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Abstract: A recent development in ergonomics research is using machine learning techniques for
risk assessment and injury prevention. Bus drivers are more likely than other workers to suffer
musculoskeletal diseases because of the nature of their jobs and their working conditions (WMSDs).
The basic idea of this study is to forecast important work-related risk variables linked to WMSDs
in bus drivers using machine learning approaches. A total of 400 full-time male bus drivers from
the east and west zone depots of Bengaluru Metropolitan Transport Corporation (BMTC), which is
based in Bengaluru, south India, took part in this study. In total, 92.5% of participants responded to
the questionnaire. The Modified Nordic Musculoskeletal Questionnaire was used to gather data on
symptoms of WMSD during the past 12 months (MNMQ). Machine learning techniques including
decision tree, random forest, and naïve Bayes were used to forecast the important risk factors
related to WMSDs. It was discovered that WMSDs and work-related characteristics were statistically
significant. In total, 66.75% of subjects reported having WMSDs. Various classifiers were used to
derive the simulation results for the frequency of pain in the musculoskeletal systems throughout the
last 12 months with the important risk variables. With 100% accuracy, decision tree and random forest
algorithms produce the same results. Naïve Bayes yields 93.28% accuracy. In this study, through a
questionnaire survey and data analysis, several health and work-related risk factors were identified
among the bus drivers. Risk factors such as involvement in physical activities, frequent posture
change, exposure to vibration, egress ingress, on-duty breaks, and seat adaptability issues have the
highest influence on the frequency of pain due to WMSDs among bus drivers. From this study, it is
recommended that drivers get involved in physical activities, adopt a healthy lifestyle, and maintain
proper posture while driving. For any transport organization/company, it is recommended to design
driver cabins ergonomically to mitigate the WMSDs among bus drivers.

Keywords: decision tree; random forest; naïve Bayes; BMTC; machine learning

1. Introduction

Conditions affecting the body parts responsible for movement—the muscles, ten-
dons, bones, joints, ligaments, and nerves—are referred to as musculoskeletal diseases.
Conditions affecting the musculoskeletal system can range from mild inconveniences to
permanent disabilities. WMSDs are a leading reason for lost work time. The monetary
burden of musculoskeletal illnesses on the public health care system is substantial. Muscu-
loskeletal problems can affect any body part, although they often connect to the individual’s
line of work. Vibration, for instance, has been linked to lower back diseases caused by
repetitive motions such as lifting and carrying heavy objects. Repetitive or prolonged static
force exertion can cause or exacerbate upper limb problems (the fingers, hands, wrists,
arms, elbows, shoulders, and neck). These conditions range in intensity from mild, episodic
annoyances to serious, clinically identifiable illnesses. When pain strikes, it might be the
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consequence of an acute overload that can be easily reversed, or it could indicate the onset
of a more severe condition [1].

Health issues arise, in particular, when the mechanical workload exceeds the capacity
of the musculoskeletal system’s components to absorb that stress. Expected outcomes
include fractures, undetected microfractures, degenerative changes, and injuries to the
bones, ligaments, and muscles (e.g., strains, ruptures). Additionally, functional limita-
tions and early bone and cartilage degradation (including that of the menisci, vertebrae,
intervertebral discs, and articulations) may occur. These irritations can develop at the
places where muscles, tendons, and tendon sheaths enter. The two fundamental injuries are
acute/painful and the other is chronic/lingering. The first kind is brought on by a powerful,
brief heavy load that causes an abrupt breakdown in structure and function (for example,
ripping a muscle owing to a hard lift, breaking a bone due to a fall, or immobilizing a
vertebral joint due to a vigorous movement). The second is brought on by a persistent
overload, which leads to discomfort and dysfunction that keeps getting worse (e.g., wear
and tear of ligaments, muscle spasm, and hardening). Long-term loading can generate
chronic injuries that the worker may reject or neglect because the damage may appear to
heal fast and not cause a substantial disability [2].

Due to technological improvements that have increased the volume of data being
collected and enhanced processing power, machine learning (ML) is a crucial subfield of
artificial intelligence that is seeing significant usage in several sectors. A performance
criterion can be optimized using methods in machine learning (ML) by using training
data and/or prior knowledge [3]. ML techniques use computer programs to “learn”
from current data using hyper-parameters chosen by the researchers, then they build
models that either reveal the underlying structure (unsupervised learning) or predict
discrete or continuous output variable(s) in unseen data (supervised learning). Common
applications for machine learning algorithms include regression, classification, clustering,
and reinforcement learning. By utilizing k-means clustering to identify subgroups, for
instance, unsupervised learning may be able to identify hidden patterns in data sets [4].

Since ML can simulate non-linear interactions between a range of factors, it is thought
that it is more suited for understanding the complex etiology of work-related musculoskele-
tal disorders (WMSDs), therefore preventing their recurrence [5]. Although interpretability
for prediction performance can occasionally be compromised by ML approaches [6], these
methods have already advanced the first WMSD preventative measures [7]. Due to its
usefulness in addressing research concerns unrelated to the prevention of WMSDs, ML
approaches have the potential to aid in WMSD prevention. Musculoskeletal problems
accounted for 30% of DAFW (days absent from work) occurrences in several industrialized
nations [8]. For many workers in many industry sectors, workplace injuries, occupational
health issues, and other risk factors at work might cause pain and discomfort in the arms,
shoulders, neck, back, or other essential organs [9].

