Services as a Determinant of Botswana’s Economic Sustainability
Abstract
:1. Introduction
2. Overview of Services and Botswana’s Economy
2.1. Macroeconomic Indicators and Distribution of Services Activities towards GDP
2.2. Policies on and Challenges Affecting Services and Development in Botswana
3. Methodology
3.1. Empirical and Econometric Steps
3.1.1. Unit Root Test
3.1.2. ARDL Bounds Test
3.1.3. Diagnostic Tests
4. Results and Discussion
5. Conclusions and Recommendations
- Formulate suitable policies and strategies for services diversification. The government can promote entrepreneurship in the services sector, by enhancing tax holiday for new local businesses and offer business opportunities to these businesses as a way of supporting the governments development agenda.
- Provide and expand the market for the services sector, by enabling synergy in the cooperation amongst local business, foreign investments, and the state in enabling sustained economic development.
- Increase investments in the services sector and its sub-sectors to make it competitive in the international market by prioritizing the services sector in the planning of national development agendas. This will be further enhanced by making informed decisions with an updated and significant result of research to avoid budget overruns as has been the case in the past.
- Ensure that banks offer credit services to the private sector as this is vital for the growth of the services sector. This will help bridge the gap between innovation and accessibility to capital, making a pathway for the growth small and medium enterprises.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Original ARDL Estimation output
Dependent Variable: LGDP | ||||
Method: ARDL | ||||
Date: 04/12/22 Time: 18:30 | ||||
Sample (adjusted): 1977 2020 | ||||
Included observations: 44 after adjustments | ||||
Maximum dependent lags: 2 (Automatic selection) | ||||
Model selection method: Akaike info criterion (AIC) | ||||
Dynamic regressors (2 lags, automatic): LAGRICULTURE LSERVICES | ||||
LINDUSTRY MINERALS LGFC | ||||
Fixed regressors: C @TREND | ||||
Number of models evaluated: 486 | ||||
Selected Model: ARDL (2, 0, 2, 2, 1, 1) | ||||
Variable | Coefficient | Std. Error | t-Statistic | Prob. * |
LGDP(-1) | 1.097064 | 0.125146 | 8.766264 | 0.0000 |
LGDP(-2) | −0.565966 | 0.143648 | −3.939937 | 0.0005 |
LAGRICULTURE | 0.094434 | 0.022081 | 4.276650 | 0.0002 |
LSERVICES | 0.328671 | 0.046819 | 7.020085 | 0.0000 |
LSERVICES(-1) | −0.287031 | 0.071967 | −3.988377 | 0.0004 |
LSERVICES(-2) | 0.071553 | 0.053538 | 1.336480 | 0.1918 |
LINDUSTRY | 0.446737 | 0.022394 | 19.94863 | 0.0000 |
LINDUSTRY(-1) | −0.427880 | 0.057969 | −7.381196 | 0.0000 |
LINDUSTRY(-2) | 0.193498 | 0.060590 | 3.193554 | 0.0034 |
MINERALS | 0.000800 | 0.001521 | 0.526171 | 0.6028 |
MINERALS(-1) | −0.003759 | 0.001299 | −2.892989 | 0.0072 |
LGFC | −0.020789 | 0.010388 | −2.001218 | 0.0548 |
LGFC(-1) | 0.042530 | 0.011362 | 3.743339 | 0.0008 |
C | 1.014051 | 0.616821 | 1.643996 | 0.1110 |
@TREND | 0.006988 | 0.001653 | 4.227474 | 0.0002 |
R-squared | 0.999892 | Mean dependent var | 22.51518 | |
Adjusted R-squared | 0.999840 | S.D. dependent var | 0.757585 | |
S.E. of regression | 0.009596 | Akaike info criterion | −6.189972 | |
Sum squared resid | 0.002671 | Schwarz criterion | −5.581726 | |
