The Association between the Respiratory System and Upper Limb Strength in Males with Duchenne Muscular Dystrophy: A New Field for Intervention?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Patients and Methods
Participants
2.3. Pulmonary Status
2.3.1. Respiratory Muscle Strength
2.3.2. Spirometry
2.4. Upper Limb
2.4.1. Performance of the Upper Limb (PUL)
2.4.2. Maximal Hand Grip Strength (HGS)
2.5. Statistical Analysis
3. Results
3.1. Participant Characteristics
3.2. Respiratory System
3.3. The Upper Limb
3.4. Associations between the Respiratory System and Muscle Function of the Upper Limb
4. Discussion
5. Conclusions
- The pulmonary and upper limb functions were within the normal range in ambulatory and lowered in non-ambulatory patients with DMD, but the muscle strength of both systems was low, regardless of the stage of the disease.
- There seems to be an interdependence between the respiratory system and the upper limbs in terms of muscle strength and function in DMD patients, which is stronger in non-ambulatory patients. This may be the basis for the creation of a new personalized plan in rehabilitation—the simultaneous rehabilitation of the respiratory and upper limb muscles. Further studies on this topic should be conducted.
6. Clinical Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Birnkrant, D.J.; Bushby, K.; Bann, C.M.; Apkon, S.D.; Blackwell, A.; Brumbaugh, D.; Case, L.E.; Clemens, P.R.; Hadjiyannakis, S.; Pandya, S.; et al. Diagnosis and management of Duchenne muscular dystrophy, part 1: Diagnosis, and neuromuscular, rehabilitation, endocrine, and gastrointestinal and nutritional management. Lancet Neurol. 2018, 17, 251–267. [Google Scholar] [CrossRef] [Green Version]
- Wasilewska, E.; Małgorzewicz, S.; Meyer-Szary, J.; Sledzinska, K.; Niedoszytko, M.B.; Jassem, E.; Wierzba, J. Pulmonary dysfunction in children with Duchenne muscular dystrophy may appear earlier than we thought—Analysis using novel methodology based on z-scores. Arch. Med. Sci. 2021. [Google Scholar] [CrossRef]
- Nunes, M.F.; Hukuda, M.E.; Favero, F.M.; Oliveira, A.B.; Voos, M.C.; Caromano, F. Relationship between muscle strength and motor function in Duchenne muscular dystrophy. Arq. Neuro Psiquiatr. 2016, 74, 530–535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, S.-W.; Kang, Y.-S.; Sohn, H.-S.; Park, J.-H.; Moon, J.-H. Respiratory Muscle Strength and Cough Capacity in Patients with Duchenne Muscular Dystrophy. Yonsei Med. J. 2006, 47, 184–190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barnard, A.M.; Lott, D.J.; Batra, A.; Triplett, W.T.; Forbes, S.C.; Riehl, S.L.; Willcocks, R.J.; Smith, B.K.; Vandenborne, K.; Walter, G.A. Imaging respiratory muscle quality and function in Duchenne muscular dystrophy. J. Neurol. 2019, 266, 2752–2763. [Google Scholar] [CrossRef]
- Szeinberg, A.; Tabachnik, E.; Rashed, N.; McLaughlin, F.J.; England, S.; Bryan, C.A.; Levison, H. Cough Capacity in Patients with Muscular Dystrophy. Chest 1988, 94, 1232–1235. [Google Scholar] [CrossRef]
- Mayer, O.H.; Aliverti, A.; Meier, T. Breathe Duchenne: What natural history studies tell us about the progression of pulmonary morbidity in Duchenne muscular dystrophy. Neuromuscul. Disord. 2018, 28, 910–913. [Google Scholar] [CrossRef]
- Mattar, F.L.; Sobreira, C. Hand weakness in Duchenne muscular dystrophy and its relation to physical disability. Neuromuscul. Disord. 2008, 18, 193–198. [Google Scholar] [CrossRef]
