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Abstract: This study investigated the photolysis and TiO2-assisted photosensitized degradation
of oxytetracycline (OTC) under visible light, the active reactive oxygen species (ROS), and the
degradation mechanisms in these two reactions. The results show that the deprotonated OTC could
be photolyzed more easily under visible light because of the redshift of its absorption spectrum at
high pH values. Due to the TiO2-assisted self-photosensitized degradation of OTC, OTC removal
in the visible light/TiO2 system was more efficient with the addition of TiO2, as demonstrated
when TiO2 was replaced with insulator SiO2. The study’s ROS scavenging experiments show that
superoxide radical anion (O2

•−) ROS was most responsible for the self-sensitized degradation of
OTC in both reactions. OTC degradation under the visible light/TiO2 system was enhanced with
increasing TiO2 load, while the elimination of total organic carbon (TOC) was very limited after 5 h of
visible light irradiation. Based on the eight identified transformation products found, five potential
reaction mechanisms, including hydroxylation, quinonization, decarbonylation, de-methylation,
and dehydration, were proposed for the photolytic and TiO2-assisted photosensitized degradation
mechanisms of OTC under visible light. This study indicates that OTC can degrade under visible
light with or without a semiconductor when conditions are suitable.

Keywords: oxytetracycline; photolysis; photosensitization; visible light; reactive oxygen species;
transformation product

1. Introduction

Since the late 1990s, pharmaceuticals and personal care products (PPCPs) have been
recognized as emerging contaminants (ECs) which are an increasing environmental issue of
global concern [1,2]. Oxytetracycline (OTC), a commonly used broad-spectrum antibiotic,
has been detected frequently in different aquatic environments worldwide, such as sewage,
river water, lake water, seawater and groundwater, due to its extensive use in human
and animal disease treatment and livestock growth promotion [3–5]. Its occurrence in the
environment may induce drug-resistant bacteria development and antibiotic resistance
genes (ARGs), which could adversely impact human health and ecosystem stability [6–10].
Therefore, OTC pollution and its removal in contaminated waters have recently received
special attention and scientific interest.

Similar to other organic sensitizers, such as dyes, OTC is a confirmed photosensi-
tizer that may undergo self-photosensitization and self-decompose under suitable condi-
tions [11–13]. It can be removed via photolysis under (simulated) solar light irradiation in
water through direct photolytic degradation and self- photosensitized degradation [14–16].
The photolysis of OTC may generate reactive oxygen species (ROS), such as singlet oxygen
(1O2), superoxide radical anions (O2

•−), hydrogen peroxide (H2O2), and hydroxyl radicals
(HO•), but their role in the self-photosensitized degradation of OTC is inconsistent in the
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published literature [17–19]. Zhao et al. [12] concluded that under simulated solar light ir-
radiation, the OTC photolytic mechanism comprised direct degradation and 1O2 oxidation
at pH 8.5 and pH 11.0, while only direct degradation was responsible for OTC photolysis
at pH 5.5. Chen et al. [17] detected H2O2 formed through O2

•− dismutation and 1O2 in the
photolysis of structurally similar tetracycline (TC) under simulated sunlight, although O2

•−

was not observed. However, Niu et al. [20] did not find 1O2 in irradiated TC under different
light wavelengths, but the existence of O2

•− and its mediated self-sensitized oxidation
were verified, indicating reactivity between TC and O2

•−. Therefore, the species of ROS
(e.g., 1O2 and O2

•−) that contribute to OTC or TC self-photosensitized degradation under
solar light is still contended. To our knowledge, there are no studies on the identification of
ROS in OTC photolysis under visible light and its photolytic mechanism.

Compared to photolysis, OTC degradation efficiency under simulated sunlight ir-
radiation was enhanced in the presence of commercial TiO2 (P25) [21–23]. A similar
phenomenon was also observed in OTC photocatalytic degradation with an NF-TiO2
film under visible/solar light. Probable reaction pathways proposed included direct
photolysis, UV/vis light-induced photocatalytic oxidation and reduction and visible light-
induced self-sensitized oxidation and reduction [12,24]. However, visible light-induced
self-photosensitized degradation and its contribution to OTC removal cannot be confirmed
because the band gap value of the NF-TiO2 used was 2.85 eV, which can be activated under
visible light to produce electrons [12]. In OTC photocatalytic degradation with P25 under
simulated solar light, TiO2 can be excited by the UV spectrum. Therefore, its role in OTC
degradation under only visible light cannot be verified. To demonstrate the feasibility
of visible light-induced self-photosensitized OTC degradation, semiconductors with no
visible light activity and visible light above 400 nm should be used simultaneously. The
current literature on OTC photodegradation using TiO2 under visible light irradiation is
very limited.