Professional drivers are more vulnerable to the effects of weariness, which contributes
to a greater rate of commercial vehicle collisions [10]. Bus drivers have sensitive and
demanding jobs that are complicated by a variety of risk factors, including potential
traffic jams, a lack of knowledge about transportation schedules, irregular work schedules,
complicated routes, inclement weather, and an increase in the density, intensity, and
speed of the flow of traffic. The primary physical and occupational risk factors were
noise, vibration, toxic chemicals in the driver’s cabin, and driver anxiety [11]. Across the
world, musculoskeletal problems are prevalent among the working population. The most
important thing for every worker or operator to do on the job is to maintain appropriate
posture [12]. Uncomfortable postures were found to be the main problem that employees
and operators experienced at work [13]. In many quickly growing nations where labor is
inexpensive, occupational health and safety norms and posture analysis tools are frequently
disregarded [14,15].

Long periods of sitting and exposure to vibrations of various intensities are associated
with the development of work-related musculoskeletal diseases in drivers [16]. Due to
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the nature of their jobs, bus drivers frequently have lower and upper extremity symptoms
of musculoskeletal diseases [17]. Long-distance drivers typically have greater rates of
work-related musculoskeletal diseases, particularly low back discomfort [18–20]. The
likelihood of developing musculoskeletal problems in professional drivers can be directly
influenced by ergonomic factors in vehicle design, individual driving behavior, and road
conditions [21].

Workplace musculoskeletal problems may have a significant negative impact on com-
munities, employers, and employees [22]. Using experimental and statistical techniques,
prior research has demonstrated the link between workplace risk factors and the frequency
of musculoskeletal illnesses among bus drivers [23–26]. There are a lot of opportunities to
use modern technologies in ergonomic research nowadays because artificial intelligence
and information technology are developing so quickly and because the difficulties and
possibilities in the research environment are always changing [27].

There is a paucity of research on transport ergonomics and the incidence of WMSD
in this sector, much of which focuses on specific risk factors such as stress, low back pain,
etc. Second, it would seem that no studies have been conducted on the prevalence of
WMSDs among BMTC bus drivers who use various machine algorithms. Finally, there are
limited but erratic findings on the factors that influence WMSD among bus operators. It
was hypothesized that:

1. In bus drivers, work-related factors appear to be significant determinants of WMSDs.
2. Model to predict the risk factors contributing to WMSDs among bus drivers.

In previous studies using various machine learning techniques, some of the ergonomic
risk factors of workers and operators were evaluated, assessed, and analyzed by sensing-
based activity assessment, motion analysis, mental load evaluation, risk stratification of
physical workload, and fatigue classification methods [28].

The aim of this study was to identify the risk variables at work that may contribute
to the occurrence of WMSDs in bus drivers. The main work-related risk variables were
identified using a variety of machine learning approaches, including decision trees, random
forest, and naïve Bayes algorithms. The results of the current study will be useful for iden-
tifying risk factors associated with the workplace and for conducting future experimental
research to evaluate the severity of the risk factors.

2. Methods

This section consists of a data set, which was the primary asset for this study. From
the data set, feature extraction was performed to select the appropriate features, and in
subsequent stages, data pruning was performed as per the standard procedure. The brief
overview is expanded on in the following sections.

2.1. Data Set

This study used a random sampling technique to determine its sample size (n = 400) [29].
There are now 5175 drivers working for BMTC between the east and west sides of Bengaluru
in south India. The survey questionnaire was distributed to all 5558 full-time BMTC bus
drivers in the east and west zones, who are between the ages of 24 and 55 years. It was
standard practice to schedule drivers for 9–10 h each day, six days on and one day off.
Drivers with asthma, diabetes, arthritis, or high blood pressure, those undergoing treatment
for multiple conditions (piles or skin allergy), and those over the age of 55 were all ineligible.
Due to inappropriate responses, 30 samples were discarded.

In total, 370 male bus drivers were studied, and it was discovered that 10% of them
were between the ages of 24 and 28, 50% were between the ages of 29 and 39, and 39% were
over 40. The participants’ mean (SD) height, weight, and age were 1.70 (SD +0.4) meters,
69.4 (SD +7.8) kg, and 40 (SD +6.8 years), respectively.

Permission from BMTC was received by the researchers of this study. All BMTC
drivers were contacted by the Head of Human Resources and invited to participate in
the survey. The study’s objectives were clearly explained to all participants, and their
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participation was entirely voluntary and anonymous. The questionnaire was examined by
the Chief Engineer, the Head of Human Resources, the Depot Managers, and the Divisional
Controller (DC) of BMTC. In total, 10% of the research sample was questioned one-on-one
utilizing the questionnaire during their leisure time after obtaining the relevant clearances
from BMTC. These people were a part of the larger research as well. This research was
undertaken after the questionnaire was revised based on comments from the drivers and
data collected in the field. Drivers’ raw data were partitioned so that only aggregate
statistics would be used; individual identifiers would be removed at a later time.

2.2. Feature Extraction from the Data

Data for the study were gathered through face-to-face interviews, questionnaires,
and direct observations. The Modified Nordic Musculoskeletal Questionnaire (MNMQ)
served as the basis for the questions [30,31]. While examining the related risk variables
of driving, drivers’ perspectives, experiences, and prior occurrences were taken into ac-
count. Three components make up the questionnaire: (a) demographic and socioeconomic
data; (b) information about occupation, behavior, and lifestyle; (c) information about
medical/health (history).