- Hogrel, J.-Y.; Decostre, V.; Ledoux, I.; de Antonio, M.; Niks, E.H.; de Groot, I.; Straub, V.; Muntoni, F.; Ricotti, V.; Voit, T.; et al. Normalized grip strength is a sensitive outcome measure through all stages of Duchenne muscular dystrophy. J. Neurol. 2020, 267, 2022–2028. [Google Scholar] [CrossRef]
- Wasilewska, E.; Małgorzewicz, S.; Sobierajska-rek, A.; Jabło, J. Transition from Childhood to Adulthood in Pa-tients with Duchenne Muscular Dystrophy. Medicina 2020, 56, 426. [Google Scholar] [CrossRef]
- Han, J.W.; Kim, Y.M. Effect of breathing exercises combined with dynamic upper extremity exercises on the pulmonary function of young adults. J. Back Musculoskelet. Rehabil. 2018, 31, 405–409. [Google Scholar] [CrossRef] [PubMed]
- Ricotti, V.; Selby, V.; Ridout, D.; Domingos, J.; Decostre, V.; Mayhew, A.; Eagle, M.; Butler, J.; Guglieri, M.; Van der Holst, M.; et al. Respiratory and upper limb function as outcome measures in ambulant and non-ambulant subjects with Duchenne muscular dystrophy: A prospective multicentre study. Neuromuscul. Disord. 2019, 29, 261–268. [Google Scholar] [CrossRef] [PubMed]
- Bahat, G.; Tufan, A.; Ozkaya, H.; Tufan, F.; Akpinar, T.S.; Akin, S.; Bahat, Z.; Kaya, Z.; Kiyan, E.; Erten, N.; et al. Relation between hand grip strength, respiratory muscle strength and spirometric measures in male nursing home residents. Aging Male 2014, 17, 136–140. [Google Scholar] [CrossRef] [PubMed]
- Bulut, N.; Aydın, G.; Alemdaroğlu-Gürbüz, I.; Karaduman, A.; Yılmaz, Ö.; Pulmonary and upper limbs function in children with early stage Duchenne muscular dystrophy compared to their healthy peers. Braz. J. Phys. Ther. 2020, 25, 251–255. [Google Scholar] [CrossRef] [PubMed]
- Brooke, M.H.; Griggs, R.; Mendell, J.R.; Fenichel, G.M.; Shumate, J.B.; Pellegrino, R.J. Clinical trial in duchenne dystrophy. I. The design of the protocol. Muscle Nerve 1981, 4, 186–197. [Google Scholar] [CrossRef]
- Vignos, P.J.; Spencer, G.E.; Archibald, K.C. Management of Progressive Muscular Dystrophy of Childhood. JAMA 1963, 184, 89–96. [Google Scholar] [CrossRef]
- Kulaga, Z.; Litwin, M.; Tkaczyk, M.; Różdżyńska, A.; Barwicka, K.; Grajda, A.; Świąder, A.; Gurzkowska, B.; Napieralska, E.; Pan, H. The height-, weight-, and BMI-for-age of Polish school-aged children and adolescents relative to international and local growth references. BMC Public Health 2010, 10, 109. [Google Scholar] [CrossRef] [Green Version]
- Finder, J.D.; Birnkrant, D.; Carl, J.; Farber, H.J.; Gozal, D.; Iannaccone, S.T.; Kovesi, T.; Kravitz, R.M.; Panitch, H.; Schramm, C.; et al. Respiratory Care of the Patient with Duchenne Muscular Dystrophy: ATS consensus statement. Am. J. Respir. Crit. Care Med. 2004, 170, 456–465. [Google Scholar] [CrossRef]
- Miller, M.R.; Crapo, R.; Hankinson, J.; Brusasco, V.; Burgos, F.; Casaburi, R.; Coates, A.; Enright, P.; van der Grinten, C.P.M.; Gustafsson, P.; et al. General considerations for lung function testing. Eur. Respir. J. 2005, 26, 153–161. [Google Scholar] [CrossRef] [Green Version]
- Gauld, L.M.; Kappers, J.; Carlin, J.B.; Robertson, C.F. Prediction of Childhood Pulmonary Function Using Ulna Length. Am. J. Respir. Crit. Care Med. 2003, 168, 804–809. [Google Scholar] [CrossRef]
- Mayhew, A.G.; Coratti, G.; Mazzone, E.S.; Klingels, K.; James, M.; Pane, M.; Straub, V.; Goemans, N.; Mercuri, E.; Ricotti, V.; et al. Performance of Upper Limb module for Duchenne muscular dystrophy. Dev. Med. Child Neurol. 2019, 62, 633–639. [Google Scholar] [CrossRef] [PubMed]
