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Abstract: The enhancement of the park cooling effect (PCE) is one method used to alleviate the urban
heat island (UHI). The cooling effect is affected by park factors; however, the importance of these
factors in the case of the PCE is still unclear. Optimizing or planning urban parks according to the
importance of the influencing factors can effectively enhance the PCE. Herein, we selected 502 urban
parks in 29 cities in China with three different climatic regions and quantified the PCE based on the
park cooling intensity (PCI) and park cooling area (PCA). Subsequently, the relative importance of
the influencing factors for the PCE was compared to identify the main factors. Consequently, certain
park planning suggestions were proposed to enhance the cooling effect. The results show that: (1) the
PCE increased in the order of arid/semi-arid, semi-humid, and humid regions. (2) The main factors
of the PCI differed significantly in different climatic regions; however, the waterbody within a park
significantly affected the PCI in all three climates. However, for the PCA, park patch characteristics
were the dominant factor, contributing approximately 80% in the three climates regions. (3) In
arid/semi-arid and semi-humid regions, the optimal area proportion of waterbody and vegetation
within the park were approximately 1:2 and 1:1, respectively, and the threshold value of the park
area was 16 ha. In contrast, in the humid region, the addition of a waterbody area within the park, to
the best extent possible, enhanced the PCI, and the threshold value of the park area was 19 ha. The
unique results of this study are expected to function as a guide to future urban park planning on a
regional scale to maximize ecological benefits while mitigating the UHI.

Keywords: urban park; cooling effect; influencing factors; dominance; climatic regions

1. Introduction

With rapid urbanization, a considerable amount of natural surface cover has been
replaced by artificial surfaces, resulting in an increase in temperatures in urban areas
compared to suburbs. This is known as the urban heat island (UHI) effect [1–3]. The
UHI can cause storms and precipitation events [4]; increase energy consumption [5,6];
aggravate air pollution [7,8]; induce heat stroke, and cardiovascular-, cerebrovascular-,
etc., related diseases [9,10]; and affect the livability of the urban areas [11]. However, the
urban population will continue to grow in the future, and it is estimated that by 2050, the
proportion of the global urban population will increase from 55% in 2018 to 68%, and from
2018 to 2050, the global urban population is expected to increase by 2.5 billion, of which
China will increase 255 million [12], which will further aggravate the UHI effect. Thus,
methods to reduce urban temperature and mitigate the UHI remain a crucial problem
during the process of urbanization.

Urban parks, an important component of urban ecosystems, are vital to urban micro-
climate regulation [13]. Natural landscape elements such as vegetation, rivers, and lakes
within parks can reduce the temperature of parks through shading and evapotranspiration.
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Subsequently, through air convection and diffusion, the cold air from parks is blown to
the surrounding areas of parks to achieve regional cooling, which is considered as an
important measure to alleviate the UHI [14,15]. In addition, urban parks also have many
benefits, such as improving urban ventilation and reducing urban pollutant dispersion
and providing leisure and entertainment places [16,17]. However, owing to the “more
people and less land” nature prevalent in China, the alleviation of the UHI by increasing the
number and area of urban parks is not practically feasible without restrictions. A solution
can be the determination of the influencing factors of the park cooling effect (PCE), and
then optimizing existing parks or planning new urban parks considering the importance of
the influencing factors to maximize the PCE, thus effectively mitigating the UHI [18,19].

Research on the PCE has primarily employed qualitative and quantitative methods [18–23].
When exploring the spatial distribution of land surface temperature (LST), certain urban areas
have places with low temperatures, corresponding to ecological infrastructure, such as parks,
rivers, green spaces, and lakes [20]. Based on a qualitative analysis, researchers have used
cooling indicators to quantify the PCE [20–23]. The difference between the temperature of the
green space and that of the surrounding areas of the park is defined as the park cooling
intensity (PCI), and the range of surrounding areas affected by green space is defined as
the park cooling distance [23]. However, the PCE is significantly different in different
cities [21–24]. For example, the average cooling intensity of green spaces in Fuzhou was
determined to be 1.78 ◦C [23]; the cooling intensity of 68 green spaces in Shanghai was
between 0.78 ◦C and 5.20 ◦C, with an average value of 3.02 ◦C [21]; the average PCI and
park cooling area (PCA) of 54 parks in Wuhan were 3.5 ◦C and 131.6 ha, respectively [22];
in Xi’an, the average value of the PCA was 63.62 ha [24]. These conclusions were derived
from previous studies on the PCE in the case of individual cities; however, the national
spatial pattern of the PCE remains unclear [25]. In addition, case studies on the PCE have
been conducted only considering individual cities, where the number and types of urban
parks may be limited [20,26,27]. Therefore, the PCE must be investigated on a larger spatial
scale as large sample studies may provide more general conclusions, which may better
support urban park planning towards the mitigation of the UHI.