2.3. Machine Learning Techniques for Risk Factor Prediction

Artificial intelligence (AI) is a broad term that includes a subset known as machine
learning. It gives computers and computing systems the capacity to learn and grow on
their own without being explicitly programmed by humans. Machine learning is concerned
with the use of data-driven methodologies to develop autonomous systems that can assist
humans in making decisions with or without human supervision. Machine learning
employs a set of algorithms and approaches to uncover and establish repeating patterns in
data to create these autonomous systems. The supervised machine learning strategy is one
of the most common and powerful machine learning approaches. An algorithm is given
a collection of inputs called features/attributes and their associated outputs called target
variables in supervised machine learning. A supervised machine learning approach is used
to train a model that captures the complicated connection between the characteristics and
target variables represented by a mathematical formula using a given data set. This trained
model serves as the foundation for prediction. Predictions are created by using the trained
model to generate the target variable from an unknown collection of features.

2.3.1. Decision Tree

Although there are many other kinds of supervised classifiers, one of the most well-
known is the decision tree (DT), which was developed by Quinlan. Judgmental trees are
built by the DT using training data using the “entropy drop” or “info gain” concept. The
term “training set” refers to a collection of samples for which the classification has already
been made (i.e., the fault type is known). To illustrate, let us pretend that (A = a1, a2, ..., an)
is a training data set, and that each sector ai is a k-dimensional vector (b1,i, b2,i, b3,i, ..., bk,i).
Each bj also indicates the category that ai falls under, so together they reflect the attribute
values of a certain industry. The decision tree seeks to partition a pool of data points into
many groups, one group for each of the nodes in the network. In other words, there is a
class to which each subset belongs (in our case, classes are faults). The entropy difference
between the two systems is used as the dividing line. For this case, we used the criterion
where the entropy difference was the greatest. If the classifier fails to successfully place all
instances of a node into a single class, the procedure is restarted with a different node in
mind. Here are a few of the algorithm’s most notable characteristics:

1. The classifier builds a leaf node by offering obvious categorization if all of the sectors
in the combination belong to the same class.

2. If none of the characteristics add any new information, the algorithm makes a “deci-
sive node”.
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3. If the difference in entropy between all characteristics is zero, the algorithm creates a
decisive node based on the predicted identity of the class.

2.3.2. Random Forest

This algorithm makes connections between different decision trees and then combines
them to make more accurate, trustworthy, and reliable predictions. It employs both classifi-
cation and regression; therefore, it is viewed as a combined approach. The model’s training
process becomes robust as a result of the extra randomness that is added as a tree-like
pattern develops. The key characteristic is that, rather than dividing the node, it finds
the most noticeable feature between random subdivisions. This wide-ranging selection
creates the finest model. Here, the initial phase is the simultaneous development of many
data set subdivisions and accompanying decision trees. It goes without saying that there
will be n decision trees for n sub-divisions. Finding the mean of all the data is the final
step. It combines the straightforward idea of trees with their flexible nature, improving
accuracy. It functions as a massive array of de-correlated random trees. It generates a large
number of random trees and decides based on the mode of the classes. Overfitting is an
issue that is resolved by random forest, which can also handle huge data sets with higher
dimensionality. Because it outperforms other algorithms in terms of accuracy, the random
forest is particularly well liked. It works well with bigger data sets and can evaluate differ-
ent input qualities without any compromise in performance. Additionally, it determines
the crucial characteristics for accurate categorization. It calculates an internal unbiased
for generalization error as the forest structure expands. It maintains the model’s accuracy
when a higher fraction of the data is absent. This is accomplished by approximating the
missing data. Additionally, it makes balancing the mistakes in imbalanced sets easier. It
determines set relationships that may be used for scaling, tracing outliers, and assembly.
The random forest technique may be extended to analyze unlabeled data sets to provide
unsupervised learning.

2.3.3. Naïve Bayes Classifier

Bayes classifiers are classification algorithms that employ the Bayes theorem when
there is a high degree of independence between the data components. These classifiers
comprise the probabilistic classifier family. A Bayesian classifier generates a probabilistic
model by creating links between the features. If these correlations are understood be-
forehand, creating the model becomes significantly simpler. The generated model is then
used to predict the classification of newly fed examples. The naïve Bayes classifier is a
variant of this family in which the data instances are conditionally independent and have
no hidden features that influence their categorization. The characteristics are also discrete
variables. The fundamental concept underlying the model is to determine the likelihood of
an instance belonging to a given class. Using Bayes’ theorem, this probability is computed.
When a problem has more than one class, the instance is given the name of the class with
the highest probability.

2.4. Feature Selection

The method of feature selection is crucial to machine learning. The feature selection
procedure may be used to increase the accuracy ratings of estimators (classifiers) or to
enhance their performance on data sets with extremely high dimensionality. It is beneficial
to use all of the input features, including those that are unimportant, when there is enough
data and time to do so, to approximate the principal function between the input and the
output. The irrelevant characteristics present two issues:

1. The cost of calculation will increase.
2. The training procedure could be misled by the irrelevant input characteristics.