- Ploegmakers, J.J.; Hepping, A.M.; Geertzen, J.H.; Bulstra, S.K.; Stevens, M. Grip strength is strongly associated with height, weight and gender in childhood: A cross sectional study of 2241 children and adolescents providing reference values. J. Physiother. 2013, 59, 255–261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Domènech-Clar, R.; López-Andreu, J.; Compte-Torrero, L.; De Diego-Damiá, A.; Macián-Gisbert, V.; Perpiñá-Tordera, M.; Roqués-Serradilla, J. Maximal static respiratory pressures in children and adolescents. Pediatr. Pulmonol. 2003, 35, 126–132. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Kang, S.-W.; Lee, S.C.; Choi, W.A.; Kim, D.H. How Respiratory Muscle Strength Correlates with Cough Capacity in Patients with Respiratory Muscle Weakness. Yonsei Med. J. 2010, 51, 392–397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, H.N.; Sawnani, H.; Horn, P.S.; Rybalsky, I.; Relucio, L.; Wong, B.L. The Performance of the Upper Limb scores correlate with pulmonary function test measures and Egen Klassifikation scores in Duchenne muscular dystrophy. Neuromuscul. Disord. 2016, 26, 264–271. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Luna, N.; Orea-Tejeda, A.; González-Islas, D.; Flores-Cisneros, L.; Keirns-Davis, C.; Sánchez-Santillán, R.; Pérez-García, I.; Gastelum-Ayala, Y.; Martínez-Vázquez, V.; Martínez-Reyna, Q. Association between body composition, sarcopenia and pulmonary function in chronic obstructive pulmonary disease. BMC Pulm. Med. 2022, 22, 106. [Google Scholar] [CrossRef]
- Strandkvist, V.J.; Backman, H.; Roding, J.; Stridsman, C.; Lindberg, A. Hand grip strength is associated with forced expiratory volume in 1 second among subjects with COPD: Report from a population-based cohort study. Int. J. Chronic Obstr. Pulm. Dis. 2016, 11, 2527–2534. [Google Scholar] [CrossRef] [Green Version]
- Latorre-Román, P.; Navarro-Martínez, A.V.; Mañas-Bastidas, A.; García-Pinillos, F. Handgrip strength test as a complementary tool in monitoring asthma in daily clinical practice in children. Iran. J. Allergy Asthma Immunol. 2014, 13, 394–403. [Google Scholar]
- Park, C.-H.; Yi, Y.; Do, J.G.; Lee, Y.-T.; Yoon, K.J. Relationship between skeletal muscle mass and lung function in Korean adults without clinically apparent lung disease. Medicine 2018, 97, e12281. [Google Scholar] [CrossRef]
- Mgbemena, N.C.; Aweto, H.A.; Tella, B.A.; Emeto, T.I.; Malau-Aduli, B.S. Prediction of lung function using handgrip strength in healthy young adults. Physiol. Rep. 2019, 7, e13960. [Google Scholar] [CrossRef] [Green Version]
- Han, C.H.; Chung, J.H. Association between hand grip strength and spirometric parameters: Korean National health and Nutrition Examination Survey (KNHANES). J. Thorac. Dis. 2018, 10, 6002–6009. [Google Scholar] [CrossRef] [PubMed]
- Wolfe, A.; Scoto, M.; Milev, E.; Lofra, R.M.; Abbott, L.; Wake, R.; Rohwer, A.; Main, M.; Baranello, G.; Mayhew, A.; et al. Longitudinal changes in respiratory and upper limb function in a pediatric type III spinal muscular atrophy cohort after loss of ambulation. Muscle Nerve 2021, 64, 545–551. [Google Scholar] [CrossRef]
- Shin, H.I.; Kim, D.-K.; Seo, K.M.; Kang, S.H.; Lee, S.Y.; Son, S. Relation Between Respiratory Muscle Strength and Skeletal Muscle Mass and Hand Grip Strength in the Healthy Elderly. Ann. Rehabil. Med. 2017, 41, 686–692. [Google Scholar] [CrossRef] [PubMed]
