associations between Polymorphic Genotypes of visfatin rs11977021 with Clinicopathologic
Characteristics and EGFR Status

Clinicopathologic characteristics of LUAD patients stratified by visfatin rs11977021
genotypes are shown in Table 4. In EGFR-mutant patients, LUAD stage and grade did not
differ significantly when comparing the CT + TT and CC genotypes. In contrast, among
EGFR wild-type patients, the CT + TT genotype was significantly more frequent than
the CC genotype in patients with stage III/IV malignancies (81.5% vs. 63.3%, p = 0.045),
advanced (T3/T4) tumors (53.1% vs. 26.7%, p = 0.013), and in those with distal metastases
(58.0% vs. 33.3%, p = 0.021). The significant difference in tumor status between the CT + TT
and CC genotypes in EGFR wild-type patients was also observed in an evaluation of all
patients, in which 43.9% with the CT + TT genotype had more advanced (T3/T4) tumors
compared with 27.8% with the CC genotype (p = 0.016).

Table 4. Clinicopathologic characteristics of lung adenocarcinoma patients stratified by EGFR status
and genotypes at visfatin rs11977021.

Variable

All (N = 277) EGFR Wild-Type (N = 111) EGFR Mutation (N = 166)

CC
(n = 72)

CT + TT
(n = 205) p Value CC

(n = 30)
CT + TT
(n = 81) p Value CC

(n = 42)
CT + TT
(n = 124) p Value

Stage
I/II 21 (29.2%) 51 (24.9%) p = 0.475 11 (36.7%) 15 (18.5%) p = 0.045 b 10 (23.8%) 36 (29.0%) p = 0.513

III/IV 51 (70.8%) 154 (75.1%) 19 (63.3%) 66 (81.5%) 32 (76.2%) 88 (71.0%)

Tumor status
T1/T2 52 (72.2%) 115 (56.1%) p = 0.016 a 22 (73.3%) 38 (46.9%) p = 0.013 c 30 (71.4%) 77 (62.1%) p = 0.275
T3/T4 20 (27.8%) 90 (43.9%) 8 (26.7%) 43 (53.1%) 12 (28.6%) 47 (37.9%)

Lymph node
status

Negative 22 (30.6%) 61 (29.8%) p = 0.899 10 (33.3%) 19 (23.5%) p = 0.293 12 (28.6%) 42 (33.9%) p = 0.526
Positive 50 (69.4%) 144 (70.2%) 20 (66.7%) 62 (76.5%) 30 (71.4%) 82 (66.1%)

Distant
metastases
Negative 41 (56.9%) 91 (44.4%) p = 0.067 20 (66.7%) 34 (42.0%) p = 0.021 d 21 (50.0%) 57 (46.0%) p = 0.651
Positive 31 (43.1%) 114 (55.6%) 10 (33.3%) 47 (58.0%) 21 (50.0%) 67 (54.0%)

Cell
differentiation
Well/Moderate 65 (90.3%) 179 (87.3%) p = 0.505 25 (83.3%) 63 (77.8%) p = 0.521 40 (95.2%) 116 (93.5%) p = 0.691

Poor 7 (9.7%) 26 (12.7%) 5 (16.7%) 18 (22.2%) 2 (4.8%) 8 (6.5%)

a OR (95% CI): 2.035 (1.134–3.652); b OR (95% CI): 2.547 (1.005–6.459); c OR (95% CI): 3.112 (1.241–7.804); d OR
(95% CI): 2.765 (1.149–6.652). Abbreviation: EGFR, epidermal growth factor receptor.

3.4. Associations between Polymorphic Genotypes of visfatin rs61330082, Clinicopathologic
Characteristics and EGFR Status

Clinicopathologic characteristics of LUAD patients stratified by visfatin rs61330082
genotypes are shown in Table 5. In EGFR-mutant patients, LUAD stage and grade did not
differ significantly in a comparison of the GA + AA genotype with the GG genotype. Among
EGFR wild-type patients, the GA + AA genotype was significantly more common than



Int. J. Environ. Res. Public Health 2022, 19, 15172 7 of 11

the GG genotype in patients with advanced (T3/T4) tumors (53.0% vs. 25.0%, p = 0.010)
and in those with distal metastases (57.8% vs. 32.1%, p = 0.019). The significant difference
in tumor status between the GA + AA and GG genotypes with EGFR wild-type status
was also observed when all patients were analyzed, as 43.7% of those with the GA + AA
genotype had advanced (T3/T4) tumors compared with 28.2% with the GG genotype
(p = 0.021). There was no association between polymorphic genotypes of visfatin rs2110385
or rs4730153 with clinicopathological characteristics and EGFR status in LUAD patients
(Tables S3 and S4).

Table 5. Clinicopathologic characteristics of lung adenocarcinoma patients stratified by EGFR status
and genotypes at visfatin rs61330082.