The main objective of this work was to investigate the photolysis and TiO2-assisted
photosensitized degradation of OTC under visible light. The photolytic and photosensi-
tized degradation efficiencies of OTC at different pH values were evaluated. The ROS that
most contributed to OTC destruction in these two reactions was also identified. In addition,
the effect of TiO2 loading on OTC removal and the mineralization of OTC in the visible
light/TiO2 system were explored. Finally, the photolytic and TiO2-assisted photosensitized
degradation mechanisms of OTC were studied based on the detected transformation prod-
ucts. This work can provide insightful information on the visible light-induced photolysis
and photosensitized OTC degradation through the identification of active ROS and the
detailed reaction mechanisms.

2. Materials and Methods
2.1. Materials

Oxytetracycline hydrochloride (C22H24N2O9·HCl, >95%) was obtained from Aladdin
(China) and used without further purification. Commercial TiO2 with a BET surface area
of 50 m2 g−1 and an average particle diameter of 30 nm was purchased from Rhawn
(Shanghai, China). Silicon dioxide (SiO2) nanopowder (particle size 10–20 nm) and catalase
were purchased from Rhawn (Shanghai, China). Sodium azide (NaN3), p-benzoquinone
(C6H4O2) and tert-butanol (t-BuOH) were obtained from Kelong (Chengdu, China) and
used as received. All aqueous solutions were prepared with ultrapure water (18 MΩ · cm).

2.2. Analysis

A high-performance liquid chromatograph (HPLC, Shimadzu LC-2030 Plus, Tokyo,
Japan) equipped with a photodiode array detector (PDA) was used to quantify the con-
centration of OTC. Detailed measurement information was referenced in previous work
by Liu et al. (2016) [25]. The transformation byproducts were detected and identified
by an ultra-performance liquid chromatograph coupled with a quadrupole time-of-flight
mass spectrometer (UPLC-QTOF/MS, Waters Xevo G2-XS QT, Framingham, MA, USA).
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A sample volume of 5 µL was injected into a C18 column (2.1 × 50 mm, 1.7 µm). Mobile
phase A was a 0.1% formic acid water solution, and mobile phase B was a 0.1% formic
acid acetonitrile solution. Gradient elution was programmed as follows: 5% B linearly
increased to 90% in the initial 5 min, maintained for 1 min, and dropped to 5% B in the
next 0.1 min. The flow rate was 0.2 mL min−1, and the column temperature was 30 ◦C.
Data were analyzed using Masslynx 4.1 software (Waters). Total organic carbon (TOC) was
measured using a VCSH-ASI TOC analyzer (Shimadzu, Tokyo, Japan).

2.3. Photochemical Experiments

Irradiation experiments were carried out in a bench-scale photochemical apparatus
housing two 15 W fluorescent lamps (Philips, Amsterdam, The Netherlands) mounted
with a UV block filter (UV420) for simulating visible light. Light below 420 nm was
effectively eliminated by the UV block filter. The average visible light intensity measured
1.3 mW cm−2 using a radiant power meter (Lutron Corp., Coopersburg, PA, USA). A typical
experiment can be described as follows: 10 mL of reaction solution was added to the reactor
(borosilicate glass Petri dish), sealed with a quartz cover (60 mm (ø) × 15 mm (h)) to
avoid solution evaporation, and then placed in the apparatus under continuous stirring.
The initial concentrations of OTC and TiO2 were 10 mg L−1 and 0.5 g L−1 unless noted
otherwise. All the reaction solutions were adjusted to the designated pH using a 50 mM
phosphate buffer. For the degradation experiments, the irradiated solution (0.2 mL) was
sampled after 0, 1, 2, 3, 4, and 5 h, mixed with 0.2 mL of methanol, and filtered with
a 0.2 µm syringeless filter before HPLC analysis. For the transformation byproducts and
mechanism study using a UPLC-QTOF/MS, at a given time, a 0.2 mL sample was taken
without adding methanol and analyzed immediately after filtration. All experiments were
conducted in triplicate at room temperature (25 ± 1 ◦C) except for the investigation for
mechanisms. Error bars in the figures represent the standard mean error.