Log likelihood | 151.1794 | Hannan–Quinn criter. | −5.964405 | |
F-statistic | 19140.65 | Durbin–Watson stat | 2.157751 | |
Prob(F-statistic) | 0.000000 | |||
selection. | ||||
Source: Authors’ computations (2022). * Note: p-values and any subsequent tests do not account for model. |
References
- Leeson, P.F. The Lewis model and development theory. Manch. Sch. 1979, 47, 196–210. [Google Scholar] [CrossRef]
- Lewis, W.A. The state of development theory. Am. Econ. Rev. 1984, 74, 1–10. [Google Scholar]
- Tignor, R.L. W. Arthur Lewis and the birth of development economics. In W. Arthur Lewis and the Birth of Development Economics; Princeton University Press: Princeton, NJ, USA, 2020. [Google Scholar]
- Kabat, L.; Cibák, L.; Filip, S. The remittance inflows in Visegrad countries: A source of economic growth, or migration policy misting? Entrep. Sustain. Issues 2020, 8, 606–628. [Google Scholar] [CrossRef]
- Dinu, A.-M. The importance of tourism and touristic services in GDP. Quaestus 2017, 10, 73–80. [Google Scholar]
- Omidi, M.; Min, Q.; Omidi, M. Combined Effect of Economic Variables on Fraud, a Survey of Developing Countries. Econ. Sociol. 2017, 10, 267–278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le, T.T.H.; Le, T.D.; Tran, T.D.; Duong, Q.N.; Dao, L.K.O.; Do, T.T.N. Banking sector depth and economic growth: Empirical evidence from Vietnam. J. Asian Financ. Econ. Bus. 2021, 8, 751–761. [Google Scholar]
- Zatonatska, T.; Rozhko, O.; Tkachenko, N. Modern trends of impact on economic development of countries: E-commerce and R&D. Mark. Manag. Innov. 2018, 4, 129–135. [Google Scholar]
- Emara, N.; El Said, A. Financial inclusion and economic growth: The role of governance in selected MENA countries. Int. Rev. Econ. Finance 2021, 75, 34–54. [Google Scholar] [CrossRef]
- Marcelin, I.; Egbendewe, A.Y.; Oloufade, D.K.; Sun, W. Financial inclusion, bank ownership, and economy performance: Evidence from developing countries. Finance Res. Lett. 2022, 46, 102322. [Google Scholar] [CrossRef]
- Eichengreen, B.; Gupta, P. The Service Sector as India’s Road to Economic Growth (No. w16757); National Bureau of Economic Research: Cambridge, MA, USA, 2011. [Google Scholar] [CrossRef] [Green Version]
- Eichengreen, B.; Gupta, P. The two waves of service-sector growth. Oxf. Econ. Pap. 2013, 65, 96–123. [Google Scholar] [CrossRef] [Green Version]
- Jain, D.; Nair, K.; Jain, V. Factors affecting GDP (manufacturing, services, industry): An Indian perspective. Annu. Res. J. SCMS Pune 2015, 3, 38–56. [Google Scholar]
- The Sub-Saharan African Services Economy: Insights and Trends—Tralac Trade Law Centre [WWW Document]. Available online: https://www.tralac.org/news/article/12337-the-sub-saharan-african-services-economy-insights-and-trends.html (accessed on 23 June 2022).
- Buckley, P.; Majumdar, R. The services powerhouse: Increasingly vital to world economic growth. Deloitte Insights 2018, 12, 1–20. [Google Scholar]
- World Bank. World Development Indicators. 2022. Available online: https://databank.worldbank.org/source/world-development-indicators (accessed on 18 September 2022).
- Powell, J. Sub-Saharan African Services Economy: Insights and Trends; Office of Industries: Washington, DC, USA, 2017; 218p. [Google Scholar]
- Oh, E. Nigeria’s Services Economy: The Engine for Future Growth; U.S. International Trade Commission (USITC): Washington, DC, USA, 2017; 2p.