- Meier, T.; Rummey, C.; Leinonen, M.; Spagnolo, P.; Mayer, O.H.; Buyse, G.M.; Bernert, G.; Knipp, F.; Goemans, N.; Hauwe, M.V.D.; et al. Characterization of pulmonary function in 10–18 year old patients with Duchenne muscular dystrophy. Neuromuscul. Disord. 2017, 27, 307–314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicot, F.; Hart, N.; Forin, V.; Boulé, M.; Clément, A.; Polkey, M.I.; Lofaso, F.; Fauroux, B. Respiratory Muscle Testing: A valuable tool for children with neuromuscular disorders. Am. J. Respir. Crit. Care Med. 2006, 174, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Humbertclaude, V.; Hamroun, D.; Bezzou, K.; Bérard, C.; Boespflug-Tanguy, O.; Bommelaer, C.; Campana-Salort, E.; Cances, C.; Chabrol, B.; Commare, M.-C.; et al. Motor and respiratory heterogeneity in Duchenne patients: Implication for clinical trials. Eur. J. Paediatr. Neurol. 2012, 16, 149–160. [Google Scholar] [CrossRef] [PubMed]
- Wasilewska, E.; Sobierajska-Rek, A.; Małgorzewicz, S.; Soliński, M.; Jassem, E. Benefits of Telemonitoring of Pulmonary Function—3-Month Follow-Up of Home Electronic Spirometry in Patients with Duchenne Muscular Dystrophy. J. Clin. Med. 2022, 11, 856. [Google Scholar] [CrossRef]
- Wasilewska, E.; Sobierajska-Rek, A.; Małgorzewicz, S.; Soliński, M.; Szalewska, D.; Jassem, E. Is It Possible to Have Home E-Monitoring of Pulmonary Function in Our Patients with Duchenne Muscular Dystrophy in the COVID-19 Pandemic?—A One Center Pilot Study. Int. J. Environ. Res. Public Health 2021, 18, 8967. [Google Scholar] [CrossRef]
- Sobierajska-Rek, A.; Mański, Ł.; Jabłońska-Brudło, J.; Śledzińska, K.; Wasilewska, E.; Szalewska, D. Respiratory Telerehabilitation of Boys and Young Men with Duchenne Muscular Dystrophy in the COVID-19 Pandemic. Int. J. Environ. Res. Public Health 2021, 18, 6179. [Google Scholar] [CrossRef]
- McDonald, C.M.; Gordish-Dressman, H.; Henricson, E.K.; Duong, T.; Joyce, N.C.; Jhawar, S.; Leinonen, M.; Hsu, F.; Connolly, A.M.; Cnaan, A.; et al. Longitudinal pulmonary function testing outcome measures in Duchenne muscular dystrophy: Long-term natural history with and without glucocorticoids. Neuromuscul. Disord. 2018, 28, 897–909. [Google Scholar] [CrossRef] [Green Version]
- Finder, J.; Mayer, O.H.; Sheehan, D.; Sawnani, H.; Abresch, R.T.; Benditt, J.; Birnkrant, D.; Duong, T.; Henricson, E.; Kinnett, K.; et al. Pulmonary Endpoints in Duchenne Muscular Dystrophy. A Workshop Summary. Am. J. Respir. Crit. Care Med. 2017, 196, 512–519. [Google Scholar] [CrossRef] [PubMed]
- Khirani, S.; Ramirez, A.; Aubertin, G.; Boulé, M.; Chemouny, C.; Forin, V.; Fauroux, B. Respiratory muscle decline in duchenne muscular dystrophy. Pediatr. Pulmonol. 2013, 49, 473–481. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.; Jani, H.; John, V.; Singh, P.; Joseley, T. Effects of upper body resistance training on pulmonary functions in sedentary male smokers. Lung India 2011, 28, 169–173. [Google Scholar] [CrossRef] [PubMed]
- Arikan, H.; Calik-Kutukcu, E.; Vardar-Yagli, N.; Saglam, M.; Oksuz, C.; Inal-Ince, D.; Duger, T.; Savci, S.; Kayihan, H.; Coplu, L. Effect of upper extremity training on respiratory muscle strength, activities of daily living and fatigue perception in patients with chronic obstructive pulmonary disease. Eur. Respir. J. 2014, 44 (Suppl. 58), P1290. Available online: https://erj.ersjournals.com/content/44/Suppl_58/P1290 (accessed on 1 September 2022).