3. Results
3.1. Photolysis and TiO2-Assisted Photosensitized Degradation of OTC under Visible Light

OTC has four existing forms in the whole pH range due to its pKa values of 3.57, 7.49,
and 9.88 [21]. This study chose to investigate photolysis and TiO2-assisted photosensitized
OTC degradation under visible light irradiation at pH 2.0, 5.7, 8.6, and 11.5. These pH
values were chosen because they respectively represent the OTC species H3OTC+, H2OTC,
HOTC−, and OTC2. As shown in Figure 1a, OTC could not be photolyzed under visible
light irradiation at pH 2.0 and its degradation rate was enhanced with increasing pH. OTC
photolysis under visible light at pH 8.6 and 11.5, i.e., deprotonated OTC, and occurred
more easily than that for protonated OTC. This could be caused by redshift in the OTC
absorption spectrum with increasing pH [25].

With the addition of TiO2, OTC removal increased at four different pH values under
the study conditions, as shown in Figure 1b. The TiO2 in this study was obtained directly
from Evonik Degussa and used as received; therefore, it could not be activated under
visible light irradiation. The improvement effect was thus ascribed to self-photosensitized
OTC degradation with TiO2 assistance. The adsorbed OTC on the surface of TiO2 could be
excited to a singlet state and readily transferred to a triplet state (OTC*) through intersystem
crossing under visible light irradiation. The generated OTC* might inject an electron to
the conduction band of TiO2 for capture by free molecular oxygen to produce ROS, such
as O2

•−, H2O2 and HO•, resulting in OTC degradation. This is presented in Equations
(1)–(6) [12]. To confirm the role of TiO2 in photosensitized OTC degradation under visible
light at pH 5.7 and 8.6, the semiconductor TiO2 was replaced with the electric insulator
silicon dioxide (SiO2). The results in Figure 2 show the removal of OTC in the visible
light/SiO2 system was significantly inhibited, comparable with OTC photolysis under
visible light at both pH values. Because the electrons produced from OTC* could not be
transferred to the SiO2 insulator, ROS might not be generated in the visible light/SiO2
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system. This result indicates the importance of TiO2 on the degradation of OTC in the
visible light/TiO2 system.

OTC + hv (> 420 nm)→ OTC∗ (1)

OTC∗ + TiO2 → OTC+• + TiO2
(
e−

)
(2)

e− + O2 → O2
•− (3)

O2
•− + H+ → HO2

• (4)

2HO2
• → H2O2 + O2 (5)

e− + H2O2 → OH− + HO• (6)
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OTC degradation efficiency in the visible light/TiO2 system at pH 8.6 was higher than
that at pH 11.5 (Figure 1b), perhaps due to the better adsorption performance of OTC on
TiO2 at pH 8.6, as shown in Figure 3. The point of zero charge (PZC) of the TiO2 used in
this study is 6.9 [26]. As a result, the surface of TiO2 was positively charged at pH 2.0 and
5.7 but negatively charged at pH 8.6 and 11.5. OTC existed as protonated and deprotonated
forms at pH 2.0 and 11.5, respectively, leading to electrostatic repulsion between OTC and
TiO2 at these two pH values and consequently inhibiting OTC adsorption on TiO2. OTC
adsorption at pH 8.6 was higher than that at pH 11.5, probably due to weaker electrostatic
repulsion between TiO2 and OTC existing mainly as HOTC− at pH 8.6 (Figure 3).
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Figure 3. OTC adsorption on TiO2 at different pH values. Experimental conditions:
[OTC]0 = 10 mg L−1, [TiO2]0 = 0.5 g L−1, 50 mM phosphate buffer.

3.2. Identification of Reactive Oxygen Species
3.2.1. Photolysis Process

The photolysis of OTC under visible light irradiation included two different pathways,
direct photolytic degradation and indirect self-photosensitized degradation. To identify the
ROS dominantly responsible for the self-sensitized OTC degradation during photolysis
under the study’s visible light irradiation conditions, different ROS scavengers were added
to the reaction solutions. As shown in Figure 4, NaN3, p-benzoquinone, catalase, and
t-BuOH are respective scavengers of 1O2, O2

•−, H2O2, and HO•. With the addition of
p-benzoquinone, the OTC degradation was slightly inhibited at pH 8.6 but significantly
depressed at pH 11.5. Visible light OTC decomposition in the presence of the other ROS
scavengers was similar to OTC photolysis at both pH values. These results indicated
that O2

•− was generated and that OTC photolysis mainly involved direct degradation
and O2

•−-induced self-sensitized degradation under the study’s visible light irradiation
conditions. Niu et al. [17] came to the same conclusion.

