Climate Change Impacts Assessment Using Crop Simulation Model Intercomparison Approach in Northern Indo-Gangetic Basin of Bangladesh
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of Study Area
2.2. Farming System Diagram
2.3. Representative Agricultural Pathways (RAPs) and Adaptation Package
2.4. Data Collection and Methods of Study
2.4.1. Soil Data Preparation
2.4.2. Observed Trends in Temperature and Precipitation
2.4.3. Climate Projections
2.5. Socio-Economic Analysis
2.6. Crop-Model Calibration (APSIM and DSSAT)
2.7. Validation of Crop Simulation Models
3. Results
3.1. Evaluation of Crop Models (APSIM and DSSAT)
3.2. Impact of Climate Change on Crop Production
3.3. Impact of Climate Change on Future Agricultural Systems
3.4. Benefits of Climate Change Adaptations
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pal, L.; Ojha, C.S.P.; Dimri, A.P. Characterizing Rainfall Occurrence in India: Natural Variability and Recent Trends. J. Hydrol. 2021, 603, 126979. [Google Scholar] [CrossRef]
- Islam, F.; Alam, G.M.; Begum, R.; Sarker, M.N.I.; Bhandari, H. Vulnerability, Food Security and Adaptation to Climate Change of Coastal Rice Farmers in Bangladesh. In Climate Vulnerability and Resilience in the Global South; Springer: Cham, Switzerland, 2021; pp. 187–197. [Google Scholar]
- Filho, W.L.; Modesto, F.; Nagy, G.J.; Saroar, M.; YannickToamukum, N.; Ha’apio, M. Fostering Coastal Resilience to Climate Change Vulnerability in Bangladesh, Brazil, Cameroon and Uruguay: A Cross-Country Comparison. Mitig. Adapt. Strateg. Glob. Chang. 2018, 23, 579–602. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2022: Impacts, Adaptation and Vulnerability; Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climaste Change; Pörtner, H.O., Roberts, D.C., Tignor, M.M.B., Poloczanska, E.S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., et al., Eds.; Cambridge University Press: Cambridge, UK, 2022. [Google Scholar]
- Cattiaux, J.; Yiou, P.; Vautard, R. Dynamics of Future Seasonal Temperature Trends and Extremes in Europe: A Multi-Model Analysis from CMIP3. Clim. Dyn. 2012, 38, 1949–1964. [Google Scholar] [CrossRef]
- Berry, P.M.; Rounsevell, M.D.A.; Harrison, P.A.; Audsley, E. Assessing the Vulnerability of Agricultural Land Use and Species to Climate Change and the Role of Policy in Facilitating Adaptation. Environ. Sci. Policy 2006, 9, 189–204. [Google Scholar] [CrossRef]
- Arunrat, N.; Wang, C.; Pumijumnong, N.; Sereenonchai, S.; Cai, W. Farmers’ Intention and Decision to Adapt to Climate Change: A Case Study in the Yom and Nan Basins, Phichit Province of Thailand. J. Clean. Prod. 2017, 143, 672–685. [Google Scholar] [CrossRef]
- Masud, M.M.; Azam, M.N.; Mohiuddin, M.; Banna, H.; Akhtar, R.; Alam, A.F.; Begum, H. Adaptation Barriers and Strategies towards Climate Change: Challenges in the Agricultural Sector. J. Clean. Prod. 2017, 156, 698–706. [Google Scholar] [CrossRef]
- Basak, J.; Ali, M.; Islam, M.; Alam, J. Assessment of the Effect of Climate Change on Boro Rice Production in Bangladesh Using DSSAT Model. INT Cent. 2009, 38, 9. [Google Scholar]
- Timsina, J.E. Humphreys Applications of CERES-Rice and CERES-Wheat in Research, Policy and Climate Change Studies in Asia: A Review. Int. J. Agric. Res. 2006, 1, 202–225. [Google Scholar] [CrossRef] [Green Version]
- Hussain, S. Assessing Impacts of Climate Change on Cereal Production and Food Security in Bangladesh. In Climate Change and Food Security in South Asia; Springer: Dordrecht, The Netherlands, 2011; pp. 459–476. ISBN 978-90-481-9515-2. [Google Scholar]