Variable

All (N = 277) EGFR Wild-Type (N = 111) EGFR Mutation (N = 166)

GG
(n = 71)

GA + AA
(n = 206) p Value GG

(n = 28)
GA + AA
(n = 83) p Value GG

(n = 43)
GA + AA
(n = 123) p Value

Stage
I/II 20 (28.2%) 52 (25.2%) p = 0.628 10 (35.7%) 16 (19.3%) p = 0.076 10 (23.3%) 36 (29.3%) p = 0.448

III/IV 51 (71.8%) 154 (74.8%) 18 (64.3%) 67 (80.7%) 33 (76.7%) 87 (70.7%)

Tumor status
T1/T2 51 (71.8%) 116 (56.3%) p = 0.021 a 21 (75.0%) 39 (47.0%) p = 0.010 b 30 (69.8%) 77 (62.6%) p = 0.398
T3/T4 20 (28.2%) 90 (43.7%) 7 (25.0%) 44 (53.0%) 13 (30.2%) 46 (37.4%)

Lymph node
status

Negative 21 (29.6%) 62 (30.1%) p = 0.934 9 (32.1%) 20 (24.1%) p = 0.402 12 (27.9%) 42 (34.1%) p = 0.452
Positive 50 (70.4%) 144 (69.9%) 19 (67.9%) 63 (75.9%) 31 (72.1%) 81 (65.9%)

Distant
metastases
Negative 40 (56.3%) 92 (44.7%) p = 0.089 19 (67.9%) 35 (42.2%) p = 0.019 c 21 (48.8%) 57 (46.3%) p = 0.778
Positive 31 (43.7%) 114 (55.3%) 9 (32.1%) 48 (57.8%) 22 (51.2%) 66 (53.7%)

Celldifferentiation

Well/Moderate 65 (91.5%) 179 (86.9%) p = 0.296 25 (89.3%) 63 (75.9%) p = 0.131 40 (93.0%) 116
(94.3%) p = 0.760

Poor 6 (8.5%) 27 (13.1%) 3 (10.7%) 20 (24.1%) 3 (7.0%) 7 (5.7%)

a OR (95% CI): 1.978 (1.101–3.554); b OR (95% CI): 3.385 (1.299–8.821); c OR (95% CI): 2.895 (1.171–7.156). Abbrevia-
tion: EGFR, epidermal growth factor receptor.

4. Discussion

Our observation that EGFR mutations are more common in females than males and
in never-smokers than in ever-smokers among patients with LUAD is consistent with
previous reports [6,29]. We also found that EGFR wild-type disease was more likely to
exhibit poor cell differentiation and lower rates of well or moderate cell differentiation
compared to EGFR-mutant disease, which is consistent with previous reports [12,13].

In this study, the four visfatin SNP rs11977021, rs61330082, rs2110385 and rs4730153,
had no association with EGFR wild-type or EGFR-mutant status. However, when analyzing
visfatin rs11977021 and rs61330082 genotypes in relation to clinicopathologic characteristics,
the rates of the rs11977021 CT + TT and rs61330082 GA + AA genotypes were higher
than those of the CC and GG genotypes, respectively, in EGFR wild-type patients with
advanced (T3/T4) tumors and those with distal metastases. Among EGFR wild-type
patients, having the CT + TT genotypes at rs11977021 was associated with more severe
(stage III/IV) malignancy compared with having the CC genotype at rs11977021. In an
analysis of the total study population, advanced (T3/T4) tumors were found in individuals
with the SNP rs11977021 carrying the CT + TT genotypes compared with those carrying the
CC genotype and in those with the SNP rs61330082 and the GA + AA genotypes compared
with the GG genotype.

The rs11977021 and rs61330082 SNPs are located at the promoter region of visfatin
and have been documented to affect the transcription activity of visfatin [30]. Among the
four studied visfatin SNPs, rs11977021 was predicted to be a potential methylation site
after analysis using NmSEER V2.0 online software (http://www.rnanut.net/nmseer-v2/,

http://www.rnanut.net/nmseer-v2/
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accessed on 31 August 2022) [31]. Further studies are needed to clarify whether specific
genotypes at this SNP affect visfatin’s methylation status and expression level.

In our study, neither visfatin SNPs rs4730153 nor rs2110385 were associated with
particular clinicopathologic characteristics in LUAD. However, our previous study reported
that the SNP rs4730153 GA genotype was associated with lymph node metastasis in
OSCC betel nut chewers, whereas the SNPs rs2110385 and rs61330082 had no relation to
OSCC [23].

The visfatin SNP rs11977021 has been investigated in other cancers. Our previous
investigation found that having the visfatin SNP rs11977021 and the CT + TT genotypes
was associated with a lower risk of developing OSCC compared with those with the CC
genotype at the same SNP [23]. In contrast, in another study involving patients with hepati-
tis B virus (HBV) infection, there was no significant association between visfatin rs11977021
and the risk of developing HBV-related hepatocellular carcinoma (HBV-HCC) [24].

