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Abstract: This study aimed to elucidate the origin of extracellular electron mediating (EEM) func-
tionality and redox-active center(s) in humic substances, where they are ubiquitously distributed.
Here, we show the emergence of EEM functionality during the humification of rice straw in artifi-
cial soil (kaolin and sand) with a matric potential of −100 cm at 20 ◦C for one year. We used the
dechlorination activity of an EEM material-dependent pentachlorophenol-dechlorinating anaerobic
microbial consortium as an index of the EEM functionality. Although rice straw and its mixture with
artificial soil did not initially have EEM functionality, it emerged after one month of humification
and increased until six months after which the functionality was maintained for one year. Chem-
ical and electrochemical characterizations demonstrated that the emergence and increase in EEM
functionality were correlated with the degradation of rice straw, formation of quinone structures,
a decrease in aromatic structures, an increase in nitrogenous and aliphatic structures, and specific
electric capacitance during humification. The newly formed quinone structure was suggested as a
potential redox-active center for the EEM functionality. These findings provide novel insights into
the dynamic changes in EEM functionality during the humification of organic materials.

Keywords: EEM material-dependent dechlorinating anaerobic consortium; organic matter decompo-
sition; quinone synthesis; specific electric capacitance; rice straw; humification

1. Introduction

Humic substances are natural organic macromolecules formed by the humification
process and are ubiquitous in soil, sediments, and natural water bodies [1]. Classical
definition of humification relies on the synthesis of large molecules from decomposition
products of biotic debris of plants, animals, and micro-organisms and has been explained
by various hypotheses, such as lignin, polyphenol, and sugar-amine condensation theories,
based on the extensive study of the chemical structures of humic substances [1–4]. However,
the emergent view of the humification process entails a continuum model from large
debris to a smaller molecular size, involved with formation/destruction of aggregates and
adsorption/desorption toward mineral surfaces [3].

The humification process has been studied with a focus on changes in the chemical
structures of organic molecules [1,5–7]. Over the last three decades, both soluble and
insoluble humic substances have been reported to have extracellular electron mediating
(EEM) functionality in various microbial reactions, including dissimilatory iron reduction,
contaminants detoxification of halogenated organic compounds, nitroaromatics, azo dyes,
and pharmaceuticals [8–20]. The EEM functionality of humic substances has drawn more
attention because of its importance in microbial reactions of biogeochemical cycles of
carbon, nitrogen and other elements [15,16,21–24] and its applicability to bioelectrochemical
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systems for bioremediation [25,26]. The ubiquitous EEM functionality distribution in humic
substances raises the question of its origin. Plant biomass-derived black carbon (biochar),
formed by incomplete combustion of biomass, has been widely reported to have EEM
functionality. Both biochars and humic substances are ubiquitously distributed in soil and
sediments and have the same quinone/semiquinone moieties as redox-active centers [27,28].
Nitrogenous and sulfurous (non-quinone) functional groups have also been reported to be
responsible for the redox mediating capacity of humic substances [29,30]. In addition, the
humification process of biowaste composting has been extensively studied [31], as it is an
environmentally friendly technology to treat biowaste. The increase in EEM functionality
of humic acids during the composting of various biowaste has been reported [32]. Thus,
we hypothesized that the ubiquitously distributed EEM functionality in humic substances
originated during the humification process.

Laboratory incubation of organic matter has previously been extensively studied to
model its decomposition/humification process in soil [33,34]. Study on EEM functionality
during the humification process has been mainly focused on compost humification instead
of laboratory incubation, although the end-product of compost humification was different
from that of soil [35]. On one hand, the temperature of laboratory incubation study for
organic matter decomposition was commonly set up in the range of 5–35 ◦C [36], whereas
the composting process reached up to 70 ◦C during the thermophilic phase. This could
result in a difference in the microbial community during both humification processes [37,38].
In addition, clay/minerals were widely involved in laboratory incubation study [39,40], as
they were the major inorganic fraction of soil [41], but not in compost humification. Mineral
binding has been reported as a major mechanism for organic matter stabilization and
mineral colloids also catalyze abiotic humification [42,43]. However, the change in EEM
functionality during the humification of laboratory incubation study with clay/minerals
has not been documented until now.

Humification of rice straw, a typical lignocellulosic organic material, has been ex-
tensively studied as it is a ubiquitous agricultural waste worldwide [44–47]. Research
on the decomposition of rice straw in soil has concentrated on the kinetic mineralization
process and dynamical change in the chemical structures of organic carbon, especially
with the involvement of the radioisotope 14C [45]. Carbon in rice straw is either miner-
alized to CO2/CH4 or transformed to microbial products during humification, affected
by environmental factors (i.e., temperature, moisture content, and oxygen accessibility)
and its own properties (i.e., composition, C/N ratio) [48–50]. Rice straw has a complex
and rigid microstructure with three main components: cellulose, hemicellulose, and lignin.
Cellulose and hemicellulose are easily attacked by cellulolytic organisms and decompose
more rapidly than aromatic polymer lignin [51]. However, the study on changes in the
electrochemical property of rice straw during humification was limited.

Thus, this study aims to elucidate changes in EEM functionality and electrochemical
properties, along with changes in the chemical structures during the humification of rice
straw in laboratory aerobic incubation. Here, we demonstrated the emergence and increase
in EEM functionality in a rice straw-artificial soil mixture for one year of humification with
chemical and electrochemical characterization.