- Karim, Z.; Hussain, S.G.; Ahmed, M. Assessing Impacts of Climatic Variations on Foodgrain Production in Bangladesh. In Climate Change Vulnerability and Adaptation in Asia and the Pacific; Springer: Dordrecht, The Netherlands, 1996. [Google Scholar]
- McCown, R.; Hammer, G.; Hargreaves, J.; Holzworth, D.; Freebairn, D. APSIM: A novel software system for model development, model testing and simulation in agricultural systems research. Agric. Syst. 1996, 50, 255–271. [Google Scholar] [CrossRef]
- Jones, J.W.; Hoogenboom, G.; Porter, C.H.; Boote, K.J.; Batchelor, W.D.; Hunt, L.A.; Wilkens, P.W.; Singh, U.; Gijsman, A.J.; Ritchie, J.T. The DSSAT cropping system model. Eur. J. Agron. 2003, 18, 235–265. [Google Scholar] [CrossRef]
- Hoogenboom, G.; Porter, C.H.; Boote, K.J.; Shelia, V.; Wilkens, P.W.; Singh, U.; White, J.W.; Asseng, S.; Lizaso, J.I.; Moreno, L.P.; et al. The DSSAT crop modeling ecosystem. In Advances in Crop Modeling for a Sustainable Agriculture; Burleigh Dodds Science Publishing: Cambridge, UK, 2019; pp. 173–216. [Google Scholar] [CrossRef]
- Palmate, S.S.; Pandey, A.; Pandey, R.P.; Mishra, S.K. Assessing the land degradation and greening response to changes in hydro-climatic variables using a conceptual framework: A case-study in central India. Land Degrad. Dev. 2021, 32, 4132–4148. [Google Scholar] [CrossRef]
- Pandey, A.; Palmate, S.S. Assessments of spatial land cover dynamic hotspots employing MODIS time-series datasets in the Ken River Basin of Central India. Arab. J. Geosci. 2018, 11, 1–8. [Google Scholar] [CrossRef]
- Palmate, S.S.; Wagner, P.D.; Fohrer, N.; Pandey, A. Assessment of Uncertainties in Modelling Land Use Change with an Integrated Cellular Automata–Markov Chain Model. Environ. Model. Assess. 2022, 27, 275–293. [Google Scholar] [CrossRef]
- Swain, S.; Mishra, S.K.; Pandey, A.; Pandey, A.C.; Jain, A.; Chauhan, S.K.; Badoni, A.K. Hydrological modelling through SWAT over a Himalayan catchment using high-resolution geospatial inputs. Environ. Chall. 2022, 8, 100579. [Google Scholar] [CrossRef]
- Emran, S.A.; Krupnik, T.J.; Aravindakshan, S.; Kumar, V.; Pittelkow, C.M. Factors Contributing to Farm-Level Productivity and Household Income Generation in Coastal Bangladesh’s Rice-Based Farming Systems. PLoS ONE 2021, 16, e0256694. [Google Scholar] [CrossRef] [PubMed]
- Ruane, A.C.; Cecil, L.D.; Horton, R.M.; Gordón, R.; McCollum, R.; Brown, D.; Killough, B.; Goldberg, R.; Greeley, A.P.; Rosenzweig, C. Climate Change Impact Uncertainties for Maize in Panama: Farm Information, Climate Projections, and Yield Sensitivities. Agric. For. Meteorol. 2013, 170, 132–145. [Google Scholar] [CrossRef]
- Tarek, M.; Brissette, F.; Arsenault, R. Uncertainty of Gridded Precipitation and Temperature Reference Datasets in Climate Change Impact Studies. Hydrol. Earth Syst. Sci. 2021, 25, 3331–3350. [Google Scholar] [CrossRef]
- Janes, T.; McGrath, F.; Macadam, I.; Jones, R. High-Resolution Climate Projections for South Asia to Inform Climate Impacts and Adaptation Studies in the Ganges-Brahmaputra-Meghna and Mahanadi Deltas. Sci. Total Environ. 2019, 650, 1499–1520. [Google Scholar] [CrossRef] [PubMed]
- Potopová, V.; Trnka, M.; Vizina, A.; Semerádová, D.; Balek, J.; Chawdhery, M.R.A.; Musiolková, M.; Pavlík, P.; Možný, M.; Štěpánek, P.; et al. Projection of 21st Century Irrigation Water Requirements for Sensitive Agricultural Crop Commodities across the Czech Republic. Agric. Water Manag. 2022, 262, 107337. [Google Scholar] [CrossRef]
- BBS (Bangladesh Bureau of Statistics). Zila Statistics 2011; Statistics and Informatics Division, Ministry of Planning, Government of the People’s Republic of Bangladesh: Dhaka, Bangladesh, 2012.