The PCE is affected by many factors, such as park patch characteristics, landscape
composition, surrounding environment, and background climate [19,28–31]. The park area
can explain more than 50% of the variation in the PCE in eastern China and is thus usually
identified as the dominant factor [19]. The PCI is typically positively correlated with the
complexity of geometry of parks, and thus the cooling effect of parks with complex shapes
may be more significant [32,33]. Landscape composition within parks is also a crucial
factor of the PCE, and waterbodies within parks are the major contributors to the PCE in
Wuhan [34]. Further, the surrounding environment of the park has also been confirmed to
be related to the PCE. The change in building areas around the park can enhance or weaken
the diffusion of cold air in the park [35]. Moreover, background temperature may also
be an important influence factor of the PCE [24,36]. Compared to the weather conditions
in the case of moderate temperature, parks exhibit a better cooling effect in extreme high
temperature weather conditions [24]. Currently, there is a certain understanding of the
relationship between the PCE and influencing factors [37–39]; these factors have rarely
been studied comparatively. Consequently, the factors that exert a stronger influence on
the impact of the PCE have not been clearly identified. Thus, it is difficult to determine the
priority of planning decisions in urban park planning, particularly when all influencing
factors cannot be considered simultaneously.

The existing research has primarily focused on analyzing the PCE in a single city
and subsequently discussed the relationship between the PCE and influencing factors,
which has a certain guiding role in the case of urban park planning [19,20,40–43]. However,
the number and types of urban parks in a single city may have limitations, and studies
on the PCE based on climatic regions are scarce [19]. Meanwhile, the importance of the
influencing factors of the PCE is still unclear. The identification of the main factors of the
PCE is of great significance for urban park planning. Thus, we selected 502 urban parks in
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29 cities in China to perform a comprehensive analysis. The main aims of this study were:
(1) quantification of the PCE and analysis of the spatial heterogeneity of PCE; (2) exploration
of the relative importance of the influencing factors of the PCE, and subsequent identifica-
tion of the main factors of the PCE based on climate regions; and (3) to propose suggestions
for the optimization or planning of urban parks to alleviate the UHI according to the main
influencing factors of the PCE. The research results hope to enrich the understanding of the
PCE in different climatic regions and assist urban park planning decisions by maximizing
the cooling effect to mitigate the UHI effect.

2. Materials and Methods

A flow chart illustrating the methodology is shown in Figure 1. The specific details of
the materials and methods are illustrated in the subsequent sections.
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2.1. Study Area and Data Source
2.1.1. Study Area

With the rapid urbanization process, the UHI is becoming increasingly severe, par-
ticularly in provincial capital cities with a high degree of urbanization [44,45]. Thus,
urgent measures are required to alleviate the UHI. In this study, 29 cities in China were
selected based on the following four principles: (1) a high degree of urbanization with a
prominent thermal environment problem; (2) relatively complete park infrastructure in the
cities; (3) located in different climatic regions in China and are typical and representative;
(4) availability of remote sensing images of Landsat with little or no cloud cover in the urban
area during the summer months. Of the selected cities, 9, 9, and 11 were in arid/semi-arid,
semi-humid, and humid climates, respectively, according to the Köppen–Geiger climate
classification (Figure 2).
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2.1.2. Data Source

The spatial resolution of the Landsat remote sensing image is 30~120 m, and the high
spatial resolution can be used to study the cooling effect of urban parks [20,46]. Twenty-
eight Landsat images from summer of 2019 or 2020 were obtained from the United States
Geological Survey website (USGS, https://earthexplorer.usgs.gov (accessed on 20 March
2022)) (Table S1). During screening, little or no cloud coverage above the city in the image
was considered a vital requirement. Precipitation data in China were provided by the
National Earth System Science Data Center (http://www.geodata.cn (accessed on 20 June
2022)) [47]. Furthermore, land cover data were maintained by the Global Fine Land Cover
Data Product (GLC_FCS30-2020), which can be obtained from the platform of the Earth Big
Data Science Engineering Data Sharing Service System (https://data.casearth.cn (accessed
on 1 May 2022)) [48]. In this study, land cover data of each city were obtained through
mosaic, cutting, projection, and reclassification pretreatment based on this data. Further
data information is provided in Table S2.