2. Materials and Methods
2.1. Rice Straw-Artificial Soil Mixtures and Humification Conditions

Rice straw (Oryza sativa variety Aichi-no-Kaori) obtained from the Nagoya University
farm (Aichi, Aichi, Japan) was air-dried, pulverized using a Wonder crusher WC-3 (Osaka
Chemical Co., Osaka, Japan), and sieved (<300 µm) prior to use in the experiment. The
elemental composition of the sieved rice straw powder is shown in Table S1. Artificial soil
was composed of kaolin (Kanto Chemical Co., Inc., Tokyo, Japan) and industrial quartz
sand (No.7, 53–212 µm of size distribution, Mikawa Keiseki Co., Ltd., Okazaki, Aichi,
Japan), (1:2, w/w), without any organic matter, modified from OECD guideline [52]. Rice
straw powder (5 g) and artificial soil (45 g) were placed in a glass bottle (ф = 55 mm), mixed
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well, moistened with distilled water at matric potential −100 cm and then mixed well
again. The ratio of rice straw to artificial soil, 10%, was selected to provide a high organic
carbon content (4%) in the general range from 0.73 to 4.8% of organic carbon content of
top 20 cm in crop land in the world [53]. The moistened mixture was inoculated with
1 mL of Kamajima paddy soil suspension supernatant (1:10, w/w) obtained after two
hours of standing. The inoculated rice straw-artificial soil mixture is abbreviated as Mix.
The glass bottle containing Mix was covered with aluminum foil and incubated for one
year in the dark at 20 ◦C for humification. Water was added weekly to compensate for
water loss by evaporation. The artificial soil with inoculation (no rice straw) was also
prepared as a control (AS) and incubated under the same conditions. Triplicate samples
were tested after 0, 1, 3, 6 months, and 1 year of humification and labeled as 0M, 1M, 3M,
6M, and 1Y, respectively. The samples were freeze-dried, ground, and stored in a freezer
(−30 ◦C) until subjected to the following experiments. Triplicate samples of Mix with
different humification periods were named by combining the abbreviations of material-
period-replication; for example, Mix-1M-1 (the rice straw-artificial soil mixture humified
for one month, replication 1). The composite of the three replicates was named Mix-1M-C.
The humification experiment of Mix was repeated under the same conditions to verify
the results.

2.2. Evaluation of EEM Functionality Using an EEM Material-Dependent Pentachlorophenol
(PCP) Dechlorinating Anaerobic Consortium

The EEM functionality of the sample was evaluated using an anaerobic humin-
dependent PCP-to-phenol dechlorinating consortium [10,54,55]. The PCP dechlorinating
consortium was maintained by 5% (v/v) transfer in a medium containing 40 g/L of humin,
extracted as described by Pham and Katayama (2018) [56]. The humin concentration was
determined prior to the experiment by selecting the culture with the highest dechlorination
activity under the conditions with different humin concentrations (15 g/L, 30 g/L and
40 g/L) (Figure S1). This PCP-dechlorinating consortium requires humin as an extracellular
electron mediator for dechlorination activity [10]. This microbial consortium cannot use H2
and acetate as electron donors for microbial dechlorination [54], although they were widely
accepted as electron donors for anaerobic dechlorinators [57]. Therefore, this consortium is
called the EEM material-dependent PCP-dechlorinating anaerobic consortium. Dechlorina-
tion activity was used to evaluate the EEM functionality of the samples by replacing humin
in the medium.

The EEM functionality of the sample was evaluated by placing 1 g of the sample in a
20 mL N2-bubbled mineral medium supplemented with trace minerals and sealed with a
Teflon-coated butyl rubber stopper and aluminum seal. The medium containing the sample
was bubbled again with N2 gas for 40 min, and the headspace was flushed with N2 gas for
20 min and then autoclaved (121 ◦C, 20 min). The autoclaved medium was supplemented
with sodium formate (10 mM as the final concentration), PCP sodium salt (20 µM), and
0.2 mL filter-sterilized vitamin solution [12,14]. Then, the medium was inoculated with
the EEM material-dependent PCP-dechlorinating culture 5% (v/v) and incubated in the
dark at 30 ◦C for 21 days. This was regarded as the first generation. The EEM functionality
as a PCP-dechlorination activity was evaluated using the third generation obtained by
repeating a 5% (v/v) transfer of the culture to a new medium containing the same sample.
Using a third generation enabled us to avoid the effects of substances carried over from
the original humin-containing culture. The EEM functional intensity of the sample was
evaluated based on the metabolite composition of the PCP dechlorination. When PCP
was dechlorinated to 3-chlorophenol (3-CP) and phenol, and no PCP remained, it was
judged to have strong EEM activity. In contrast, EEM was considered inactive when PCP
was not dechlorinated, or 2, 3, 4, 5-tetrachlorophenol (2, 3, 4, 5-TeCP) was detected as the
sole metabolite of PCP (excluding phenol), and the amount was less than 10% (mol/mol).
The activity between these two was defined as intermediate activity. The activity was
regarded as increasing when fewer substituted chlorophenols were detected or when their
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proportions increased. The mole number of chorine (Cl) removed from one mole of PCP,
NCl (dimensionless number), was also used as index to indicate the EEM functionality,
which was calculated as the sum of the products of numbers of Cl removed from individual
metabolites and their proportions to the total amount of PCP and metabolites detected after
the incubation (Calculation S1). For the evaluation, a medium containing 40 g/L humin
was used as a positive control. Abiotic controls (negative control-a) consisted of media
containing 1 g of the Mix samples with different humification periods without inoculation.
No organic matter controls (negative control-b) were provided using media containing 1 g
of AS with different humification periods and inoculations. Inoculated rice straw without
humification (no artificial soil) was used as a negative control-c.