- BBS (Bangladesh Bureau of Statistics). Yearbook of Agricultural Statistics of Bangladesh 2015, 35th ed.; Statistics and Informatics Division, Ministry of Planning, Government of the People’s Republic of Bangladesh: Dhaka, Bangladesh, 2015; ISBN 978-984-475-047-0.
- Huq, S.I.; Shoaib, J.M. The Soils of Bangladesh; Springer: Dordrecht, The Netherlands, 2013; Volume 1, ISBN 978-94-007-1128-0. [Google Scholar]
- Hassan, A.A.; Jahiruddin, M.; Shamsun, N.; Jalal, U.S.; Abdul, L.S.; Monowar, K.K.; Bokhtiar, S.M.; Quddus, A.; Nazmul, H.; Sultana, R.; et al. Fertilizer Recommendation Guide-2012; Bangladesh Agricultural Research Council: Dhaka, Bangladesh, 2012; ISBN 978-984-500-000-0. [Google Scholar]
- Chowdhury, M.A.H.; Hassan, M.S. Hand Book of Agricultural Technology; Bangladesh Agricultural Research Council: Farmgate, Dhaka, 2013; p. 230. ISBN 978-984-500-018-5. [Google Scholar]
- Antle, J.M.; Stoorvogel, J.J.; Valdivia, R.O. New parsimonious simulation methods and tools to assess future food and environmental security of farm populations. Philos. Trans. R. Soc. B Biol. Sci. 2014, 369, 20120280. [Google Scholar] [CrossRef] [PubMed]
- BBS (Bangladesh Bureau of Statistics). Yearbook of Agricultural Statistics of Bangladesh 2020, 40th ed.; Statistics and Informatics Division, Ministry of Planning, Government of the People’s Republic of Bangladesh: Dhaka, Bangladesh, 2020; ISBN 978-984-475-047-0.