All n = 53 | Ambulant n = 28 | Non-Ambulant n = 25 | |
---|---|---|---|
Mean; SD/Median; IQR | |||
Age (years) | 11.41; SD 3.70 | 9.17; SD 2.85 | 13.92; SD 2.87 |
Height (cm) | 141.55; SD 19.09 | 130.16; SD 12.81 | 154.32; SD 13.86 |
Body weight (kg) | 44.25; SD 19.24 | 34.44; SD 12.81 | 55.24; SD 19.48 |
BMI | 21.17; SD 5.40 | 19.68; SD 4.15 | 22.84; SD 6.19 |
BMI z-score | 0.55; SD 1.82 | 0.71; SD 1.07 | 0.38; SD 2.41 |
Age at the loss of ambulation (years) | 10.41; 2.06 | - | 10.41; 2.06 |
Mutation | |||
Deletion | 34 (64.2) | 15 (53.6) | 19 (76.0) |
Duplication | 8 (15.1) | 5 (17.8) | 3 (12.0) |
Point mutation | 5 (9.4) | 4 (14.3) | 1 (4.0) |
Nonsense mutation | 4 (7.5) | 3 (10.7) | 1(4.0) |
No detected mutation | 2 (3.8) | 1 (3.6) | 1 (4.0) |
Steroid therapy (ST) | 39 (%) | 23 (%) | 16 (%) |
Encorton (prednisone) nb(%) Age at ST onset (year) Daily dose (mg) Calcort (deflazacort) nb(%) Age at ST onset (year) Daily dose (mg) | 16 (41.0) 5.12, SD 1.08 24.37, SD 7.50 23 (58.9) 6.13, SD 2.37 15.80, SD 2.88 | 10 (43.4) 5.10; SD 1.28 11.2; SD 3.64 13 (56.6) 5.15; SD 2.44 14.07; SD 2.25 | 6 (37.5) 5.2; SD 1.48 12.42; SD4.79 10 (62.5) 7.4; SD 1.64 13.50; SD 6.04 |
Pulmonary Function Tests | ||||
---|---|---|---|---|
All n = 53 Mean ± SD | Ambulant n = 28 Mean ± SD | Non-Ambulant n = 25 Mean ± SD | p-Value Ambulant vs. Non-Ambulant | |
Respiratory muscle strength (cm H2O) | ||||
MIP %pv | 41.05 ±19.51 48.11 ± 27.38 | 45.57 ± 16.16 60.23 ± 24.10 | 36.00 ± 21.91 34.55 ± 24.65 | 0.127 <0.001 * |
MEP %pv | 40.05 ± 15.99 38.11 ± 22.77 | 44.67 ± 14.11 49.84 ± 22.23 | 34.88 ± 16.65 24.97 ± 15.06 | 0.024 * <0.001 * |
Spirometry (Liters) | ||||
FVC %pv | 1.62 ± 0.54 77.32 ± 25.74 | 1.78 ±0.59 91.46 ± 14.01 | 1.61 ± 0.61 61.48 ± 26.84 | 0.209 0.001 * |
FEV1 %pv | 1.81 ± 0.67 83.54 ± 28.39 | 1.83 ± 0.76 100.20 ± 16.60 | 1.63 ± 0.47 64.88 ± 27.38 | 0.204 0.013 * |
Upper Limb | ||||
---|---|---|---|---|
All n = 53 Mean ± SD | Ambulant n = 28 Mean ± SD | Non-Ambulant n = 25 Mean ± SD | p-Value Ambulant vs. Non-Ambulant | |
PUL %pv [score] | 75.64 ± 27.86 31.37 ± 11.93 | 92.85 ± 9.76 39.00 ± 4.10 | 54.38 ± 28.77 22.84 1 ± 2.08 | <0.001 <0.001 |
HGS %pv [kg] | 33.28 ± 18.72 5.78 ± 3.31 | 43.35 ± 14.20 6.22 ± 2.53 | 21.52 ± 16.5 5.27 ± 4.04 | <0.001 0.30 |
All n = 53 R | p-Value | Ambulant n = 28 R | p-Value | Non-Ambulant n = 25 R | p-Value | |
---|---|---|---|---|---|---|
Respiratory (%pv) | Upper Limb (%pv) | |||||