2.2. Urban Parks and Influencing Factors

In this study, urban parks were extracted via artificial visual interpretation using
ArcGIS 10.7 based on high-spatial-resolution Google Earth images. Certain principles were
followed for the urban park selection process: (1) the main types of land cover in park
should be vegetation or waterbody; (2) as the spatial resolution of LST is 30 m, the area of
the selected parks should be greater than 0.09 ha; (3) parks with significant differences in
area and shape should be selected; (4) the selected urban park should share a boundary with
a gray landscape. Based on the above principles, 502 urban parks were selected as research
samples in this study, of which 102, 185, and 215 were in arid/semi-arid, semi-humid, and
humid climates, respectively. Further, details regarding the selected parks are provided in
Supplementary Table S1.

Previous studies have revealed the relationship between the PCE and various influ-
encing factors [18,19,36,41,49]. In this study, 10 influencing factors that have been widely
used in past studies were selected, and no strong correlation existed between any two
influencing factors. These influencing factors can be divided into four categories: park

https://earthexplorer.usgs.gov
http://www.geodata.cn
https://data.casearth.cn
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patch characteristics, waterbody characteristics within parks, surrounding environment
of parks, and surrounding climate of parks. The main factors of the PCE were identified
via the quantification of the contribution rate of the influencing factors. Table 1 lists the
definitions and calculations of the influencing factors.

Table 1. Information on influencing factors on cooling effect of urban parks.

Categories Impact Factors Formula and Range Definition

Park patch characteristics

Park area (PA) ≥0.09 ha The area of an urban park

Landscape shape index (LSI) LSI = P
2
√

A×π LSI > 1
The landscape shape index of an

urban park

Waterbody characteristics
within parks

Water area ratio (WR) PWR = PWA
PA 1 ≥ PWR ≥ 0

The proportion of the waterbody in an
urban park

Waterbody aggregation index
(WAI) WAI =

[
gii

max→gii

]
(100) 100 ≥WAI ≥ 0

Proximity of waterbody patches in an
urban park

Waterbody edge density
(WED) WED = WP

WA × 106 ED ≥ 0
Edge length between heterogeneous
landscape patches on waterbody per

unit area

Surrounding
environment of parks

Buffer_imperious_rate (BIR) BIR = BIA
BA 1 ≥ BIR ≥ 0

The proportion of the impermeable
surface in the 300 m buffer of an

urban park

Buffer_green_rate (BGR) BGR = BGA
BA 1 ≥ BGR ≥ 0

The proportion of the green area in the
300 m buffer of an urban park

Buffer_water_rate (BWR) BWR = BWA
BA 1 ≥ BWR ≥ 0

The proportion of the waterbody area
in the 300 m buffer of an urban park

Surrounding climate
of parks

Background temperature
(BGT) >0 Average land surface temperature in

the 300 m buffer of an urban park

DEM ≥0 Average elevation of an urban park

2.3. Methods
2.3.1. Land Surface Temperature (LST) Retrieval

Previous studies have proven that among the many algorithms for land surface
temperature (LST) retrieval, the radiative transfer equation (RTE) exhibits the highest
accuracy and is the most widely used [23,50]. The principle of the RTE involves the
estimation of the effects of atmosphere on surface heat radiation owing to the total heat
radiation observed by satellite sensors, and then obtaining the surface thermal radiation
intensity. Subsequently, the intensity of thermal radiation can be converted into the land
surface [51]. In this study, RTE was used to retrieve the LST. The most important formulae
involved are:

Lλ = gain×DN + offse (1)

where Lλ is the surface thermal radiance intensity received by the satellite sensors, DN is
the digital number for a given pixel, and gain and offset can be obtained by the header file.