- Allen, R.; Pereira, L.; Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements—FAO Irrigation and Drainage Paper; Food and Agriculture Organization of the United Nations: Rome, Italy, 1998; Volume 56. [Google Scholar]
- Ruane, A.C.; Major, D.C.; Yu, W.H.; Alam, M.; Hussain, S.G.; Khan, A.S.; Hassan, A.; Al Hossain, B.M.T.; Goldberg, R.; Horton, R.M.; et al. Multi-Factor Impact Analysis of Agricultural Production in Bangladesh with Climate Change. Glob. Environ. Chang. 2013, 23, 338–350. [Google Scholar] [CrossRef] [Green Version]
- Holzworth, D.P.; Huth, N.I.; Devoil, P.G.; Zurcher, E.J.; Herrmann, N.I.; Mclean, G.; Chenu, K.; Van Oosterom, E.J.; Snow, V.; Murphy, C.; et al. APSIM—Evolution towards a New Generation of Agricultural Systems Simulation. Environ. Model. Softw. 2014, 62, 327–350. [Google Scholar] [CrossRef]
- Anser, M.K.; Hina, T.; Hameed, S.; Nasir, M.H.; Ahmad, I.; Naseer, M.A.U.R. Modeling Adaptation Strategies against Climate Change Impacts in Integrated Rice-Wheat Agricultural Production System of Pakistan. Int. J. Environ. Res. Public Health 2020, 17, 2522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wajid, A.; Hussain, K.; Ilyas, A.; Habib-ur-Rahman, M.; Shakil, Q.; Hoogenboom, G. Crop Models: Important Tools in Decision Support System to Manage Wheat Production under Vulnerable Environments. Agriculture 2021, 11, 1166. [Google Scholar] [CrossRef]
- Muntean, N.; Chawdhery, R.A.; Potopová, V.; Tűrkott, L. The ability of CROPGRO-Tomato model to simulate the growth characteristics of Thomas F1 tomato cultivar grown under open field conditions. J. Agric. Sci. 2021, 159, 473–487. [Google Scholar] [CrossRef]
- Amin, M.; Zhang, J.; Yang, M. Effects of climate change on the yield and cropping area of major food crops: A case of Bangladesh. Sustainability 2015, 7, 898–915. [Google Scholar] [CrossRef] [Green Version]
- Rahman, S. Impacts of climate change, agroecology and socio-economic factors on agricultural land use diversity in Bangladesh (1948–2008). Land Use Policy 2016, 50, 169–178. [Google Scholar] [CrossRef] [Green Version]
- Boxall, A.B.; Hardy, A.; Beulke, S.; Boucard, T.; Burgin, L.; Falloon, P.D.; Haygarth, P.M.; Hutchinson, T.; Kovats, R.S.; Leonardi, G.; et al. Impacts of climate change on indirect human exposure to pathogens and chemicals from agriculture. Environ. Health Perspect. 2008, 117, 508–514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sabiha, N.; Rahman, S.; Salim, R. Bangladesh agricultural sustainability: Economic, environmental and social issues. In Bangladesh Economic, Political and Social Issues, Chapter# 1; Alam, K., Ed.; Nova Science Publishers, INC.: New York, NY, USA, 2018; pp. 1–24. ISBN 9781536142105. [Google Scholar]
- Hussain, J.; Khaliq, T.; Ahmad, A.; Akhtar, J. Performance of Four Crop Model for Simulations of Wheat Phenology, Leaf Growth, Biomass and Yield across Planting Dates. PLoS ONE 2018, 13, e0197546. [Google Scholar] [CrossRef]
- Saddique, Q.; Ji, J.; Ajaz, A.; Jiatun, X.; Yufeng, Z.; He, J.; Cai, H. Performance Comparison of the APSIM and CERES-Wheat Models in Guanzhong Plain, China; ASABE Annual International Meeting: Boston, MA, USA; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2019; p. 1. [Google Scholar]