PCP and its metabolites in the cultures were extracted with an acetonitrile and toluene
mixture (1:1, v/v) and analyzed using a QP-2010 gas chromatography-mass spectrometer
(Shimadzu, Kyoto, Japan) equipped with a DB-5MS column (J&W Scientific Inc., Folsom,
CA, USA) [58], or by an LC-20 high-performance liquid chromatography (LC) (Shimadzu,
Kyoto, Japan) equipped with an InertSustain AQ-C18 column (3 µm particle size, 2.1 mm
in inner diameter, 150 mm length, GL Sciences Inc., Tokyo, Japan) and an SPD-M20A
photodiode array (PDA) detector (Shimadzu, Kyoto, Japan). The mobile phase for the
LC system comprised 45% (v/v) acetonitrile, 55% (v/v) water, and 0.1% (v/v) acetic acid
(isocratic conditions), and with a flow rate of 0.2 mL/min. The column temperature was set
at 40 ◦C, and the sample injection volume was 20 µL. The wavelength of the PDA detector
was set in the range of 250–330 mm.

The dissimilatory iron reduction activity of this consortium supplemented with 1 g
of Mix samples and AS samples was also examined, together with blank (only medium),
humin (40 g/L), rice straw only (15 g/L), and abiotic (no inoculation) controls after incu-
bating for 7 days under the same condition described above. Amorphous Fe (III)OOH
instead of sodium PCP was injected into the medium to make final concentration of 4 mM,
and Fe(II) ions released by the reducing reaction were analyzed using the phenanthroline
method with a spectrophotometer (U-1900, Hitachi Ltd., Tokyo, Japan) at an absorbance of
510 nm, as described in a previous study [14].

2.3. Chemical and Electrochemical Characterization

The elemental composition (carbon, hydrogen, nitrogen, and ash content) was ana-
lyzed using a Yanaco MT-5 CHN-corder (Yanaco New Science Inc., Kyoto, Japan), with
antipyrine as the standard. Ash content was measured as the weight remaining after incin-
eration. The oxygen content was determined by subtracting the percentages of carbon, hy-
drogen, nitrogen, and ash from 100%. The analysis was performed in two or three replicates.
The sulfur contents of Mix-0M-C and Mix-6M-C were determined using a PerkinElmer
2400 Series II CHNS/O analyzer (PerkinElmer Japan Co., Ltd., Yokohama, Japan).

The pH was measured using an MM-60R pH meter (DKK TOA Co., Tokyo, Japan) by
suspending 1 g of the sample in distilled water (2.5 g). Electrical conductivity (EC) was
measured using a LAQUAtwin-EC-33B meter (HORIBA, Ltd., Kyoto, Japan) using the
filtered supernatant of the suspension after the pH measurement.

Fourier transform infrared (FT-IR) spectra were measured in the range of 4000–500 cm−1

with a resolution of 4 cm−1 using a JASCO FT-IR-6100 spectrometer (JASCO, Tokyo, Japan)
and the KBr method. A pure KBr pellet was used for background correction.

Electron spin resonance (ESR) spectra were acquired using a JES-FA200 ESR spectrom-
eter (JEOL Co., Ltd., Tokyo, Japan) at 25 ◦C. The operation conditions were according to
Pham and Katayama (2018) [56]. The first and sixth manganese (Mn) peaks were used to
calibrate the g value. The effect of pH on ESR signal intensity was examined by treating 1 g
of the sample with 20 mL of 0.1 M HCl or two drops of 0.1 M NaOH before freeze-drying.

Solid-state 13C CP/MAS nuclear magnetic resonance (NMR) spectra were obtained
using an ECA-700 spectrometer (JEOL Co., Ltd., Tokyo, Japan). The operation conditions
were as described by Pham and Katayama (2018) [56], with 10,000 scans for rice straw
and 80,000 scans for Mix-6M-C and Mix-1Y-C. For NMR spectra, the relative abundance
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of different carbon groups was expressed as a percentage of the corresponding area (by
integrating signal intensity with chemical shift range) of the total area (0–210 ppm) [59]. The
quantitative change in each carbon group after humification was calculated by multiplying
the relative abundance of each carbon group with the remaining relative carbon content
of the Mix sample (assuming 100% carbon in Mix-0M-C and no change in ash content)
(Calculation S2).