3.2.2. TiO2-Assisted Photosensitized Degradation Process

In OTC TiO2-assisted photodegradation under visible light, both direct photolysis and
ROS-mediated oxidation contributed to OTC removal. To clarify the species of ROS and
their contribution to OTC degradation, four different ROS scavengers were added to the
visible light/TiO2 system at pH 8.6. The results are presented in Figure 5. OTC destruction
was obviously inhibited by adding p-benzoquinone, as indicated by the presence of O2

•−

and its reactivity with OTC, which were also demonstrated in OTC photolysis. With the
individual addition of catalase and t-BuOH, the OTC removal was slightly depressed.
This indicates the generation of H2O2 through O2

•− dismutation and HO• from formed
H2O2 dissociation, as shown in Equations (4)–(6). The presence of NaN3 hardly affected
OTC degradation, revealing that the role of 1O2 in OTC decomposition could be negligible
in the current study. Zhao et al. [12] observed similar results while confirming the OTC
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photocatalytic degradation mechanism with NF-TiO2 film under visible/solar light at pH
5.5 and 8.5. However, they did not investigate the contribution of O2

•− to OTC degradation.
Based on our experiments, we could conclude that the ROS O2

•− was most responsible for
indirect self-sensitized OTC degradation under the visible light/TiO2 system.
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BuOH]0 = 10 mM, [p-benzoquinone]0 = 5 mM, [catalase]0 = 12 unit L−1, 50 mM phosphate buffer. 
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engers under visible light irradiation at pH 8.6. Experimental conditions: [OTC]0 = 10 mg L−1,
[NaN3]0 = 5 mM, [t-BuOH]0 = 10 mM, [p-benzoquinone]0 = 5 mM, [catalase]0 = 12 unit L−1, 50 mM
phosphate buffer.

3.3. Effect of TiO2 Load on the Photosensitized Degradation of OTC

Determining the semiconductor dosage for photosensitized OTC degradation in the
visible light/TiO2 system is important for two reasons. First, low TiO2 load may influence
the removal efficiency of OTC. Second, high TiO2 load may interfere with the light absorp-
tion of OTC and increase the operation cost. To optimize the TiO2 load, OTC destruction
was investigated using different TiO2 dosages (0.2, 0.5, 1.0, and 2.0 g L−1) under visible
light at pH 5.7 and 8.6. As shown in Figure 6, OTC degradation increased with larger TiO2
doses at both pH values. The increased TiO2 load might improve OTC adsorption to its
surface by exciting the state of OTC electrons and subsequently increasing the formation of
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ROS. An adverse effect of high TiO2 dosage was not observed in this study, indicating 2.0 g
L−1 of TiO2 load was not excessive under the study’s conditions.
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3.4. Mineralization of OTC

This study also investigated the mineralization of OTC in the visible light/TiO2 system
at pH 8.6. The reaction solution’s change in TOC was used to reflect the mineralization
efficiency of OTC. As shown in Figure 7, although OTC could be rapidly degraded, it
could hardly be mineralized, and only approximately 4% TOC was removed after 5 h of
visible light irradiation. This result indicates that in the presence of TiO2 under visible light,
OTC may be transformed to intermediates but not CO2 and H2O in its photosensitized
degradation process, as demonstrated in the following section. The previous works also
found that OTC was difficult to mineralize in UV/H2O2 and UV/S2O8

2− systems after 10 h
UV irradiation with approximately 9.5% and 15.7% TOC eliminated, respectively [27,28]. It
can be concluded that OTC was not easily completely mineralized because of its complex,
stable molecular structure. More work is needed to increase the mineralization efficiency
of OTC.
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3.5. Identification of Transformation Products and Reaction Pathways