- Bregaglio, S.; Willocquet, L.; Kersebaum, K.C.; Ferrise, R.; Stella, T.; Ferreira, T.B.; Pavan, W.; Asseng, S.; Savary, S. Comparing Process-Based Wheat Growth Models in Their Simulation of Yield Losses Caused by Plant Diseases. Field Crops Res. 2021, 265, 108108. [Google Scholar] [CrossRef]
- Wang, J.; Hasegawa, T.; Li, L.; Lam, S.K.; Zhang, X.; Liu, X.; Pan, G. Changes in Grain Protein and Amino Acids Composition of Wheat and Rice under Short-Term Increased [CO2] and Temperature of Canopy Air in a Paddy from East China. New Phytol. 2019, 222, 726–734. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.A.; Tahir, A.; Khurshid, N.; Husnain, M.I.U.; Ahmed, M.; Boughanmi, H. Economic Effects of Climate Change-Induced Loss of Agricultural Production by 2050: A Case Study of Pakistan. Sustainability 2020, 12, 1216. [Google Scholar] [CrossRef] [Green Version]
- Munir, Z.; Shrestha, S.; Zaman, M.; Khan, M.I.; Akram, M.M.; Tahir, M.N. Climate Change Impacts on Wheat Yield: A Multi-Modeling Case Study of Central Punjab, Pakistan. Clim. Res. 2022, 87, 13–37. [Google Scholar] [CrossRef]
- Kruseman, G.; Mottaleb, K.A.; Tesfaye, K.; Bairagi, S.; Robertson, R.; Mandiaye, D.; Frija, A.; Gbegbelegbe, S.; Alene, A.; Prager, S. Rural Transformation and the Future of Cereal-Based Agri-Food Systems. Glob. Food Secur. 2020, 26, 100441. [Google Scholar] [CrossRef]
Parameters | Direction | Magnitude (%) |
---|---|---|
Farm size | Decrease | 20 |
Family size | Decrease | 10 |
Variable costs of production | Increase | 140 |
Off farm income | Increase | 100 |
Rice yield trend without CC | Increase | 112.5 |
Rice price trend without CC | Increase | 127.0 |
Rice price trend with CC | Increase | 150.3 |
Wheat yield trend without CC | Increase | 111.2 |
Wheat price trend without CC | Increase | 126.8 |
Wheat price trend with CC | Increase | 156.8 |
Adaptation strategy for wheat | ||
Irrigation in wheat | Increase | 50 mm per farm |
Rice | Wheat |
---|---|
Sowing date: 31 May 2018 | Sowing date: 24 November 2018 |
Transplanting: 5 July 2018 | Sowing density (plants m−2): 240 |
Sowing depth (cm): 5 cm | Sowing depth (cm): 5 |
Row spacing (cm): 20 cm | Row spacing (cm): 20 |
Fertilizer and irrigation management: | Fertilizer and irrigation management: |
N fertilizer: urea N | N fertilizer: urea N |
Applied N (kgha−1): 90 | Applied N (kgha−1): 120 (2 split) |
1st N application amount (kgha−1): 30 | 1st N application amount (kgha−1): 80 (as basal) |
2nd N application amount (kgha−1): 30 | 2nd N application amount (kgha−1): 40 (14 December 2018) |
3rd N application amount (kgha−1): 30 | 1st irrigation: 14. December 2018 |
2nd irrigation: 31 December 2018 | |
3rd irrigation: 24 January 2019 | |
4th irrigation: 7 February 2019 |
Stage Code | Date (Comparison) | |||
---|---|---|---|---|
Stage | Observed | Simulated (APSIM) | Simulated (DSSAT) | |
1 | Sowing | 31 May 2018 | 31 May 2018 | 2 June 2018 |
2 | Transplanting | 5 July 2018 | 5 July 2018 | 15 July 2018 |
3 | End of juvenile | 10 August 2018 | 10 August 2018 | 21 August 2018 |
4 | Floral initiation | 7 October 2018 | 3 October 2018 | 20 September 2018 |