Cyclic voltammetry, chronoamperometry, and electrochemical impedance spectroscopy
(EIS) measurements were performed using a multiple electrochemical measurement system
HZ-Pro S4 (Hokuto Denko Co., Tokyo, Japan) with an electric cell, where 10 mg of the
powder samples were set with a 1 mm thickness between two platinum disks (11.3 mm
in diameter and 1 mm in thickness) as the working and counter electrodes, respectively,
with an Ag/AgCl (3 M KCl) reference electrode (RE-T21A, EC Frontier Co., Ltd., Kyoto,
Japan). The sample and electrode spaces in the electric cell were filled with N2-flushed
0.02 M Na2SO4 as the electrolyte. Cyclic voltammetry measurement was carried out with a
scan rate of 10 mV/s and potential ranging from −0.7 to 0.4 V (vs. Ag/AgCl) for 10 cycles
under anoxic conditions. The 10th cyclic voltammogram (CV) was selected to avoid oxygen
contamination. Specific electric capacitance of Mix samples was estimated as shown in
Calculation S3. The chronoamperometry was performed to evaluate electron accepting
capacity (EAC)/electron donating capacity (EDC) of Mix samples. The sample was com-
pletely reduced at a potential of −0.6 V (vs. Ag/AgCl) for 200 min and subsequently
re-oxidized at a potential of +0.5 V (vs. Ag/AgCl) for 200 min for three cycles continuously.
The EDC of Mix sample was calculated as the average value of three cycles, whereas the
EAC of Mix sample was calculated as the average value of the second and third cycles
due to trace oxygen contamination in the first cycle (Calculation S4). EIS analysis was
performed by setting the electrical frequency from 100 kHz to 1 mHz with an amplitude
of 10 mV. Zview software (Schibner Associates, Inc., Southern Pines, NC, USA, version
3.5f) was employed to estimate the parameter values in the equivalent circuit in the EIS
data fitting.

Raman analysis was performed using an inVia Reflex Renishaw Raman microscope
(Renishaw plc., Wotton-under-Edge, Gloucestershire, UK) for Mix-0M-C and Mix-1Y-C.
The measurement conditions were as follows: laser diode, 532 nm; laser power, 150 mW;
exposure time of 1 s, and 10 accumulations. The Raman shift ranged from 1200 to 1800 cm−1.
A silicon wafer was used to calibrate the Raman spectrometer.

Sulfur K-edge X-ray absorption near-edge structure spectroscopy (XANES) analysis
was conducted at BL6N1 (0.85–6 keV) of the Aichi Synchrotron Radiation Center (Aichi
Prefecture, Japan) for Mix-0M-C and Mix-6M-C with one sweep. The analytical procedure
was performed as described by Pham et al. (2022) [58].

2.4. Statistical Analysis

The principal component analysis (PCA) was performed using IBM SPSS Statistics
(version 21, IBM Corp., Armonk, NY, USA).

3. Results
3.1. Degradation of Rice Straw in Artificial Soil over One Year of Humification

Table 1 shows the changes in the elemental composition, pH, and EC of the Mix sam-
ples during the humification for one year. The carbon content decreased by approximately
60% over one year (Figure S2), with a decrease in hydrogen and oxygen content, assuming
no change in ash content. The nitrogen content increased slightly but significantly, suggest-
ing nitrogen fixation (Figure S3). The C/N ratio significantly decreased from 94 to 21 over
one year, whereas the H/C and O/C ratios gradually increased. The pH value increased
from 6.24 to 8.58 during the first month and then remained constant. The EC gradually
decreased until six months and then increased.
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Table 1. Elemental composition, pH, and EC of rice straw-artificial soil mixtures.

Incubation
Time

Elemental Composition
[% w/w] Ash

[% w/w]
Elemental Ratio

pH EC
[µS/cm]

C H N O C/N H/C O/C

0 month 4.03
(0.28)

0.71
(0.04)

0.05
(0.01)

5.62
(0.47)

89.60
(0.80)

94.4
(7.2)

2.10
(0.02)

1.04
(0.01)

6.24
(0.03)

1766
(63)

1 month 3.14
(0.13)

0.61
(0.02)

0.07
(0.01)

4.43
(0.18)

91.75
(0.34)

52.5
(1.8)

2.32
(0.01)

1.06
(0.00)

8.58
(0.12)

1516
(40)

3 months 2.68
(0.18)

0.53
(0.04)

0.08
(0.00)

3.93
(0.32)

92.79
(0.54)

39.0
(2.7)

2.36
(0.03)

1.10
(0.02)

8.82
(0.31)

1432
(10)

6 months 2.06
(0.03)

0.44
(0.01)

0.07
(0.00)

3.13
(0.10)

94.31
(0.14)

36.2
(1.7)

2.54
(0.03)

1.14
(0.02)

8.84
(0.10)

1377
(23)

One year 1.66
(0.23)

0.44
(0.05)

0.09
(0.01)

3.03
(0.29)

94.78
(0.58)

21.1
(2.4)

3.18
(0.27)

1.38
(0.06)

8.23
(0.16)

1562
(43)

Note. Numbers in parenthesis show the standard deviation. Oxygen content was obtained by subtraction of other
elements and ash. The sulfur content was below the detection limit (0.3%).

3.2. Changes in EEM Functionality during the Humification of Rice Straw

The EEM functionality of the Mix samples with different humification periods was
examined by the dechlorination activity as an index using the EEM material-dependent
PCP dechlorinating anaerobic consortium, as shown by the number of Cl removed from
PCP (Figure 1). The proportions of PCP and its dechlorination metabolites of individual
samples are shown in Figure S4. The dechlorination activity was supported by humin
as an EEM material (positive control) but not by the AS samples (negative control-b)
(Figures 1 and S5). The possibility of chemical reactions between the Mix samples and
PCP was discarded because no dechlorination occurred under abiotic conditions (negative
control-a) (Figure S6). Phenol was excluded in the determination of EEM functionality, as it
was not only a metabolite of PCP, but degradation of rice straw itself also produced phenol
as a metabolite. The phenol amount in the dechlorination culture with the Mix samples is
shown in Figure S7.
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the proportion of PCP and its dechlorination metabolites detected in the EEM material-dependent PCP-
dechlorinating cultures (third generation) (Calculation S1). Phenol was not included as a metabolite for
the calculation. Positive control with humin as EEM material is shown by the symbol (+). Negative
controls are indicated by the symbol (−). Negative control-a shows the representative result of abiotic
controls with the Mix samples with different humification periods (Figure S6), negative control-b shows
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the representative result of the AS samples with different humification periods (Figure S5), and
negative control-c shows no EEM functionality of rice straw itself (no artificial soil). ND denotes
not detected.