Therefore, to keep the size of the approximator model minimal, those input character-
istics with little impact on the output may be disregarded. Therefore, choosing the right
features is crucial in determining how accurate a classification will be. As a foundation
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for the investigation, a reasonably diverse set of statistical factors was chosen. Mean,
standard deviation, median, standard error, variance, kurtosis, skewness, range, minimum,
maximum, sum, and count are some of the terminologies used to characterize them. This
information came from the analysis of questionnaire data. There is no need for every
feature to show all of the important information. In general, certain traits could reveal more
data than others. Feature selection is the process of choosing such superior characteristics
that expose more data for categorization. Because each feature contributes a dimension to
the feature space, and only choosing a small number of features minimizes the dimension,
this approach is also known as “dimensionality reduction”.

2.5. Pruning

In the original data set, 30 characteristics were collected from respondents’ personal
and professional lives. The data has been cleansed using industry-standard procedures to
ensure the reliability of the replies [32]. To narrow down to a workable model, we had to
disregard some of these characteristics. In the end, we settled on 21 of the aforementioned
features. To quantify the relative importance of the various textual replies, weights were
assigned. ‘Yes’ is counted as 1, and ‘No’ as 0. A label encoder was used to transform the
categorized information into numerical form. Finally, 70% of the data was used to train the
model, while the other 30% was used for testing.

3. Data Analysis

The responses from the drivers were coded once they were entered into the survey
form and used for the proper analysis. The initial stage of data analysis includes evaluating
the risk factors contributing to the prevalence of WMSDs among bus drivers to test the first
hypothesis of the study. This study used SPSS v.23 to conduct a chi-square (χ2) test (with
a 95% confidence interval) to investigate the relationship between the independent and
dependent variables. A chi-square test has been conducted and risk factors with pa < 0.05
were considered significant risk factors. A total of 21 features/risk factors were identified
which were derived from the first hypothesis. Several independent variables were included
in this study: sociodemographic, workplace, and lifestyle/behavior/occupational data.
However, reported musculoskeletal problems were taken into account as an independent
variable. p 0.05 was judged to be statistically significant in the χ2 test findings, which is
shown in the Appendix A.

4. Result

The BMTC bus drivers’ data were first analyzed to identify risk indicators for WMSDs.
The prevalence of WMSDs from the previous 7 days was also gathered during the ques-
tionnaire survey. Predictions for the first hypothesis testing were confirmed through the
chi-square test. To identify the most significant risk factors, commonly known machine
learning algorithms were used, and the confusion matrix of respective algorithms shows
the features categorization accuracy. The second hypothesis was tested using machine
learning algorithms. In the below-mentioned sections, there is a brief description of the
results found at each stage of data analysis.

4.1. Data Extracted from the Questionnaire

In total, 22% of the drivers were judged to be in good health, while the remaining
drivers had ordinary health status with a history of WMSDs. In their spare time, 33% of
drivers participated in outdoor sports.

For more than half of the study participants, their daily jobs resulted in a loss of
strength and muscular fatigue when driving. Drivers reported sleeping on bus floors
(passenger compartment) at the end of their shift in part because of unhygienic rest stops
at depots and their own residences that were far from the place of employment; 0.78% of
drivers reported turning off the ignition at traffic signals. More than a fifth of drivers (21%)
said they drove erratically to complete their scheduled trips, and more than half (57%) said
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the heat from the engine, the lack of cabin ventilation, and the overall weather conditions
caused them to feel uncomfortable inside the driver cabin. The present survey found that
73% of drivers sat for prolonged periods, 77% had seat adaptation (adjustment) concerns,
71% were not happy with their employment, 85% were under stress because of their busy
schedules and the traffic, and 87% relied on outside meals. Additionally, 72% said they
did not have enough access to restrooms and drinking water while at work, 81% said they
were subjected to vibration from the vehicles and the roads, and 73% said they had trouble
getting in and out of buses.

Prevalence of WMSDs from the Previous 7 Days

In order to obtain self-reported objective evaluations of pain and discomfort, the body
part discomfort (BPD) scale was employed [33,34]. Drivers are deemed to have WMSDs
if their symptoms are rated 1–5 (1—Not unpleasant, 2—Barely uncomfortable, 3—Quite
painful, 4—Very uncomfortable, and 5—Extremely uncomfortable). It was discovered that
drivers had experienced symptoms in their shoulder (23%), neck (13%), arm (9%), forearm
(8%), upper back (15%), hip/buttocks (25%), lower back (32%), thighs (17%), knees (19%),
fingers (9%), and ankle/foot (9%) within the preceding seven days. Additionally, it was
shown that individuals had the fewest symptoms (6%) in the hand/wrist region.

4.2. Classification Using Decision Tree

Figure 1 depicts the trained decision tree structure. The number of nodes in the tree is
21, and the number of leaves is 11. The training begins with a test at the root node with
the feature “participation in physical activities”. The test determines if “Involvement in
physical activities is less/greater than or equal to 0”. If the result is “less than 0”, the next
test is performed on “tobacco consumption” for the following values. Similarly, tests are
performed at all nodes. The training time was 0.03 s.
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Based on ten-fold cross-validation, the correctly categorized occurrences are 357/357,
i.e., 100%, with no wrongly identified instances, and the classification results are detailed
in Table 1. The confusion matrix for the decision tree is shown in Table 2. The decision tree
design in this training suggests just nine features, which are as follows:

• Involvement in physical activities.
• Tobacco consumption.
• Frequent posture change.
• Egress/ingress.
• Exposure to vibration.
• On duty breaks.
• Seat adaptability issues.
• Tired at end of the work.
• Sleeping in the bus (after duty).

Table 1. Classification result for decision tree.