B(TS)
= [Lλ − L ↑ −τ(1− ε)L ↓]/ετ (2)

where B(Ts) is the ground radiance, Ts is the LST, L↓ is the atmospheric downward radiance,
L↑ is the atmospheric upward radiance, τ is the atmospheric transmissivity, and ε is the
given land surface emissivity. L↓, L↑, and τwere acquired after entering the image imaging
date and latitude and longitude from the National Aeronautics and Space Administration
(http://atmcorr.gsfc.nasa.gov (accessed on 20 March 2022)). Further, τ can be estimated
based on the land-use classification [40].

Consequently, the LST can be calculated using Equation (3)

Ts = K2/ ln
(

K1/B(TS)
+ 1
)

(3)

http://atmcorr.gsfc.nasa.gov
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where for Landsat-7, K1 = 666.09 W/(m2·sr·µm), K2 = 1282.71 W/(m2·sr·µm).
For Landsat-8 TIRS band 10, K1 = 774.89 W/(m2·sr·µm), K2 = 1321.08 W/(m2·sr·µm).
To assess the LST retrieval accuracy, we compared the air temperature from weather

stations in 29 cities with the retrieved land surface temperature [52], which found that the
change trend of the air temperature data basically aligned with the LST. In addition, the
land surface temperature in cities was usually higher than the air temperature, which is
consistent with the actual situation (Figure S1). Thus, the retrieved land surface temperature
can be used in this study.

2.3.2. Calculation of Park Cooling Effect (PCE)

A MultipleRing buffer analysis has been widely used to quantify the PCE in previous
studies [19,20,22]. According to the 30 m resolution of Landsat images, 10 buffer rings with
a width of 30 m were established from each park boundary [20]. Further, the distance from
the park boundary to the buffer ring was set as the independent variable r, and the average
LST in each buffer ring was set as the dependent variable T. Previous studies showed that
the cubic polynomial was the most suitable for describing the relationship. In this study,
the relationship of T(r) was established as follows:

T(r) = ar3 + Br2 + cr + d (4)

According to the Law of Diminishing Marginal Utility [53], with an increase in the
distance from the park boundary, the LST in the buffer ring increases; however, the rate of
increase continually decreases until it becomes 0. When the increase is 0, the first derivative
of the T(r) function is 0, which is referred to as the first turning point. The distance from the
park boundary to the first turning point is defined as the park cooling distance (Figure 3).
Within this distance, the park is considered to have the cooling effect, beyond which the
park no longer has cooling effect. In this study, first, the location of the first turning point
of the PCE was identified using the T(r) function. Subsequently, the park cooling intensity
(PCI) and park cooling area (PCA) were selected to quantify the PCE [19,20]. The PCI
was defined as the temperature difference between the first turning point and the average
temperature inside the park. Further, the PCA was defined as the area of the surrounding
area affected by the PCE. After determining the first turning point position of the T(r)
function curve to obtain the park cooling distance, the buffer with the park cooling distance
was established as a buffer distance for each park by using the buffer analysis tool in ArcGIS
10.7. Thereafter, the buffer area was calculated to obtain the PCA.
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2.3.3. Dominance Analysis

The dominance analysis (DA) method can better estimate the relative importance of
related independent variables and is one of the successful methods currently used [54].
This is because it yields more accurate and reliable estimation results, while being better
suited to the actual situation. In this study, the DA was used to quantify the contribution of
influencing factors to the PCE, explore the importance of influencing factors, and identify
the main factors of the PCE. When using k for the number of explanatory variables in
the model, the original model corresponded to 2k − 1 subset models. First, using a
dominance analysis, all subset models were regressed, and the total variance of the linear
regression model was decomposed and assigned to each explanatory variable to calculate
the relative contribution of each variable. Consequently, the mean value was used as
the final contribution rate of the explanatory variables. Subsequently, the explanatory
variables were ranked according to the final contribution to determine the importance
of the explanatory variables and to identify the main factors [55,56]. Furthermore, the
dominance analysis can only determine the importance of each explanatory variable; thus,
correlation and regression analyses were also used to explore the relationship between the
PCE and the main factors.