In this study, our analysis of the G/A alleles of visfatin rs61330082 SNP revealed that
the GA + AA genotypes was more likely than the GG to be associated with severe disease
characteristics in LUAD. The GA + AA and GG genotypes in our study are equivalent to
the CT + TT and CC genotypes, respectively, described in the studies referenced in this
paragraph since they refer to the genotypes on the minus (antisense) strand [6,19,24,25,32]
Previous analyses of visfatin SNP rs61330082 have reported that it is associated with an
increased risk of NSCLC, esophageal squamous cell cancer (ESCC), bladder cancer, and
HCC [6,19,24,25,32]. In patients with NSCLC, the CT genotype, TT genotype and T allele
of visfatin SNP rs61330082 apparently reduced the risk of NSCLC pathogenesis, whereas
the CC genotype appeared to increase the risk [19]. Similarly, the CC genotype and C allele
of visfatin SNP rs61330082 were associated with increased risk of ESCC [25].and bladder
cancer, especially in smokers [32].

By contrast, in HBV-HCC, the TT genotype of visfatin rs61330082 was associated with a
higher risk of HBV-HCC than the CC and CC + TT genotypes, but only in patients of Zhuang
but not Han ethnicity [24]. Thus, it appears that visfatin rs61330082 polymorphisms in cancer
development vary among different tumor tissues. Further studies are required to clarify
the role of visfatin rs61330082 polymorphisms in LUAD tumorigenesis and progression.

The Allele Frequency Aggregator’s analysis of the National Center for Biotechnology
Information (NCBI) database of Genotypes and Phenotypes (dbGaP) shows that for the four
visfatin SNPs presented in this study, different ethnicities exhibit varying allele frequencies
(Table S5). For visfatin rs61330082, the incidence of the A allele was 49.3% in Asians which
was much higher than the rates in the global population and in Europeans (21.1% and
24.3%, respectively) (Table S5). This suggests Asians are more likely to have the AA + GA
genotype compared with the GG genotype, the former being associated in our study with
higher risk of T3/T4 tumors among all patients. Similar results were found for visfatin
rs11977021, where the incidence of the T allele was 53.6% in Asians which was much higher
than the rates in the global population and in Europeans (24.9% and 24.4%, respectively)
(Table S5). This suggests Asians are more likely to have the CT + TT genotype compared
with the CC genotype, the former being associated in our study with higher risk of T3/T4
tumor status among all patients.

Elevated visfatin levels have been detected in tumor and plasma samples in many
cancers, including NSCLC [17,19]. One potential mechanism for increased visfatin levels
may be due to specific genotypes in rs11977021 and rs61330082 resulting in increased
transcription activity, although this has only been reported in obese children [30,33]. Visfatin
is critical in NSCLC, due to its ability to increase intracellular ATP and NAD+ levels [16].
ATP is required to enhance the activity of receptor tyrosine kinases such as EGFR, which
are in turn involved in signaling pathways needed for the survival and growth of NSCLC
cells, while NAD+ is a substrate for enzymes such as poly (ADP-ribose) polymerase-1 and
sirtuin that contribute to apoptosis resistance and tumor cell survival [16].

Visfatin (NAMPT) plays a pivotal role in LUAD cell survival, with NAMPT inhibition
via NAMPT-small interfering RNA (siRNA) or the NAMPT inhibitor FK866 reducing the
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proliferation of three LUAD cell lines in one study [16], while FK866 also reduced intra-
cellular ATP levels, dephosphorylated EGFR signal proteins and promoted apoptosis in
the H1975 cell line [16]. Visfatin inhibitors work because cancer cells are more sensitive
to visfatin inhibition than normal cells due to their reliance on NAD+ and the cancer cells
are more dependent on NAD-mediated processes [21]. Normal cells, however, can synthe-
size NAD through an alternative pathway, i.e., nicotinic acid phosphoribosyltransferase
(NaPRTase) and thereby protect themselves from visfatin inhibition [21].

5. Conclusions

Obesity is a risk factor for many cancers [34]. Although this may not appear to be
the case in LUAD, which is inversely associated with high body mass index, a meta-
analysis of prospective cohort studies that examined the association between measures of
abdominal obesity and risk of lung cancer found that in lung cancer generally, abdominal
obesity is a better predictor of malignancy than general obesity [35]. Furthermore, since
visfatin expression is particularly enriched in visceral fat, abdominal obesity could be a
possible source of elevated serum visfatin levels in NSCLC patients [19,36]. Indeed, higher
visfatin levels have been found in obese individuals compared with those in nonobese
controls [37,38]. Thus, it would appear that while NSCLC cells likely need to produce
visfatin to survive, any extra visfatin secreted from adipose tissue would only serve to
improve the tumor microenvironment.
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