Based on the dechlorination activity, it was demonstrated for the first time that EEM
functionality emerged during the humification of rice straw in artificial soil. PCP dechlori-
nation was not observed in rice straw alone (negative control-c) or Mix-0M, indicating that
rice straw had no EEM functionality. However, after one month of humification, Mix-1M
showed activity as an EEM material, where approximately 0.7 number of Cl was removed
from PCP (Figure 1) and 2,3,4,5-TeCP and 3,4,5-trichlorophenol (3,4,5-TCP) were detected
as the dechlorination metabolites of PCP (Figure S4). The EEM functionality increased with
time, as shown by the increase in number of Cl removed from PCP of Mix samples. After
three months of humification, one Mix-3M sample showed stronger EEM functionality
(Figure S4), shown as the wide deviation Mix-3M. After six months, all Mix-6M samples
exhibited strong EEM functionality, comparable to that of the positive control, humin. This
strong EEM functionality of the Mix samples was maintained after one year of humification.
The emergence of EEM functionality was replicative in the second humification experiment
of Mix (Mix2) (Figure S8).

Examination of dissimilatory iron reduction activity of the samples was also performed
(Figure S9), as it is widely used to examine the EEM functionality. The Mix samples
exhibited stronger dissimilatory iron reduction activity than those of abiotic controls and
AS samples, as more Fe(II) ions were reduced when supplemented with the Mix samples.
However, rice straw only and all Mix-0M samples showed the highest iron reduction activity
(Figure S9A,D). The results suggested that rice straw itself could be utilized as carbon
sources/electron donors in this microbial consortium for dissimilatory iron reduction.
Therefore, the PCP dechlorination activity in an anaerobic EEM material-dependent PCP-
dechlorinating consortium was used as an index to determine the EEM functionality of
materials rather than dissimilatory iron reduction activity, which enabled us to distinguish
the role of materials as EEM materials and effectively examine the EEM functionality of
Mix samples.

3.3. Changes in Chemical Structures during the Humification

Figure 2 shows the representative FT-IR spectra of Mix-0M-C to Mix-1Y-C. The FT-
IR spectra of individual samples are shown in Figure S10. Small peak at 1511 cm−1,
assigned to aromatic skeletal stretching in the lignin of rice straw [60], disappeared with
the humification process. Other peaks did not show evident changes during humification:
the peaks at 2927 and 2854 cm−1 assigned to C-H stretching of aliphatic groups, a sharp
peak at 3674 cm−1 assigned to O-H stretching [61], the broad peak at 3431 cm−1 assigned
to O-H stretching from both artificial soil [62] and rice straw, and N-H stretching from rice
straw, the peak at 1643 cm−1 assigned to the physical adsorption of water O-H vibration in
kaolin [63] and C=O stretching in lignin/hemicellulose of rice straw [64], the strong peak
at 1078 cm−1 assigned to Si-O stretching of artificial soil and C-O stretching of cellulose
and hemicellulose in rice straw, and the peaks at 950, 798, and 696 cm−1 assigned to Si-O
and Al-OH of artificial soil [65,66].
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Figure 2. FT-IR spectra of rice straw-artificial soil mixtures with 0 and 6 months, and 1 year of
humification (Mix-0M-C, Mix-6M-C, Mix-1Y-C), rice straw only, and artificial soil only.

Figure 3A shows 13C CP/MAS NMR spectra of Mix-6M-C and Mix-1Y-C compared
with that of rice straw. The changes in the contents of different carbon groups were
estimated from the NMR spectra and the total carbon content, as summarized in Figure 3B,C,
respectively (Calculation S2). The alkyl carbon (0–45 ppm) increased from 2.5% in Mix-0M-
C to 5.5% in Mix-1Y-C, in agreement with the increase in the H/C ratio in the elemental
analysis. The slight increases in N-alkyl (45–60 ppm) and carbonyl (160–210 ppm) carbons
were consistent with the increases in nitrogen content and O/C ratio in the elemental
analysis. Carbohydrate carbon (60–110 ppm) was always dominant in the Mix samples,
although it dramatically decreased from 89.4% to 27.7% during humification, indicating
the decomposition of cellulose and hemicellulose in rice straw. The carbons observed at
114–117, 127–140, and 140–154 ppm in rice straw could be assigned to the lignin fraction [67].
The aromatic carbon (110–160 ppm) in rice straw and Mix-6M-C disappeared in Mix-1Y-C.