- Rostow, W.W. The Stages of Economic Growth. A Non-Communist Manifesto; Cambridge University Press: Cambridge, UK, 1960. [Google Scholar]
- Lhomme, J.; Rostow, W.W. The stages of economic growth, a non-communist manifesto. Rev. Économique 1961, 12, 830–831. [Google Scholar] [CrossRef]
- Sharma, R.; Hazra, S.; Chitkara, S. Measurement of GDP of Services Sector in the New Series of National Accounts Statistics. Econ. Political Wkly. 2007, 42, 3727–3731. [Google Scholar] [CrossRef]
- Malik, M.H.; Velan, N. An analysis of IT software and service exports from India. Int. Trade Politi-Dev. 2020, 4, 3–25. [Google Scholar] [CrossRef]
- Islam, R. Structural Transformation and Alternative Pathways to the Lewis Turning Point. In Rural Labour Mobility in Times of Structural Transformation: Dynamics and Perspectives from Asian Economies; Reddy, D.N., Sarap, K., Eds.; Springer: Singapore, 2017; pp. 15–34. [Google Scholar] [CrossRef]
- Gabriele, A. Exports of services, exports of goods, and economic growth in developing countries. J. Econ. Integr. 2006, 21, 294–317. [Google Scholar] [CrossRef] [Green Version]
- Park, S. Trade in Services and Economic Growth. J. East Asian Econ. Integr. 2007, 11, 3–25. [Google Scholar] [CrossRef]
- Singh, H. Composition & Contribution of Service Sector in India, Jagran Josh. 2015. Available online: https://www.jagranjosh.com/general-knowledge/composition-contribution-of-service-sector-in-india-1446187472-1 (accessed on 23 June 2022).
- Tekola, H.; Gidey, Y. Contributions of micro, small and medium enterprises (MSMEs) to income generation, employment and GDP: Case study Ethiopia. J. Sustain. Dev. 2019, 12, 46–81. [Google Scholar]
- International Monetary Fund. Botswana Economic Outlook. 2022. Available online: https://www.imf.org/en/Countries/BWA (accessed on 18 September 2022).
- Suzuki, T.; Hotta, J.; Kuwabara, T.; Yamashina, H.; Ishikawa, T.; Tani, Y.; Ogasawara, K. Possibility of introducing telemedicine services in Asian and African countries. Health Policy Technol. 2020, 9, 13–22. [Google Scholar] [CrossRef]
- Esfahani, H.S.; Ramírez, M.T. Institutions, infrastructure, and economic growth. J. Dev. Econ. 2003, 70, 443–477. [Google Scholar] [CrossRef]
- Bacovic, M.; Andrijašević, Ž.M.; Cerovic Smolovic, J. Structural changes and growth in Europe: Are knowledge-intensive services changing paradigm of expansion of services as a long-term growth-diminishing factor? Ekon. Časopis 2022, 70, 124–143. [Google Scholar] [CrossRef]
- Kizyma, T.O.; Lobodina, Z.M.; Khamyha, Y.Y. Fraud with Financial Resources of the State: Types and Effect on the Shadow Economy. Financ. Credit Act. 2019, 2, 355–363. [Google Scholar] [CrossRef] [Green Version]
- Mulungu, K.; Ng’Ombe, J.N. Sources of Economic Growth in Zambia, 1970–2013: A Growth Accounting Approach. Economies 2017, 5, 15. [Google Scholar] [CrossRef] [Green Version]
- Chiu, Y.-B.; Zhang, W.; Ding, K. Does Globalization Influence Inbound Tourism? Evidence from a Dynamic Panel Threshold Analysis. J. Travel Res. 2021, 60, 1074–1084. [Google Scholar] [CrossRef]
- Wang, F.; Wang, J.-D. Investing preventive care and economic development in ageing societies: Empirical evidences from OECD countries. Health Econ. Rev. 2021, 11, 18. [Google Scholar] [CrossRef]
- Kouassi, E.; Akinkugbe, O.; Kutlo, N.O.; Brou, J.M.B. Health expenditure and growth dynamics in the SADC region: Evidence from non-stationary panel data with cross section dependence and unobserved heterogeneity. Int. J. Health Econ. Manag. 2018, 18, 47–66. [Google Scholar] [CrossRef] [PubMed]
- Doytch, N.; Uctum, M. Does the worldwide shift of FDI from manufacturing to services accelerate economic growth? A GMM estimation study. J. Int. Money Financ. 2011, 30, 410–427. [Google Scholar] [CrossRef]
- Yue, X.-G.; Liao, Y.; Zheng, S.; Shao, X.; Gao, J. The role of green innovation and tourism towards carbon neutrality in Thailand: Evidence from bootstrap ADRL approach. J. Environ. Manag. 2021, 292, 112778. [Google Scholar] [CrossRef] [PubMed]
- Garba, I.; Bellingham, R. Energy poverty: Estimating the impact of solid cooking fuels on GDP per capita in developing countries—Case of sub-Saharan Africa. Energy 2021, 221, 119770. [Google Scholar] [CrossRef]
- Sharma, R.; Kautish, P. Linkages between Financial Development and Economic Growth in the Middle-Income Countries of South Asia: A Panel Data Investigation. Vision J. Bus. Perspect. 2020, 24, 140–150. [Google Scholar] [CrossRef]
- Statistics Botswana. Botswana’s Social Economic Statistics. 2022. Available online: https://www.statsbots.org.bw/statistics-by-sector (accessed on 18 September 2022).