Classification

Number of samples trained 357
Accurately classified samples 357
Classification accuracy 100%
Wrongly classified samples 0
Misclassification 0
Inter-rater agreement using Cohen’s kappa 1

Errors

Root relative square (RRSE) 0
Relative absolute (RAE) 0
Mean absolute (MAE) 0
Root mean square (RMSE) 0

Table 2. Confusion matrix for decision tree.

Class Very Often Often Sometimes Rarely Never

Very Often 50 0 0 0 0
Often 0 118 0 0 0
Sometimes 0 0 85 0 0
Rarely 0 0 0 30 0
Never 0 0 0 0 74

4.3. Classification Using Random Forest

The confusion matrix produced by the random forest tree classifier with 10-fold cross-
validation is shown in Tables 3 and 4 and is self-explanatory. The classification accuracy is
100% since 357/357 cases were properly classified.

Table 3. Classification result for random forest.

Classification

Number of samples trained 357
Accurately classified samples 357
Classification accuracy 100%
Wrongly classified samples 0
Misclassification 0
Inter-rater agreement using Cohen’s kappa 1
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Table 3. Cont.

Errors

Root relative square (RRSE) 1.90%
Relative absolute (RAE) 0.11%
Mean absolute (MAE) 0.0003
Root mean square (RMSE) 0.0068

Table 4. Confusion matrix for random forest.

Class Very Often Often Sometimes Rarely Never

Very Often 50 0 0 0 0
Often 0 118 0 0 0
Sometimes 0 0 85 0 0
Rarely 0 0 0 30 0
Never 0 0 0 0 74

4.4. Classification Using Random Forest

As shown in Tables 5 and 6, the confusion matrix was created using the naïve Bayes
classifier with 10-fold cross-validation.

Table 5. Classification result for naïve Bayes.

Classification

Number of samples trained 357
Accurately classified samples 333
Classification accuracy 93.28%
Wrongly classified samples 24
Misclassification 6.72%
Inter-rater agreement using Cohen’s kappa 0.9138

Errors

Root relative square (RRSE) 0.1371
Relative absolute (RAE) 12.12%
Mean absolute (MAE) 0.0313
Root mean square (RMSE) 38.16%

Table 6. Confusion matrix for naïve Bayes.

Class Very Often Often Sometimes Rarely Never

Very Often 50 0 0 0 0
Often 0 104 14 0 0
Sometimes 0 0 78 7 0
Rarely 0 0 3 27 0
Never 0 0 0 0 74

For the class “VERY OFTEN”, all 50 instances are appropriately categorized; thus,
there is no misclassification. For the condition “OFTEN”, 104 instances are correctly
classified and 14 are misclassified as “SOMETIMES”. For the class “SOMETIMES”, only
78 instances are correctly classified, whereas 7 were misclassified as “RARELY”. Further, for
the class “RARELY”, only 27 instances are correctly classified, whereas 3 were misclassified
as “SOMETIMES”. For the class “NEVER”, 78 instances are correctly classified.

4.5. Comparative Analysis

Machine learning techniques discussed in the earlier section were tested in the Weka
tool to predict significant work-related physical risk factors on the frequency of pain in
the last 12 months. In the trained model, frequency of pain was considered as target
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variable, and significant work-related physical risk factors were considered as attributes.
The response from the drivers for frequency of pain was coded as follows: Very often—1,
Often—2, Sometime—3, Rarely—4, and Never—5. It can be inferred that all the trained
models performed fairly well in classification, among which decision tree (Figure 1) and
random forest techniques achieved 100% accuracy followed by naïve Bayes with 93.28%
accuracy. Results from the first hypothesis testing were utilized as inputs for the second
hypothesis. To identify the feature importance, 21 attributes were considered, and results
from the decision tree show that risk factors such as involvement in physical activities,
frequent posture change, exposure to vibration, egress ingress, on-duty breaks, and seat
adaptability issues have the highest influence on the frequency of pain due to WMSDs
among bus drivers.

The above work-related risk factors show the highest significance to the prevalence of
WMSDs among bus drivers. Hence, the second hypothesis yields a positive result.

Based on the above comparative analysis, some algorithms yield overfitting and some
underfitting in the model. Since authors have considered all 21 features and the frequency
of prevalence of WMSDs in the past 12 months as target variables for all the drivers’
responses without modifying them, any stage may be a possible reason for overfitting or
the high performance of algorithms.

All drivers’ replies were unfiltered in the final study to prevent data tampering. Initial
training of algorithms was performed on the training data, and both the decision tree
and the random forest produced the same outcome despite their contrasting strengths
of low bias and high variance. Machine learning and data science have one main flaw,
overfitting. Overfitting on the training data sets is a typical issue when using decision
trees for classification and regression problems since they are a non-parametric supervised
implementation approach. Given the model’s architecture, if the model is allowed to be
trained to its full power, the model is practically guaranteed to overfit the training data.
Fortunately, overfitting in machine learning algorithms may be avoided and prevented
using a number of different methods [35–44]. Some methods that are frequently employed
to prevent overfitting in decision trees are as follows:

• Pre-pruning.
• Post-pruning.
• Acquire more training data.
• Remove irrelevant attributes.
• Cross validation.

1. Pre-Pruning

This method prevents the non-important branches from growing. According to the
specified condition, it ends the formation of new branches. In total, 92% classification
accuracy was obtained by this process, which fixes the overfitting of the decision tree model.