ESR spectra showed an increase in organic radicals in the Mix samples during humifi-
cation (Figure 4A). Mix-0M-C did not exhibit the signal of rice straw (g = 2.0040, Figure S11)
but mainly exhibited the signal of artificial soil in the spectrum. The signal intensity in-
creased in Mix-3M-1 and remained stable in the Mix samples over one year, with g-values
ranging from 2.0035 to 2.0043, which were assigned to organic radicals. Despite the differ-
ence in EEM functionality among the three replicates of Mix-3M, there was no considerable
difference in signal intensity among the three replicates (Figure S12). The signal intensities
of Mix-6M-C and Mix-1Y-C significantly increased when treated with HCl/NaOH solution,
especially under alkaline conditions (Figure 4B). The increase in organic radicals in the
Mix2 samples was reproduced in the second experiment (Figure S13).
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Figure 4. (A): The ESR spectra of rice straw-artificial soil mixtures with 0, 1, 3, 6 months, or 1 year of
humification (Mix-0M-C, Mix-1M-C, Mix-3M-1, Mix-6M-C, and Mix-1Y-C), and of humin, with the
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3rd and 4th Mn marker signals. The measurement was carried out using the composite samples
except for Mix-3M-1. (B): The ESR spectra of rice straw-artificial soil mixtures with 6 months and
1 year of humification (Mix-6M-C, Mix-1Y-C) and Mix-6M-C and Mix-1Y-C treated with 0.1 M HCl or
0.1 M NaOH, respectively, with the 3rd and 4th Mn marker signals. The measurement was carried
out using the composite samples.

3.4. Changes in Electrochemical Properties during the Humification

The CVs demonstrated that the Mix sample was not initially redox-active, but con-
verted to redox-active during humification (Figure 5). Currents of less than 3 µA were
detected in the CVs of rice straw and Mix-0M-C (Figure S14). After three months of humifi-
cation, the CVs showed larger currents to the applied voltage and overall slope, especially
when applied negative potential. However, no specific redox peaks were identified for any
of the Mix samples. This suggested an increase in the redox-active moieties in the samples.
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Figure 5. Cyclic voltammograms (CVs) of rice straw-artificial soil mixtures with 0, 1, 3, 6 months,
and 1 year of humification (Mix-0M-C, Mix-1M-C, Mix-3M-1, Mix-6M-C, and Mix-1Y-C). All CVs
presented here were obtained at the 10th cycle of the measurement. The measurement was carried
out using the composite samples except for Mix-3M-1.

EIS measurements were performed under the same conditions as the cyclic voltam-
metry measurements to obtain the electric capacitance of Mix samples. Using the EIS
Nyquist plots and curve fittings based on the equivalent circuit, the electric parameters of
the Mix samples were estimated (Figure 6). Curve fittings were also confirmed in Bode plots
(Figure S15). Two constant phase elements (CPE) were introduced for the electrode double
layer (CPE1) and the sample surface (CPE2) due to the porous property of the samples,
as previously suggested [68,69]. The Q0 value of CPE2, as analogous to capacitance, was
used to estimate the electric capacitance of the Mix samples since they had n values larger
than 0.8 [70]. The specific electric capacitance per unit gram carbon of the Mix samples,
CPE2-Q0/gC, increased from 0.82 to 2.88 F/gC during humification.

The specific electric capacitance per unit gram of carbon in the Mix samples based
on CV measurement, QCV/gC (Calculation S3), increased from Mix-0M-C to Mix-1Y-C,
agreeing with an increase in the specific electric capacitance of the Mix samples over one
year of humification in EIS analysis, CPE2-Q0/gC (Figure 7B). In addition to CV and EIS
analysis, the chronoamperometry of Mix samples was also conducted to evaluate their
EAC/EDC, as it was widely used as an index for electron capacity of the material. The EAC
(1.65–14.69 mEq/gC) of Mix samples was much higher than their EDC (0.17–0.64 mEq/gC).
The EAC of Mix sample slightly decreased during the first-month of incubation, and then
increased to 14.69 mEq/gC until humification for one year, whereas their EDC decreased
to 0.17 mEq/gC after three months and then increased to 0.64 mEq/gC for one-year
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humification, as shown in Figure 7A (Calculation S4). The results suggested that the increase
in electric capacitance of Mix samples during one-year humification mainly contributed to
the increase in their EAC.
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Calculation S3) and the electric capacitance per carbon estimated by EIS, CPE2-Q0/gC, in the Mix
samples during humification.

4. Discussion

This study demonstrated the emergence of EEM functionality in a rice straw-artificial
soil mixture during humification for over one year for the first time (Figure 1). The EEM
functionality of the freeze-dried samples was evaluated using an EEM material-dependent
PCP dechlorinating anaerobic consortium. Traditional humic substances studies have been
performed for samples extracted using strong acid, alkaline, or organic solvents, which
results in “selective preservation” of a specific structure and alteration of its original chemi-
cal structure [3,71]. In this study, the EEM functionality was examined using freeze-dried
samples. Therefore, the emergence of functionality was considered to reflect the changes in
the Mix samples during humification, without any alteration. Rice straw is not an EEM
material. However, after one month of humification in artificial soil, the Mix-1M samples
showed EEM functionality, as shown by dechlorination activity. The EEM functionality of
the Mix samples increased until six months and was maintained until one year. It should
be noted that the inoculated AS samples did not show any EEM functionality during
one year of humification (Figure S5), indicating that the emergence of EEM functionality
resulted from the humification of rice straw rather than the weathering of artificial soil.
However, Wang and Huang (1989) reported that kaolinite and quartz had catalytic power
and contained reactive sites for the formation of hydroquinone-derived polymers from
the mixture of phenols [72], which may catalyze the humification of rice straw and sup-
port the emergence of EEM functionality in rice straw-artificial soil mixture. When the
EEM material-dependent PCP dechlorinating consortium was incubated in organic carbon
source-free medium with the Mix samples, PCP was still dechlorinated in cultures with
Mix-1M, 3M, 6M, and 1Y samples (Figure S16). The results indicate that the Mix samples
played a dual role as electron donors and redox mediators in PCP dechlorination.