Eight transformation OTC products were detected and identified in both photolysis
and TiO2-assisted photosensitized degradation with visible light irradiation at pH 8.6. Their
evolutions and reaction times are shown in Figure 8a,b. Although the speciation of these
detected products was the same in both reaction systems, the apparent faster generation and
further degradation of these products under visible light/TiO2 again indicates that radical
reaction significantly contributes to OTC removal as discussed in Section 3.2.2. Given
the transformation products identified, Figure 9 presents five different probable reaction
pathways for photolytic and TiO2-assisted photosensitized OTC degradation under visible
light: hydroxylation, quinonization, decarbonylation, demethylation, and dehydration. The
same degradation paths were observed in OTC destruction by carbonate radicals (CO3

•−)
in the UV/H2O2/t-BuOH/Na2CO3 system, and all the products except m/z 493 were also
detected [29].
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tosensitized degradation (b) under visible light irradiation at pH 8.6. Experimental conditions:
[OTC]0 = 10 mg L−1, [TiO2]0 = 0.5 g L−1, 50 mM phosphate buffer.

In the photolysis and TiO2-assisted photosensitized OTC degradation under visible
light at pH 8.6, direct degradation and O2

•−-mediated self-sensitized degradation were
the main reaction processes, as demonstrated above. Similar to the electrophilic nature of
CO3

•−, O2
•− might react readily with the electron-rich reactive sites in the OTC structure,

such as the phenol moiety (ring D), through electron transfer, leading to the generation
of hydroxylation product m/z 477 and quinonization product m/z 475 [29]. The formed
m/z 477 could then be further hydroxylated to produce m/z 493, as shown in Figure 9.
Decarbonylation could result from a loss of CO from the tricarbonyl system in ring A,
resulting in the formation of the decarbonylation product m/z 433, which could then
undergo hydroxylation to generate m/z 449 [27]. The generated m/z 449 might also be
formed from m/z 477 via decarbonylation, or it could undergo dehydration, which might
occur at C6-C5a, producing m/z 431 that could be further transformed into quinonization
m/z 429 (Figure 9) [30]. Demethylation might occur in the dimethylammonium group at C4
in OTC direct photolysis under visible light, leading to the production of the demethylation
product m/z 447. The generated m/z 447 was also detected in OTC photolysis under
UV-254 nm irradiation [27]. Pereira et al. [21] found seven products in photocatalytic OTC
degradation using TiO2 under simulated solar light irradiation. With the exception of m/z
477, all other products, including m/z 457, 441, 415, 386, 368, and 345, were not detected
in our study, probably because of different reaction conditions and analysis methods.
Jin et al. [31] detected four products from OTC photolysis under oxygen-free conditions
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with λ > 300 nm light irradiation; the current study identified the same products as Jin et al.,
with the exception of m/z 417.
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Figure 9. Probable photolytic and TiO2-assisted photosensitized degradation mechanisms of OTC
under visible light irradiation at pH 8.6: (1) hydroxylation, (2) quinonization, (3) decarbonyla-
tion, (4) demethylation, and (5) dehydration. Experimental conditions: [OTC]0 = 10 mg L−1,
[TiO2]0 = 0.5 g L−1, 50 mM phosphate buffer.

4. Conclusions

This study investigated OTC degradation under visible light by photolysis and TiO2-
assisted photosensitized and identified the predominant ROS and degradation mechanisms
in these two reactions. We found that deprotonated OTC could be easily photolyzed
under visible light and removal efficiency was enhanced with the addition of TiO2.The
enhancement in removal efficiency is likely due to TiO2 assisting self-photosensitized
degradation, as verified by the replacement of TiO2 with the insulator SiO2 in the visible
light/TiO2 system. According to these experiments, the ROS O2

•− contributed most to
self-sensitized OTC degradation in both photolysis and TiO2-assisted photosensitized
reactions under the study’s conditions. OTC destruction increased with TiO2 load in the
visible light/TiO2 system at pH 5.7 and 8.6. The mineralization of OTC was limited in
the TiO2 -assisted photosensitized degradation after 5 h of visible light irradiation despite
its rapid decomposition. The LC-QTOF/MS detected eight reaction products in both
photolysis and TiO2-assisted photosensitized OTC degradation under visible light. We
subsequently proposed the five transformation pathways of hydroxylation, quinonization,
decarbonylation, demethylation, and dehydration as OTC degradation mechanisms in
these two reactions. This work suggests that visible light can induce OTC degradation
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with or without semiconductors under suitable conditions and provides a supplementary
explanation for OTC removal in natural waters.
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