2. Post-Pruning

The non-significant branches are first trimmed or eliminated once the whole tree
has been formed. Cross validation is performed at each stage to see whether the new
branch’s inclusion increases accuracy. Classification accuracy of 91% was achieved using
this method.

3. Removal of features

In the present study, 21 features were used as input attributes for machine learning
algorithms. No significant changes were observed when attributes were reduced to 18.
After ≤18, the classification accuracy was significantly changed in all the algorithms used
in the present study. The classification accuracy was 92% for the decision tree algorithms.

4. Increasing the trained data set

In the present study, 70% of data is considered a trained set; when the same is increased
to 80%, the classification accuracy decreased to 96% for the decision tree algorithm.
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5. Stratified cross validation

Twenty characteristics generated from the chi-square test were used in a stratified
K-fold cross validation test performed by the authors. Twenty characteristics were divided
into five four-characteristic groupings. Each data set at each testing stage has been desig-
nated as the validation set, while the remaining data sets have been designated as the test
sets, each data set has an equal opportunity to serve as a validation set in future testing. In
a 5-fold cross-validation test, accuracy was determined to be around 96% on average. For
the class “VERY OFTEN”, all 50 instances are appropriately categorized; thus, there is no
misclassification. For the condition “OFTEN”, 104 instances are correctly classified and 15
are misclassified as “SOMETIMES”. For the class “SOMETIMES”, only 84 instances are
correctly classified. Further, for the class “RARELY”, 30 instances are correctly classified,
and for the class “NEVER”, 74 instances are correctly classified. The results are depicted
in Tables 7 and 8. Since there was a very small number of traits to begin with (just 20), it
made sense to divide them into five groups (K = 5). The references are included below for
your convenience.

Table 7. Classification result of stratified cross validation.

Classification

Number of samples trained 357
Accurately classified samples 342
Classification accuracy 95.79%
Wrongly classified samples 15
Misclassification 4.21%
Inter-rater agreement using Cohen’s kappa 0.9118

Errors

Root relative square (RRSE) 0.1261
Relative absolute (RAE) 10.12%
Mean absolute (MAE) 0.0313
Root mean square (RMSE) 35.16%

Table 8. Confusion matrix of stratified cross validation.

Class Very Often Often Sometimes Rarely Never

Very Often 50 0 0 0 0
Often 0 104 15 0 0
Sometimes 0 0 84 0 0
Rarely 0 0 0 30 0
Never 0 0 0 0 74

The summary of the results from all the above techniques to prevent overfitting is
given in Table 9. Similarly, in this study, random forest yields 100% classification accuracy,
indicating that overfitting in the model can be addressed by the below methods, and the
results are depicted in Table 10.

Table 9. Results of preventive techniques (decision tree).

Techniques to Prevent Overfitting in Decision Tree Accuracy %

Pre-Pruning 92
Post-Pruning 91

Acquire more training set 95
Remove irrelevant attributes 92
K-fold cross validation test 96
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Table 10. Results of preventive techniques (random forest).

Techniques to Prevent Overfitting in Random Forest Accuracy %

Reduce tree depth 96
Reduce number of variables sampled in each split 91

Acquire more training set 94
K-fold cross validation test 93

• Reduce tree depth.
• Reduce number of variables sampled in each split.
• Acquire more training set.
• K-fold cross validation test.

Independent Variables Validation

The independent variables in this study were selected from the variables that have
significant association with WMSDs among BMTC bus drivers. Initially, the 70% trained
data set and 30% test data set was used to check the classification accuracy. Decision
tree and random forest algorithm yields were overfitting, so to validate the independent
variables, percentage of the trained and test data set were changed and a few iterations
were conducted using decision tree and random forest algorithms; the results are given
below in Table 11.

Table 11. Iteration on independent variables.