Rice straw comprised three main components: cellulose, hemicellulose, and lignin,
which were observed in FT-IR (Figures 2 and S10) and NMR spectra (Figure 3). The carbon
content of rice straw rapidly degraded more than 22% (Figure S2) in the first month of
incubation, which would be mainly caused by the degradation of cellulose and hemicellu-
lose, as they were easily attacked by cellulolytic organisms and decompose more rapidly
than aromatic polymer lignin [51]. Although the aromatic skeletal stretching of lignin was
still observed in the FT-IR spectra after one-month humification of rice straw-artificial soil
mixture (Mix-1M-C) (Figure S10), the increase in organic radicals was already observed
in the ESR spectra (Figure 4). This would be due to the partial degradation of lignin to
phenol monomer, which acted as the precursor for the synthesis of quinone structure via
polyphenol theory, as suggested by a previous study [73]. This increase in organic radical
(ESR spectra in Figure 4) and carbonyl carbon (NMR spectra in Figure 3) suggested that
quinone structures were progressively formed until six months, accompanied by the further
degradation of cellulose, hemicellulose, and lignin structures in rice straw, indicated by
CHN contents (Table 1), FT-IR spectra (Figures 2 and S10), and NMR spectra (Figure 3).
From six months to one year, rice straw was further decomposed but slowly (CHN contents
in Table 1 and NMR spectra in Figure 3), with a slight increase in aliphatic and N-alkyl
carbons (NMR analysis in Figure 3), whereas quinone structures were maintained (ESR
spectra in Figure 4).

The changes in the chemical and electrochemical properties of the Mix samples were
compared with the increase in EEM functionality with reference to PCA (Figure 8). For six
months, with an increase in EEM functionality, the degradation of organic matter in rice
straw was conspicuous, as indicated by the decrease in carbon, hydrogen, and oxygen. This
correlation was also observed for the Mix-3M samples. Mix-3M-3 showed stronger EEM
functionality than Mix-3M-1 and Mix-3M-2, consistent with the higher degree of rice straw
degradation (Table S2) and higher phenol content in Mix-3M-3. There was also a decrease
in the peak intensity of the aromatic skeleton in lignin (FTIR6 in Figure 8) and carbohydrate
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carbon (NMR3 in Figure 8), indicating the degradation of cellulose, hemicellulose, and
lignin fractions in rice straw. However, increases in the signal intensity of organic radicals
(ESR) and carbonyl carbon (NMR5 in Figure 8) were observed, accompanied by an increase
in pH and a decrease in EC. An increased response of the signal intensities in ESR to
alkaline than to acid was also observed (Figure 4B), a typical response for semi-quinone-
type radicals in humic substances [8,10]. This indicated the synthesis of the quinone
structure during the six months of humification, although the presence of other organic
radicals produced during humification should also be considered. An increase in the
specific electric capacitance was also observed. These results suggest that the synthesis of
quinone structures increases the EEM functionality and the specific electric capacitance
during the decomposition of the cellulose/hemicellulose and lignin fractions in the Mix
samples. During the period from six months to one year of humification, when the EEM
functionality was maintained, increases in nitrogen content (Table 1 and Figure S3), O/C
ratio, and N-alkyl carbon (NMR2 in Figure 8) were observed, indicating nitrogen fixation
and further oxygenation of the Mix samples. The increases in alkyl carbon (NMR1 in
Figure 8), C-H peak intensity (FT-IR3 and 4 in Figure 8), and H/C ratio also indicated an
increase in aliphatic structures, whereas aromatic carbon (NMR4 in Figure 8) decreased.
These changes may contribute to the maintenance of EEM functionality despite the decrease
in organic matter content from six months to one year. This was supported by the increase
in the electric capacitance/capacity per unit gram of carbon (indicated by CV, EIS, EAC,
and EDC) of the Mix samples during this period (Figure 7).
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Figure 8. Principle component analysis of rice straw-artificial soil mixtures (Mix) with different
humification periods (A) and loadings of various chemical and electrochemical parameters (B). C, H,
N, and O denote carbon, hydrogen, nitrogen, and oxygen percentage of Mix sample, respectively
(assuming no change in ash content); C/N, H/C, and O/C denote carbon to nitrogen, hydrogen to
carbon ratio, and oxygen to carbon ratio of Mix sample, respectively (elemental ratio); pH denotes pH
value of Mix sample; EC denotes electrical conductivity of Mix sample; ESR denotes signal intensity
of Mix sample in ESR analysis; NMR1, 2, 3, 4, and 5 denote quantitative carbon content of alkyl
carbon (0–45 ppm), N-alkyl carbon (45–60 ppm), carbohydrate carbon (60–110 ppm), aromatic carbon
(110–160 ppm), and carbonyl carbon (160–210 ppm), respectively (Figure 3C); FTIR1, 2, 3, 4, 5, 6, 7,
8, and 9 denote relative intensity of O-H (3674 cm−1), O-H and N-H (3431 cm−1), C-H (2927 cm−1),
C-H (2854 cm−1), O-H of kaolin and C=O of lignin/hemicellulose (1643 cm−1), aromatic skeleton of
lignin (1511 cm−1), Si-O in artificial soil (950 cm−1), Al-OH of artificial soil (798 cm−1), and Si-O in
artificial soil (696 cm−1) in the FT-IR spectra, respectively (with C-O/Si-O (1078 cm−1) as the base);
CV denotes QCV/gC (Calculation S3); EIS denotes CPE2-Q0/gC (Figure 6); EAC denotes electron
accepting capacity of Mix sample; EDC denotes electron donating capacity of Mix sample (Figure 7A).