3. Results
3.1. Spatial Heterogeneity of Park Cooling Effect (PCE)

The PCE showed that the LST in the park was lower than the LST in the surrounding
area of the park, thereby forming an obvious “cold spot” in the local urban thermal
environment. To quantify the PCE using the PCI and PCA, the results showed that the PCE
exhibited obvious spatial heterogeneity (Table S3). The mean cooling intensity of 502 urban
parks was 3.44 ◦C, with values ranging within 0.22–8.54 ◦C. Donghu Park in Jiayuguan had
the greatest cooling intensity of 8.54 ◦C; the PCE also affected the surrounding areas of the
park. Further, the PCA averaged at 39.8 ha, ranging within 3.11–203.13 ha. Forest Plant
Park in Harbin and Vanke Community Park in Shenyang (cooling effect on the 3.11 ha area
around the park) yielded the greatest and smallest PCA, respectively.

The cooling effect of urban parks in different climatic regions was different. Specifically,
in the humid region, the PCE was relatively high, with the average PCI and PCA of 3.58 ◦C
and 44.38 ha, respectively, whereas the PCE (3.22 ◦C and 32.65 ha) in arid/semi-arid regions
was significantly lower (Figure 4). Owing to the difference in the number and area of
parks in each city, the cities could be ranked directly in terms of the PCE values. However,
the PCE in Shenzhen (4.64 ◦C, 52.35 ha), Nanchang (3.47 ◦C, 44.49 ha), Shanghai (3.05 ◦C,
45.82 ha), etc., was significantly higher than that in Hohhot (2.83 ◦C, 33.97 ha), Ordos
(2.29 ◦C, 25.5 ha), Jiuquan (2.88 ◦C, 28.32 ha), etc. Overall, the parks in cities in the southeast
exhibited a more significant cooling effect than those in cities in the northwest on a national
scale (Figure 5).
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3.2. Dominance of Influencing Factors on Park Cooling Intensity (PCI)

Figure 6 shows the contribution rate of the influencing factors to the PCI with three
climatic regions. In arid/semi-arid regions, the waterbody characteristics within parks and
the surrounding environment of parks were found to be the main influencing factors of
the PCI, with a total contribution rate of 78.02%. The contribution rate of the waterbody
characteristics within parks was 41.82% (dominant factor of the PCI), of which the contri-
bution rate of waterbody area ratio (WR) and waterbody aggregation index (WAI) were
16.88 and 15.26%; the importance ranked first and fourth among all factors, respectively.
The contribution rate of the surrounding environment of parks was 36.2%, of which the
contribution rates of the buffer_green_rate (BGR) and buffer_imperious_rate (BIR) were
15.66% and 15.27%, respectively. These were inferior only to the WR and background
temperature (BGT), and they were also key factors of the PCI. The importance of park area
(PA) and landscape shape index (LSI) to the PCI was far less than the other influencing
factors, owing to a contribution rate of only 3.09% and 2.62%, and thereby ranking eighth
and ninth among all factors.

In semi-humid regions, waterbody characteristics within parks and the surrounding
climate of parks were the main influencing factors of the PCI, with a total contribution
rate of 81.31%. In contrast to arid/semi-arid regions, the importance of the surrounding
environment of parks to the PCI decreased significantly. The park surrounding climate
became the dominant factor of the PCI, with the contribution rate of 42.94%, of which
the contribution rate of the BGT was 37.66%, and the importance ranked first among all
factors. The contribution rate of the waterbody within parks was 38.37%, of which the
contribution rates of the WR and waterbody edge density (WED) were 18.63% and 11.71%.
They ranked second and third among all factors, and they were only inferior to the BGT. The
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remaining factors were less important to the PCI, with the contribution rate not exceeding
10% (Figure 6).
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In humid regions, the contribution rate of the waterbody characteristics within parks,
surrounding climate of parks, and park patch characteristics all exceeded 20%, which were
the main influencing factors of the PCI, with a total contribution rate of 91.99%. Among
them, the contribution rate of the surrounding climate of parks was 37.28%, which was
the dominant factor of the PCI, of which the contribution rate of the BGT was 34.02%,
thus ranking first among all the factors. Further, the contribution rate of waterbody
characteristics within parks was 33.13%, of which the contribution rate of the WR was
22.16%, which is second only to the BGT. In contrast to the other climatic regions, in the
humid region, the contribution rate of park patches was 21.58%, of which the contribution
rates of the PA and LSI were 11.18% and 10.4%, respectively, thereby ranking as third and
fourth among all factors (also important factors of the PCI) (Figure 6).