- Kaboyakgosi, G.; Marata, K.P. An analysis of Botswana’s implementation challenges. PULA Botsw. J. Afr. Stud. 2013, 27, 17. [Google Scholar]
- Mogomotsi, P.K.; Kolobe, M.; Raboloko, R.; Mmopelwa, G. The economic contribution of tourism to local communities: The case of Khumaga and Moreomaoto villages, Botswana. PULA Botsw. J. Afr. Stud. 2018, 32, 84–99. [Google Scholar]
- Raboloko, M. Determinants of Service Sector Growth in Botswana; BIDPA Working Paper 56; Botswana Institute for Development Policy Analysis: Gaborone, Botswana, 2018. [Google Scholar]
- UNICEF. Botswana: Health and Nutrition. 2022. Available online: https://www.unicef.org/botswana/health-and-nutrition (accessed on 18 September 2022).
- Ghebremusse, S. Good Governance and Development in Botswana - The Democracy Conundrum. Law Dev. Rev. 2018, 11, 913–938. [Google Scholar] [CrossRef]
- Engle, R.F.; Granger, C.W.J. Co-Integration and Error Correction: Representation, Estimation, and Testing. Econometrica 1987, 55, 251–276. [Google Scholar] [CrossRef]
- Nelson, C.R.; Plosser, C.I. Trends and random walks in macroeconmic time series: Some evidence and implications. J. Monet. Econ. 1982, 10, 139–162. [Google Scholar] [CrossRef]
- Pesaran, M.H.; Shin, Y.; Smith, R.J. Bounds testing approaches to the analysis of level relationships. J. Appl. Econom. 2001, 16, 289–326. [Google Scholar] [CrossRef]
- Phillips, P.C.; Perron, P. Testing for a unit root in time series regression. Biometrika 1988, 75, 335–346. [Google Scholar] [CrossRef]
- Dickey, D.A.; Fuller, W.A. Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root. Econometrica 1981, 49, 1057. [Google Scholar] [CrossRef]
- Zivot, E.; Andrews, D.W.K. Further evidence on the great crash, the oil-price shock, and the unit-root hypothesis. J. Bus. Econ. Stat. 2002, 20, 25–44. [Google Scholar] [CrossRef]
- Johansen, S.; Juselius, K. Maximum likelihood estimation and inference on cointegration—With applications to the demand for money. Oxf. Bull. Econ. Stat. 1990, 52, 169–210. [Google Scholar] [CrossRef]
- Adebayo, T.S.; Odugbesan, J.A. Modeling CO2 emissions in South Africa: Empirical evidence from ARDL based bounds and wavelet coherence techniques. Environ. Sci. Pollut. Res. 2021, 28, 9377–9389. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.; Khattak, S.I.; Khan, S.; Rahman, Z.U. Do aggregate domestic consumption spending & technological innovation affect industrialization in South Africa? An application of linear & non-linear ARDL models. J. Appl. Econ. 2020, 23, 44–65. [Google Scholar] [CrossRef] [Green Version]
- Ahmadi, M. Social and Economic Impacts of Elimination of Energy Price Distortion in Indonesia. Ph.D. Thesis, Yokohama National University, Yokohama, Japan, 2021. [Google Scholar]
- Alola, A.A.; Onifade, S.T. Energy innovations and pathway to carbon neutrality in Finland. Sustain. Energy Technol. Assess. 2022, 52, 102272. [Google Scholar] [CrossRef]