Hand grip strength | ||||||
MIP | 0.61 | <0.001 * | 0.51 | 0.004 * | 0.42 | 0.039 * |
MEP | 0.72 | <0.001 * | 0.52 | 0.004 * | 0.74 | <0.001 * |
FVC | 0.77 | <0.001 * | 0.47 | 0.001 * | 0.81 | <0.001 * |
FEV1 | 0.79 | <0.001 * | 0.53 | 0.003 * | 0.82 | <0.001 * |
Performance of Upper Limb | ||||||
MIP | 0.56 | <0.001 * | 0.29 | 0.133 | 0.43 | 0.028 * |
MEP | 0.69 | <0.001 * | 0.27 | 0.155 | 0.67 | <0.001* |
FVC | 0.77 | <0.001 * | 0.41 | 0.028 * | 0.84 | <0.001 * |
FEV1 | 0.77 | <0.001 * | 0.43 | 0.021 * | 0.83 | <0.001 * |
R2 = 0.739 | ||
---|---|---|
b * | p-Value | |
PUL | 1.140 | 0.000 * |
FVC | 0.6410 | 0.000 * |
Age | 0.448 | 0.005 * |
Ambulation | −0.202 | 0.076 |
Height | 0.233 | 0.197 |
Weight | −0.002 | 0.986 |
BMI z-score | 0.177 | 0.281 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sobierajska-Rek, A.; Wasilewska, E.; Śledzińska, K.; Jabłońska-Brudło, J.; Małgorzewicz, S.; Wasilewski, A.; Szalewska, D. The Association between the Respiratory System and Upper Limb Strength in Males with Duchenne Muscular Dystrophy: A New Field for Intervention? Int. J. Environ. Res. Public Health 2022, 19, 15675. https://doi.org/10.3390/ijerph192315675
Sobierajska-Rek A, Wasilewska E, Śledzińska K, Jabłońska-Brudło J, Małgorzewicz S, Wasilewski A, Szalewska D. The Association between the Respiratory System and Upper Limb Strength in Males with Duchenne Muscular Dystrophy: A New Field for Intervention? International Journal of Environmental Research and Public Health. 2022; 19(23):15675. https://doi.org/10.3390/ijerph192315675
Chicago/Turabian StyleSobierajska-Rek, Agnieszka, Eliza Wasilewska, Karolina Śledzińska, Joanna Jabłońska-Brudło, Sylwia Małgorzewicz, Andrzej Wasilewski, and Dominika Szalewska. 2022. "The Association between the Respiratory System and Upper Limb Strength in Males with Duchenne Muscular Dystrophy: A New Field for Intervention?" International Journal of Environmental Research and Public Health 19, no. 23: 15675. https://doi.org/10.3390/ijerph192315675
APA StyleSobierajska-Rek, A., Wasilewska, E., Śledzińska, K., Jabłońska-Brudło, J., Małgorzewicz, S., Wasilewski, A., & Szalewska, D. (2022). The Association between the Respiratory System and Upper Limb Strength in Males with Duchenne Muscular Dystrophy: A New Field for Intervention? International Journal of Environmental Research and Public Health, 19(23), 15675. https://doi.org/10.3390/ijerph192315675