3.3. Dominance of Influencing Factors on Park Cooling Area (PCA)

As shown in Figure 7, park patch characteristics were the dominant factor of the PCA
in the three climatic regions, and the contribution rate was approximately 80%. However,
the importance of the PA and LSI in park patch characteristics to the PCA differed under
different climate regions. In arid/semi-arid and semi-humid regions, the PA was the
dominant factor of the PCA, with a contribution rate of 60.28% and 54.63%, respectively,
ranking the first among all factors. However, the contribution rates of the LSI were 17.42%
and 24.13%, second only to the PA. However, in the humid region, the PA and LSI were
almost equally important to the PCA, with the contribution rates of 38.64% and 40.13%,
respectively, (contribution rate of the LSI was slightly higher than that of the PA, which
was the dominant factor of the PCA). The remaining factors were not important to the PCA,
and the contribution rate did not exceed 10% in the three climate regions (Figure 7). The
PA and LSI were significantly positively correlated with the PCA (Table S4), implying that
increasing the park area and the complexity of the park boundary shape were effective
measures to increasing the PCA in three different climatic regions.
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Figure 7. Contribution rate of influencing factors of park cooling area: (a) is the total contribution rate
of the four categories, (b) is the individual contribution rate of 10 impact factors, [] is the importance
ranking of impact factors.

4. Discussion
4.1. Impact of Buffer Range on Park Cooling Effect

The buffer zones analysis method was usually used to quantify the PCE in previous
studies. However, the size of the buffer zone may affect the quantification of the PCE.
Previous studies have used different sizes of buffer zone, such as 300, 500, 900, 990, and
1200 m, which were usually divided into approximately a 10~40 buffer ring with a width
of 30 m to form the temperature curve [19,20,22,26,57]. Further, certain studies have used
buffer widths based on the length of the park radius [58]. However, two questions entail
further discussion. Does the size of the buffer zone affect the quantization of the PCE? If
yes, then what size buffer should be used to quantify the PCE?

In this study, we used a buffer zone of 300 m width to quantify the PCE. In the early
stage of data processing, certain parks were randomly selected from a sample of 502 urban
parks and analyzed for the PCE using the 300, 600, and 900 m buffer width. As shown in
Figure 8, the size of the buffer zone directly affects the quantification of the PCE. On the
one hand, from the perspective of mathematical statistics, the larger the buffer width, the
poorer the statistical description (R2) of the distance–temperature curve fitting relationship.
When the buffer zone width was 300 m, the correlation coefficient (R2) of the fitted curve
was the best [20]. On the other hand, from the perspective of the description of the PCE,
considering outskirts from the boundary of the park, the LST gradually increased with the
increase in the distance from the park; however, the increase rate decreased until it tended
to 0 along the further distance. Thus, the increase of 0 was referred to as the first turning
point in previous studies. Consequently, the accurate identification of the location of the
first turning point is crucial to quantify the PCE. According to mathematical knowledge,
the point must be close to the temperature turning interval in the fitting curve. The position
of the first turning point identified by the 300 m buffer zone was within or closer to the
temperature turning interval (between the two red points in Figure 8), while that of the first
turning point identified by the 600 and 900 m buffer was further away from this interval.
Therefore, we deem that the optimal buffer zone width of quantifying the PCE is 300 m and
using 600 and 900 m buffers will expand the park cooling distance, thus overestimating the
PCA and increasing the uncertainty of the PCI.
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4.2. Park Cooling Effect and Main Influencing Factors

The cooling effect of urban parks reduces the temperature inside the park and in a
certain area around the park, which is considered to be an important measure to alleviate
the UHI. At present, the PCE been extensively studied from an urban perspective. However,
studies on the cooling effect of urban parks in different climatic regions are scarce. Based on
the PCE across different climatic regions, those in arid/semi-arid regions were found to be
significantly lower from those of other climates, which is consistent with previous research
results [19,25]. From a nationwide perspective, the urban parks in the southeast China
generally exhibited a more significant cooling effect than those in the northwest China.
This may be attributed to the relatively imperfect nature of the urban park facilities, small
park area, and limited vegetation coverage and waterbody area within parks in northwest
China, which results in an overall low PCE [25].