- Chin, L.C.; Hoang, T.C. Effects of US Economic Policy Uncertainty on Stock Price in Vietnam: An Ardl Bound Test Approach. In Finance and Performance of Firms in Science, Education, and Practice; Novak, P., Jurigova, Z., Kozubikova, L., Zlamalova, J., Eds.; Tomas Bata Univ Zlin: Zlin, Czechia, 2017; pp. 574–581. [Google Scholar]
- Phiri, J.; Malec, K.; Kapuka, A.; Maitah, M.; Appiah-Kubi, S.N.K.; Gebeltová, Z.; Bowa, M.; Maitah, K. Impact of Agriculture and Energy on CO2 Emissions in Zambia. Energies 2021, 14, 8339. [Google Scholar] [CrossRef]
- Liew, V.K.-S. Which Lag Length Selection Criteria Should We Employ? SSRN Scholarly Paper No. ID 885505; Social Science Research Network: Rochester, NY, USA, 2006. [Google Scholar]
- Woodridge, J.M. Introductory Econometrics a Modern Approach, 7th ed.; Cengage Learning, Inc.: Boston, MA, USA, 2018. [Google Scholar]
- Hassan, K.; Abdullah, A. Effect of Oil Revenue and the Sudan Economy: Econometric Model for Services Sector GDP. Procedia-Soc. Behav. Sci. 2015, 172, 223–229. [Google Scholar] [CrossRef] [Green Version]
- Uddin, M.M.M. Causal relationship between agriculture, industry and services sector for GDP growth in Bangladesh: An econometric investigation. J. Poverty Investig. Dev. 2015, 8, 124–130. [Google Scholar]
- Yetiz, F.; Özden, C. Analysis of causal relationship among gdp, agricultural, industrial and services sector growth in Turkey. Ömer Halisdemir Üniv. İktisadi İdari Bilim. Fak. Derg. 2017, 10, 75–84. [Google Scholar] [CrossRef]
- Katircioglu, S. Co-integration and causality between GDP, agriculture, industry and services growth in North Cyprus: Evidence from time series data. Rev. Soc. Econ. Bus. Stud. 2004, 5, 173–187. [Google Scholar]
- Gordon, J.; Gupta, P. Understanding India’s services revolution. In India’s and China’s Recent Experience with Reform and Growth; Springer: London, UK, 2005; pp. 229–263. [Google Scholar]
- Guo, X.; Shi, J.; Ren, D.; Ren, J.; Liu, Q. Correlations between air pollutant emission, logistic services, GDP, and urban population growth from vector autoregressive modeling: A case study of Beijing. Nat. Hazards 2017, 87, 885–897. [Google Scholar] [CrossRef]
- Todaro, M.P.; Smith, S.C. Economic Development, 12th ed.; Pearson Education: Upper Saddle River, NJ, USA, 2015. [Google Scholar]
- Phiri, J.; Malec, K.; Majune, S.; Appiah-Kubi, S.; Gebeltová, Z.; Kotásková, S.; Maitah, M.; Maitah, K.; Naluwooza, P. Durability of Zambia’s Agricultural Exports. Agriculture 2021, 11, 73. [Google Scholar] [CrossRef]
- Botswana Statistics Botswana Environmental Statistics 2016. 2016. Available online: https://unstats.un.org/unsd/environment/Compendia/Botswana%20Environment%20Statistics%20Revised%20Version,%202016.pdf (accessed on 18 September 2022).