Although the phenolic compounds can be polymerized to polyphenol or quinone [4,32,74]
and converted into redox-active centers in the Mix samples, phenol itself was not considered
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responsible for the EEM functionality, as it was detected even in the non-functional Mix-
0M samples (Figure S7). ESR analysis suggested that quinone structures were newly
synthesized in the Mix samples during humification. The increase of quinone structures,
accompanied by the increase in electron transfer capacity (EAC + EDC) of humic acid
was also observed during corn straw composting process recently [73]. They suggested
that lignin in corn straw decomposed into phenol monomer, which acted as precursor
for the synthesis of quinone structure in humic acid of humified corn straw compost via
polyphenol theory [73].

The selected freeze-dried microbial biomass did not enable the dechlorination activity,
that is no EEM functionality (Figure S17). This supports the hypothesis that the newly
synthesized redox-active structures in the Mix samples during humification are responsible
for the EEM functionality. Although sulfur and sulfur-containing functional groups have
been reported as potential redox-active centers in humin [58], the sulfur contents of the Mix
samples were below the detection limit (Table 1). Therefore, sulfur and sulfur-containing
functional groups are unlikely to be the main redox-active centers in the Mix samples.
However, the oxidation states of sulfur in the Mix sample could change, as shown by sulfur
K-edge XANES (Figure S18). Although the β-sheet secondary structure was found to be the
main component of EEM functionality in silk protein [75], and proteins have been reported
to be preserved in the structure of humic substances [76], this was not the case for the Mix
samples because the β-sheet structure was not detected in the Raman spectra (Figure S19).

5. Conclusions

This study demonstrated for the first time that EEM functionality emerged during
the humification of rice straw in artificial soil, and its functionality was maintained for
one year. The emergence of EEM functionality was correlated with the degradation of rice
straw, the formation of quinone structure and the increase in specific electric capacitance.
The newly formed quinone structure was suggested as the potential redox-active center for
the EEM functionality, and nitrogenous and aliphatic structures may be associated with
the maintenance of functionality. The humification of rice straw suggested that the EEM
functionality in humic substances would not be originally present in the fresh organic
material, but emerged by humification. In the second humification experiment, the Mix2
samples showed the emergence of EEM functionality again, but the functionality decreased
after one year (Figure S6). This was probably due to the faster degradation of rice straw
accompanied by the earlier emergence of EEM functionality in the second experiment,
where the easily utilized carbon source in rice straw may be used up in the incubation
bottle so that the newly formed quinone was used as the carbon source for microbes
and further degraded. Thus, the EEM functionality emerges first during the degradation
of organic matter, is maintained for some time, and may finally disappear after further
degradation of organic matter. Further long-term studies are required to evaluate whether
the EEM functionality is preserved during long-term humification. However, this study
demonstrated a one-year change in EEM functionality during the humification process of
rice straw, a natural lignocellulosic material. This opens a new view of dynamic changes in
EEM functionality. In addition, because humic substances are formed from various origins,
the humification processes of other types of organic materials, such as proteinaceous and
lipid materials, are worth studying in the future.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijerph192215173/s1, Table S1: elemental composition of rice
straw; Table S2: elemental composition of Mix-3M; Calculation S1: estimation of number of Cl
removed from PCP, NCl; Calculation S2: quantitative changes in carbon groups; Calculation S3:
estimation of specific electric capacitance by CV analysis; Calculation S4: estimation of EAC/EDC;
Figure S1: proportions of PCP and its metabolites in the humin cultures for different concentrations;
Figure S2: degradation of rice straw during the humification; Figure S3: statistical analysis of N
contents for Mix samples; Figure S4: proportions of PCP and its metabolites in the cultures for
individual Mix sample; Figure S5: no EEM functionality in abiotic controls of Mix samples (negative
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control-a); Figure S6: no EEM functionality AS samples (negative control-b); Figure S7: changes in
phenol amount in the cultures with the Mix samples; Figure S8: changes in EEM functionality of Mix2
samples in the second time experiment; Figure S9: dissimilatory iron reduction activity; Figure S10:
FT-IR spectra of individual Mix sample; Figure S11: ESR spectra of kaolin, sand, and rice straw;
Figure S12: ESR spectra of Mix-3M; Figure S13: ESR spectra of Mix2 samples in the second time
experiment; Figure S14: cyclic voltammograms of rice straw and Mix-0M-C; Figure S15: EIS Bode
plots of Mix samples; Figure S16: changes in EEM functionality of Mix samples in the culture without
formate; Figure S17: no EEM functionality of selected microbial biomass; Figure S18: sulfur XANES
spectra of Mix-0M-C and Mix-6M-C; Figure S19: Raman spectra of Mix-0M-C and Mix-1Y-C.
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