By studying the importance of influencing factors, the factors exerting a greater
influence on the PCE can be identified. Consequently, optimizing the existing parks or
planning new parks according to the importance of influencing factors can aid in obtaining
more significant cooling effects [18]. The study found that, in the arid/semi-arid regions,
waterbodies within parks were the dominant factor of the PCI. Whereas, in the semi-humid
and humid regions, the surrounding climate of parks was the dominant factor of the PCI,
with waterbodies within parks ranking second among all factors. These are similar to the
previous research conclusion in Wuhan, where they considered that the waterbody is the
most important factor of the PCI [34]. However, Geng et al. (2022) found that the park area
was the dominant influencing factor of the PCE, accounting for more than 50% of the PCI
variation [19]. We concluded that there may be two reasons for the difference in results.
(1) The study area of Geng et al. (2022) is in the east of China, which is part of the humid
region of this study. Thus, differences in the selection of study areas and park samples may
lead to differences in study results. (2) Geng et al. (2022) selected urban parks whose areas
were mainly less than 5 ha, and parks with small areas were less likely to have waterbodies,
which may result in the park area being the dominant factor of the PCI (Figure S2). In this
study, the importance of the park area to the PCI ranked third among all factors in the
humid region, being inferior to only the WR and BGT. In addition, after selecting the urban
parks without waterbodies, the dominance analysis of the influencing factors of the PCI
was conducted again. The results showed that the park area was the dominant factor of
the PCI, with a contribution rate of 59.25% (Table S5). Meanwhile, the results of the PCE
study based on climate region were different from those of previous single city research,
which is very necessary for enriching the understanding of the PCE and guiding urban
park planning.

The importance of influencing factors of the PCE differed in the different climate
regions [19,25]. Waterbodies within urban parks played a more significant role in the PCE
in arid/semi-arid regions. However, from arid/semi-arid, semi-humid to humid regions,
the importance of the WR on the PCI gradually increased, contrary to the trend of the total
contribution rate of waterbody characteristics within parks. This indicates that the WAI
and WED are also important factors for the PCI in arid/semi-arid regions. In addition, in
arid/semi-arid regions, the importance of the surrounding environment of parks to the PCI
was second only to the waterbody within parks, and far exceeded that of the semi-humid
and humid regions. Therefore, adjusting the surrounding environment of parks is also an
effective measure to enhance the PCI in arid/semi-arid regions. Park patch characteristics
were more important for the PCI in the humid region, by optimizing the existing parks
or planning new parks according to the importance of influencing factors to the PCI in
different climatic regions, which could effectively increase the PCI. However, for the PCA,
the park patch characteristics were the dominant factor, and the importance was the same
in different climatic regions. However, from arid/semi-arid, semi-humid to humid regions,
the importance of the PA to the PCA decreased gradually, while that of the LSI to the PCA
increased significantly. Even in the humid regions, the contribution rate of the LSI was
40.13%, which exceeded the PA, and was thus the dominant factor of the PCA. To clarify
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the importance of factors influencing the PCE in different climate regions, which is of great
significance to the planning of urban parks, urban planners should assign higher priority
to factors that have a more important impact on the PCE, and thus maximize the PCE to
fully mitigate the UHI.

4.3. Implications for Urban Park Planning
4.3.1. The Optimal Proportion of Waterbody and Vegetation Area within Parks

In the arid/semi-arid regions, the WR is the most important factor for the PCI. Whereas,
in the semi-humid and humid regions, although the BGT is the dominant factor for the
PCI, the enhancement of the PCE to alleviate the UHI by improving the BGT is not feasible.
Following the BGT, the WR is the most important factor for the PCI. Thus, increasing
waterbodies within parks is an effective measure to enhance the PCI; however, a larger
waterbody area in the park does not imply that it is better [59]. As shown in Figure 9, in
arid/semi-arid and semi-humid regions, when the proportion of waterbody and vegetation
area within the park is approximately 1:2 and 1:1, respectively, the PCI is the largest. If the
area of the waterbody continues to increase at this time, the PCI will remain stable or even
decline. In the humid region, the proportion of waterbody and vegetation area within a
park is approximately linear to the PCI (Figure 9). Theoretically, when planning urban parks
in humid areas, the waterbody area within a park can be increased to the best extent possible
to enhance the PCI. In addition, waterbodies within a park should avoid dispersion, and the
shape of the water boundary should be as complex as possible (Table S4).
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4.3.2. Threshold Value of Park Area