Indicator | 2016 | 2017 | 2018 | 2019 | 2020 |
---|---|---|---|---|---|
GDP per capita | 6729.066 | 6855.16 | 6973.099 | 7027.045 | 6299.209 |
GDP growth | 7.036897 | 4.00345 | 3.980395 | 2.992738 | −8.49289 |
Inflation | 2.814958 | 3.308281 | 3.238016 | 2.772864 | 1.890359 |
Unemployment | 21.029 | 21.566 | 22.071 | 22.61 | 24.93 |
Variable | Computation |
---|---|
GDP | real GDP constant 2015 USD (GDP is the dependant variable) |
Agriculture | agriculture, fisheries, and forestry value-added constant 2015 USD |
Services | services value added constant 2015 USD |
Industry | industry value added constant 2015 USD |
Minerals | mineral rent as a percentage of GDP |
GFC | gross fixed capital constant 2015 USD |
Indicator | Maximum | Minimum | Mean | SDEV |
---|---|---|---|---|
GDP | 16,188,225,469 | 932,963,477.5 | 7,302,798,762 | 4,696,841,763 |
Agriculture | 315,250,945.49 | 124,022,755.9 | 218,365,593.6 | 51,290,552 |
Services | 9,635,264,765 | 298,412,627.3 | 3,505,455,300 | 2,921,953,703 |
Industry | 5,862,333,591 | 481,292,062.3 | 3,695,669,670 | 1,693,761,635 |
Minerals | 6.493806 | 0.006359 | 1.520492 | 1.738143 |
GFC | 5,650,269,924 | 219,525,876.3 | 1,741,000,002 | 1,441,768,688 |
Variable | Test | Level | 1st Difference | ||
---|---|---|---|---|---|
Statistic | 5 Percentage Critical | Statistic | 5 Percentage Critical | ||
GDP | ADF | −1.252485 | −3.513075 | −5.808603 * | −4.180911 |
PP | −1.226981 | −3.513075 | −5.729063 * | −3.515523 | |
Z-A | −3.609328 (1987) | −4.859812 | −6.365175 * (1988) | −4.859812 | |
Agriculture | ADF | −2.623163 | −3.513075 | −7.357599 * | −3.515523 |
PP | −2.695761 | −3.513075 | −7.324190 * | −3.515523 | |
Z-A | −7.090117 * (2001) | −4.859812 | |||
Services | ADF | −0.319593 | −3.513075 | −4.330314 * | −3.515523 |
PP | −0.807426 | −3.513075 | −4.366795 * | −3.515523 | |
Z-A | −4.074293 (1984) | −4.859812 | −5.437097 * (1983) | −4.859812 | |
Industry | ADF | −1.958670 | −3.513075 | −6.074625 * | −3.515523 |
PP | −2.287473 | −3.513075 | −6.051098 * | −3.515523 | |
Z-A | −4.173820 (2008) | −4.859812 | −6.710782 * (1983) | −4.859812 | |
Minerals | ADF | −3.707501 * | −3.513075 | ||
PP | −3.807798 * | −3.513075 | |||
Z-A | −4.345889 (2005) | −4.859812 | −7.560210 * (1983) | −4.859812 | |
GFC | ADF | −3.826440 * | −3.513075 | ||
PP Z-A | −3.337899 −7.128090 * (1987) | −3.513075 −4.859812 | −14.98628 * | −3.515523 |
Selected Model: ARDL(2, 0, 2, 2, 1, 1) | ||||
ECM Regression | ||||
Case 5: Unrestricted Constant and Unrestricted Trend | ||||
Variable | Coefficient | Std. Error | t-Statistic | Prob. |
C | 1.014051 | 0.132587 | 7.648166 | 0.0000 |
@TREND | 0.006988 | 0.000887 | 7.876244 | 0.0000 |
D(LGDP(-1)) | 0.565966 | 0.105733 | 5.352756 | 0.0000 |
D(LSERVICES) | 0.328671 | 0.029906 | 10.99010 | 0.0000 |
D(LSERVICES(-1)) | −0.071553 | 0.044434 | −1.610322 | 0.1182 |
D(LINDUSTRY) | 0.446737 | 0.017618 | 25.35677 | 0.0000 |
D(LINDUSTRY(-1)) | −0.193498 | 0.045426 | −4.259687 | 0.0002 |
D(MINERALS) | 0.000800 | 0.000930 | 0.860610 | 0.3965 |
D(LGFC) | −0.020789 | 0.007670 | −2.710569 | 0.0112 |
CointEq(-1) * | −0.468902 | 0.060939 | −7.694554 | 0.0000 |
R-squared | 0.977679 | Mean dependent var | 0.060540 | |