% of Trained Data—
% Test Data

Accuracy %

Decision Tree Random Forest

70–30 100 100
80–20 96 94
90–10 98 95
60–40 89 86

5. Discussion

According to the study’s findings, 67% of drivers had WMSD in the previous 12 months.
The results are better than what was noted in African nations. In Nigeria, Akinpelu et al.
observed a frequency of 64.8% [45], while in Ghana, Abledu et al. recorded a prevalence of
59% [46]. Our number is larger than that which has been reported in Asia. For instance,
Tamrin et al. found a frequency of 60.4% in Malaysia [47], while Jadhav et al. in India
reported a prevalence of 67.4% among public bus drivers [48]. According to research by
Grace Szeto et al. on WMSDs in urban bus drivers in Hong Kong, the neck, lower and upper
back, knees and thighs, and shoulder have the highest incidence rates, ranging from 35 to
60%, and 90% of the discomfort were caused by bus driving [49]. In Pondicherry, 22.9%
(n = 667) of drivers reported having low back discomfort [50]. Data analysis derived some
dependent variables such as involvement in physical activities (67.02%), frequent posture
change (74.59%), exposed to vibration (81.35%), egress ingress (73.5%), on-duty breaks
(48.92%), and seat adaptability issues (77.29%). In total, 63.78% of drivers reported that their
muscles get fatigued during working hours due to continuous driving. Professional drivers
will have the highest responsibility on the road because drivers should transport passengers
safely and perform safe driving activities, by following the regulations of the traffic in
congested roads within the city limits. These drivers are the most exposed to fatigue on a
daily basis. Fatigue may be due to work factors, sleep factors, and health factors [51]. It was
found that almost all drivers worked more than 50 h per week. On average, drivers spent
10–12 h behind the wheel each day. Indian labor laws mandated that average working
hours for 4 consecutive months must not be longer than 48 h/per week. BMTC has a target
of 200 km/day/bus assigned for each driver. However, due to metro rail construction,
heavy traffic, and congested roads with potholes, the assigned target cannot be reached
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within working hours. To compensate for the loss, drivers must extend their shifts. The
result from the data analysis and machine learning technique yields that involvement in
physical activity is one of the predominant work-related risk factors affecting WMSDs. It
was found that 67.02% of drivers have no habit of doing regular exercises daily. Many
studies have proved that regular exercise will decrease musculoskeletal discomfort [52,53].
Only ergonomic interventions were not sufficient to eliminate/mitigate the WMSDs among
bus drivers, but along with organizational factors and individual factors, chances are high
to reduce musculoskeletal discomfort [54]. The World Health Organization (WHO) rec-
ommends that people are involved in physical activity at latest 150 min/per week [55,56].
A lack of physical activity may lead to hypertension, stress, and diabetes followed by
cardiovascular diseases [57,58]. In total, 73.5% of drivers reported that they have been
exposed to vibration on a daily basis. Long-term exposure to whole-body vibration leads
to the development of WMSDs among bus drivers. Experimental studies have reported
the relation between the speed of the bus, type of roads, and vibration magnitude of their
influence on WMSDs on bus drivers [59]. Several studies proved the relationship between
the types of seats and whole-body vibration exposure. Results show that there are no
ideal seats that suit various kinds of passenger vehicles [60]. An electromagnetically active
(E-active) seat, which is a relatively new design in the industry, has a promising feature to
dampen vibration significantly compared to other kinds of seats [61]. All recent studies on
whole body vibration show that higher vibration magnitude was recorded in the vertical
axis (+Z-axis) direction than in lateral and fore-aft directions [62]. Ergonomic interventions
and engineering controls in designing the seats and vibration dampers can resolve the issue
of vibration exposure among bus drivers.

The intersection of machine learning and biomechanics offers great promise for
ergonomics research and accelerates rehabilitation programs for musculoskeletal dis-
eases. In the present study, a 70% training data set and 30% test data set is considered,
and in several studies, an additional validation data set was used to select features or
hyperparameters [63]. Machine learning techniques/methods were used ranging from pas-
sively monitoring post-stroke patients to predicting WMSDs among the different working
populations [64]. The research aimed to highlight machine learning efforts in predict-
ing the physical risk factors contributing to WMSDs among bus drivers. In the present
study, decision tree, random forests, and naïve Bayes algorithms were used to predict the
work-related risk factors contributing to the WMSDs. These algorithms were commonly
used in recent studies related to occupational health and safety. There are many other
algorithms such as ANN (artificial neural network), SVM (support vector machine), CNN
(convolutional neural network), etc. Using smart technology such as machine learning, it is
possible to predict the potential risk at workplaces and also reduce cumulative exposure
of workers to occupational and health safety risk. In the present study, a field survey was
conducted through face-to-face interviews with bus drivers at BMTC to gather data on risk
factors. The responses were based on the experience of drivers and a better understanding
of the purpose of the study. In a larger vision to extend the present study, it is possible
to evaluate the actual risk at the workplace by using wearable sensors, SEMG (surface
electromyography) to evaluate muscle activation, joint movements, and muscle fatigue.
In the present study, authors have limited the scope of the study to collecting the data
from drivers and analyzing the data to validate the response from data analysis and simple
machine learning techniques.

6. Limitations

• The current study relied solely on drivers’ self-reported responses; no clinical data
were collected.

• Since most of the driver’s replies to the physical risk factors were binary, future
research on this topic may include gathering data based on the frequency, seriousness,
and intensity of the risk factors.

• The study’s participants were all male drivers.
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7. Conclusions and Recommendation

The primary concern of this study was to identify work-related risk variables linked
to WMSDs in bus drivers using machine learning approaches. It was found that 66.7% of
BMTC drivers self-reported that they were suffering from WMSDs. The machine learning
algorithms used in this study show that physical activities, frequent posture change, ex-
posure to vibration, egress ingress, on-duty breaks, and seat adaptability issues have the
highest influence on the frequency of pain due to WMSDs among bus drivers.

BMTC drivers can reduce their risk of WMSDs by adopting several preventative
measures, including maintaining a healthy, relaxed posture while working, engaging in
regular physical activity, participating in ergonomic training, and taking frequent breaks.
Drivers must be urged to see physiotherapists for any musculoskeletal problems they are
experiencing on the job.

8. Future Scope of the Study

Data were collected using self-reported questionnaires; there may be chances of
overestimation in reporting the WMSDs.

(a) To verify the effectiveness of the model, other techniques such as KNN (K-closest
neighbors), SVM (support vector machine), logistic regression, and ensembled tech-
niques such as boosting and bagging classifiers can be utilized.

(b) To assess the effectiveness of the model and confirm how the model works for the
provided data set, deep learning techniques such as CNN may be employed.