Park patch characteristics are the dominant factors of the PCA. Increasing the park
area and the complexity of the park boundary shape are effective measures to increase the
PCA (Table S4). However, the PCA exhibits a nonlinear increase with the increase in the
park area. This nonlinear relationship makes the park area possibly have a critical value,
which was defined as the threshold value of the park area in previous studies [19,49]. As
shown in Figure 10, in arid/semi-arid and semi-humid regions, the threshold value of the
urban park area is approximately 16 ha, whereas in humid regions, it is approximately
19 ha. When the park area changes within the threshold value, the impact of the park area
on the PCA is significant; once the park area increases above the threshold value, the impact
of the park area change on the PCA gradually weakens [27,60]. Thus, building urban parks
with a corresponding area size and complex boundary shape in different climate regions
can help increase the PCA, serve more urban residents, and achieve the optimal value from
the perspective of cost effectiveness.
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4.4. Limitations and Future Research Directions

In this study, we quantified the cooling effect of urban parks, and used the dominance
analysis to study the relative importance of influencing factors of the PCE based on climate
region. The study results can provide guidance for the planning and designing of urban
parks to enhance the cooling effect to alleviate the UHI. However, this study also has
certain limitations. First, a total of 28 remote sensing images of Landsat were used for LST
retrieval in this study. The application of multi-temporal remote sensing images may affect
the consistency of the LST for different urban parks, and thus may impact the results to a
certain extent [19]. Second, the influencing factors of the PCE were not fully considered. For
example, there are a few impervious surfaces within parks, such as roads and rest places;
however, it was difficult to identify them in this study [21,26]. Further, humidity, wind
speed, etc., may also affect the PCE [26,61]; however, these factors were not considered in
this study. Third, this study only focused on the cooling effect of urban parks during the
daytime in summer. The PCE should not be studied only in one season, and the diurnal
variation and seasonal comparison will be the next research direction [62,63].

5. Conclusions

Exploring the importance of influencing factors on the PCE in different climate regions
can provide guidance for urban planning. Optimizing the existing parks or planning
new parks according to the importance of influencing factors to the PCE will maximize
the cooling effect to mitigate the UHI. Our findings suggest that the PCE increased from
arid/semi-arid, semi-humid to humid regions. For the PCI, in arid/semi-arid regions,
waterbodies within parks and the surrounding environment of parks were the main factors;
in the semi-humid region, they were waterbodies within parks and the surrounding climate;
and finally in the humid region, the waterbody within parks, surrounding environment, and
surrounding climate of parks were the main factors. For the PCA, park patch characteristics
were the dominant factors, with a contribution rate of approximately 80% in each climatic
region. Waterbodies within parks and the surrounding environment of parks are crucial
to the PCE in arid/semi-arid regions; however, the park patch characteristics are more
important in the humid regions. The addition of waterbodies within parks is an effective
measure to enhance the PCI. However, the optimal area proportions of waterbody and
vegetation within parks are approximately 1:2 and 1:1, respectively, in arid/semi-arid and
semi-humid regions. Thus, the maximum possible waterbody area within parks can be
added to enhance the PCI in the humid region. Increasing the park area can increase the
PCA. The threshold park area value was 16 ha in arid/semi-arid and semi-humid regions,
and 19 ha in humid regions. Furthermore, increasing the complexity of the park boundary
shape can also increase the PCA, particularly in the humid region. Thus, these findings
are expected to provide guidance for urban park planning and management for different
climate regions to a certain extent to mitigate the UHI.
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UHI Urban heat island
PCI Park cooling intensity
PA Park area
WR Water area ratio
WED Waterbody edge density
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PCE Park cooling effect
PCA Park cooling area
LSI Landscape shape index
WAI Waterbody aggregation index
BIR Buffer_imperious_rate
BWR Buffer_water_rate
LST Land surface temperature
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