Adjusted R-squared | 0.971771 | S.D. dependent var | 0.052749 | |
S.E. of regression | 0.008863 | Akaike info criterion | −6.417245 | |
Sum squared resid | 0.002671 | Schwarz criterion | −6.011748 | |
Log likelihood | 151.1794 | Hannan–Quinn criter. | −6.266867 | |
F-statistic | 165.4724 | Durbin–Watson stat | 2.157751 | |
Prob(F-statistic) | 0.000000 | |||
F-Bounds Test | Null Hypothesis: No levels relationship | |||
Test Statistic | Value | Signif. | I(0) | I(1) |
F-statistic | 8.416563 | 10 percent | 2.75 | 3.79 |
K | 5 | 5 percent | 3.12 | 4.25 |
2.5 percent | 3.49 | 4.67 | ||
1 percent | 3.93 | 5.23 | ||
t-Bounds Test | Null Hypothesis: No levels of relationship | |||
Test Statistic | Value | Signif. | I(0) | I(1) |
t-statistic | −7.694554 | 10 percent | −3.13 | −4.21 |
5 percent | −3.41 | −4.52 | ||
2.5 percent | −3.65 | −4.79 | ||
1 percent | −3.96 | −5.13 |
Levels Equation | ||||
---|---|---|---|---|
Case 5: Unrestricted Constant and Unrestricted Trend | ||||
Variable | Coefficient | Std. Error | T-Statistic | Prob. |
LAGRICULTURE | 0.201394 | 0.056219 | 3.582300 | 0.0012 |
LSERVICES | 0.241398 | 0.042270 | 5.710910 | 0.0000 |
LINDUSTRY | 0.452878 | 0.033206 | 13.63844 | 0.0000 |
MINERALS | −0.006309 | 0.003174 | −1.987795 | 0.0563 |
LGFC | 0.046366 | 0.022935 | 2.021632 | 0.0525 |
Test Statistic | Value | Df | Probability |
---|---|---|---|
F-statistic | 17.46436 | (3, 29) | 0.0000 |
Chi-square | 52.39307 | 3 | 0.0000 |
Null Hypothesis: C(4) = C(5) = C(6) = 0 | |||
Null Hypothesis Summary: | |||
Normalized Restriction (=0) | Value | Std. Err. | |
C(4) | 0.328671 | 0.046819 | |
C(5) | −0.287031 | 0.071967 | |
C(6) | 0.071553 | 0.053538 | |
Restrictions are linear in coefficients. |
Problem | Test | p-Value |
---|---|---|
Autocorrelation | Breusch–Godfrey LM | 0.4563 |
Heteroskedasticity | Breusch–Pagan–Godfrey | 0.6476 |
Normality | Histogram | 0.415271 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Phiri, J.; Malec, K.; Sakala, A.; Appiah-Kubi, S.N.K.; Činčera, P.; Maitah, M.; Gebeltová, Z.; Otekhile, C.-A. Services as a Determinant of Botswana’s Economic Sustainability. Int. J. Environ. Res. Public Health 2022, 19, 15401. https://doi.org/10.3390/ijerph192215401
Phiri J, Malec K, Sakala A, Appiah-Kubi SNK, Činčera P, Maitah M, Gebeltová Z, Otekhile C-A. Services as a Determinant of Botswana’s Economic Sustainability. International Journal of Environmental Research and Public Health. 2022; 19(22):15401. https://doi.org/10.3390/ijerph192215401
Chicago/Turabian StylePhiri, Joseph, Karel Malec, Aubrey Sakala, Seth Nana Kwame Appiah-Kubi, Pavel Činčera, Mansoor Maitah, Zdeňka Gebeltová, and Cathy-Austin Otekhile. 2022. "Services as a Determinant of Botswana’s Economic Sustainability" International Journal of Environmental Research and Public Health 19, no. 22: 15401. https://doi.org/10.3390/ijerph192215401
APA StylePhiri, J., Malec, K., Sakala, A., Appiah-Kubi, S. N. K., Činčera, P., Maitah, M., Gebeltová, Z., & Otekhile, C. -A. (2022). Services as a Determinant of Botswana’s Economic Sustainability. International Journal of Environmental Research and Public Health, 19(22), 15401. https://doi.org/10.3390/ijerph192215401