(c) Since the number of replies in our situation is constrained, a vast data set can be
employed as a training model.
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Appendix A

Association of socio-demographic, lifestyle/health, and occupational characteristics
with reported work-related musculoskeletal diseases (n = 370).

n = number of samples
df = degrees of freedom
χ2 = chi-square value
pa = significant/non-significant values
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Reported MSDs Statistics

Risk Factors n (%)
Yes (%)

(n = 247)
No (%)

(n = 123)
χ2 df pa

Socio-demographic

Age (years)

24–28 38 10 4.86 18 5.4 20

9.9 2 <0.0529–39 187 51 33 122 18 65

≥40 145 39 29 107 10 38

Work related

Seat adaptability issue

Yes 286 77 48 177 29 109
13 1 <0.05

No 84 23 19 70 4 14

Prolong sitting

Yes 270 73 42 156 31 115
39 1 <0.05

No 100 27 25 91 2 8

Periodic postural changes

Yes 276 75 44 161 31 115
35 1 <0.05

No 94 25 23 86 2 8

On duty breaks

Yes 189 51 48 177 29 109
13 1 <0.05

No 181 49 19 70 4 14

Egress/ingress

Yes 272 74 41 152 10 37
33 1 <0.05

No 98 26 26 95 23 86

Participation in some form of
physical activity

Yes 122 33 1 2 32 120
348 1 <0.05

No 248 67 66 245 1 3

Posture training

Yes 177 48 28 103 20 74
11 1 <0.05

No 193 52 39 144 13 49

Reachable in-vehicle controls

Yes 291 79 54 198 25 93
1 1 >0.05

No 79 21 13 49 8 30

Reliance on outside food

Yes 323 87 62 230 25 93
23 1 <0.05

No 47 13 5 17 11 30

Exposed to vibration
while working

Low magnitude 69 19 2 9 16 60
110 1 <0.05

High magnitude 301 81 64 238 17 63
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Reported MSDs Statistics

Risk Factors n (%)
Yes (%)

(n = 247)
No (%)

(n = 123)
χ2 df pa

Stress at work

Yes 313 85 62 230 22 83
41 1 <0.05

No 57 15 5 17 11 40

Access to potable water and
bathrooms while on duty

Yes 104 28 9 32 19 72
84 1 <0.05

No 266 72 58 215 14 51

Work satisfaction (personally)

Yes 262 71 13 49 15 55
25 1 <0.05

No 108 29 54 198 18 68

sufficient breaks at work

Yes 97 26 20 75 6 22
6.6 1 <0.05

No 273 74 46 172 27 101

Thermal distress in the cabin

Yes 213 56 50 186 7 27
96 1 <0.05

No 157 42 16 61 26 96

Shift timings

First 157 42 26 96 16 61

14 1 <0.05Second 100 27 1 60 11 40

General 113 31 25 91 6 22

Cabin surroundings

Yes 242 65 58 213 7 29
142 1 <0.05

No 128 35 9 34 25 94

Bending over to reach
side mirrors

Yes 198 54 42 155 12 43
37 1 <0.05

No 172 46 22 82 24 90

On-the-job exposure to
air pollution

Yes 309 84 65 240 19 69
101 1 <0.05

No 61 16 1 7 14 54

Hazardous driving job

Yes 237 64 57 210 7 27
142 1 <0.05

No 133 36 10 37 26 96

A proclivity towards
risky driving

Yes 78 21 12 45 9 33
3.7 1 >0.05

No 292 79 55 202 24 90
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Reported MSDs Statistics

Risk Factors n (%)
Yes (%)

(n = 247)
No (%)

(n = 123)
χ2 df pa

Participated in traffic violence

Yes 121 33 10 36 23 85
111 1 <0.05

No 249 67 57 211 10 38

Reacting to other drivers

Yes 189 51 40 147 11 42
21 1 <0.05

No 181 49 27 100 22 81

Daily route road conditions

Average/good 110 30 10 37 20 73
77 1 <0.05

Bad/worst 260 70 57 210 13 50

Shutting off ignition at signals

Yes 288 78 58 214 20 74
33 1 <0.05

No 92 25 9 33 16 49

Maintenance department’s
daily/weekly inquiries about

bus condition were
promptly resolved

Delayed 257 69 54 200 15 57
46 1 <0.05

Sometimes on time 113 31 13 47 18 66

Manhole protrusion on
daily routes

Yes 101 27 9 32 18 69
77 1 <0.05

No 269 73 58 215 15 54

Sleeping in bus after duty

Yes 226 61 54 199 7 27
119 1 <0.05

No 144 39 13 48 26 96

Health related

Body mass index

Under weight 22 6 5 20 1 2

8 3 <0.05
Normal weight 300 81 51 192 30 108

Overweight 42 11 8 30 3 12

Obese 6 2 1 5 1 1

Current state of health

Good 83 22 18 68 4 15

21 2 <0.05Average 153 41 22 81 22 82

Bad/very bad 134 36 21 78 12 46

Experiencing fatigue after work

Yes 233 63 57 210 6 23
155 1 <0.05

No 137 37 10 37 27 100
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Reported MSDs Statistics

Risk Factors n (%)
Yes (%)

(n = 247)
No (%)

(n = 123)
χ2 df pa

Lack of strength

yes 230 6 42 155 9 35
24 1 <0.05

no 140 38 14 52 24 88

Surgical history

Yes 72 19 13 47 6 25
0.8 1 >0.05

No 298 81 54 200 27 98

Muscle exhaustion during
working hours

Yes 276 75 64 236 11 40
172 1 <0.05

No 94 25 3 11 22 83

Training on health and safety

regularly 136 37 26 97 11 39
2 1 >0.05

sometimes 234 63 40 150 23 84

Pain relief by self-medication

yes 98 26 14 51 12 47
13 1 <0.05

no 272 74 53 196 21 76
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