5 | Flowering | 25 October 2018 | 25 October 2018 | 25 October 2018 |
6 | Maturity | 24 November 2018 | 24 November 2018 | 23 November 2018 |
7 | Grain yield (kg ha−1) | 4610 | 4743 | 6811 |
8 | Biomass yield (kg ha−1) | 10,310 | 13,212 | 14,171 |
Stage Code | Date (Comparison) | |||
---|---|---|---|---|
Stage | Observed | Simulated (APSIM) | Simulated (DSSAT) | |
1 | Sowing | 24 November 2018 | 24 November 2018 | 24 November 2018 |
2 | Germination | 25 November 2018 | 25 November 2018 | 25 November 2018 |
3 | Emergence | 3 December 2018 | 29 November 2018 | 27 November 2018 |
4 | End of juvenile | 15 December 2018 | 15 December 2018 | 16 December 2018 |
5 | Floral initiation | 17 January 2019 | 17 January 2019 | 20 January 2019 |
6 | Flowering | 31 January 2019 | 31 January 2019 | 31 January 2019 |
7 | Start grain fill | 6 February 2019 | 6 February 2019 | 9 February 22019 |
8 | End of grain fill | 13 March 2019 | 11 March 2019 | 11 March 2019 |
9 | Maturity | 14 March 2019 | 13 March 2019 | 13 March 2019 |
Grain yield (kg ha−1) | 5200 | 4820 | 4809 | |
Biomass yield (kg ha−1) | 10,000 | 8203 | 10,378 |
Parameters | IKXA | IOXA | IRXA | IEXA | IIXA | |||||
---|---|---|---|---|---|---|---|---|---|---|
APSIM | DSSAT | APSIM | DSSAT | APSIM | DSSAT | APSIM | DSSAT | APSIM | DSSAT | |
Observed average crop yield (Rice) (kg ha−1) | 3681 | 3725 | 3598 | 3637 | 3524 | 3589 | 3614 | 3681 | 3553 | 3634 |
Average crop yield change (Rice) (%) [defined as: (average relative crop yield − 1) × 100] | −37.40 | −14.70 | −13.60 | −7.40 | −38.17 | −13.40 | −20.30 | −8.80 | −21.70 | −10.10 |
Observed average crop yield (Wheat) (kg ha−1) | 2789 | 2827 | 2852 | 2889 | 2798 | 2841 | 2837 | 2894 | 2817 | 2910 |
Average crop yield change (Wheat) (%) [defined as: (average relative crop yield − 1) × 100] | 9.00 | −6.00 | 20.00 | 1.00 | 21.80 | −8.80 | 0.80 | −6.00 | 18.70 | −2.90 |
Losers (%) | 80.10 | 71.34 | 48.51 | 58.00 | 73.39 | 72.03 | 71.54 | 65.31 | 59.31 | 64.25 |
Gains (% average net farm returns) | 11.78 | 12.48 | 16.23 | 14.33 | 12.24 | 12.35 | 12.56 | 13.19 | 14.10 | 13.35 |
Losses (% average net farm returns) | −25.23 | −20.79 | −15.69 | −17.22 | −21.54 | −20.96 | −21.04 | −18.87 | −17.47 | −18.60 |
Observed net earnings without climate change (BDT farm−1) | 16,903 | 16,903 | 16,903 | 16,903 | 16,903 | 16,903 | 16,903 | 16,903 | 16,903 | 16,903 |
Observed net earnings with climate change (BDT farm−1) | 13,887 | 15,001 | 17,029 | 16,233 | 14,783 | 14,936 | 14,964 | 15,595 | 16,122 | 15,690 |
Observed per-capita earnings without climate change (BDT) | 14,795 | 14,795 | 14,795 | 14,795 | 14,795 | 14,795 | 14,795 | 14,795 | 14,795 | 14,795 |
Observed per-capita earnings with climate change (BDT) | 14,211 | 14,427 | 14,819 | 14,665 | 14,384 | 14,414 | 14,419 | 14,541 | 14,643 | 14,560 |
Observed poverty rate without climate change (%) | 96.07 | 96.07 | 96.07 | 96.07 | 96.07 | 96.07 | 96.07 | 96.07 | 96.07 | 96.07 |
Observed poverty rate with climate change (%) | 96.58 | 96.40 | 96.05 | 96.19 | 96.43 | 96.41 | 96.41 | 96.30 | 96.21 | 96.28 |
Parameters | IKXA | IOXA | IRXA | IEXA | IIXA | |||||
---|---|---|---|---|---|---|---|---|---|---|
APSIM | DSSAT | APSIM | DSSAT | APSIM | DSSAT | APSIM | DSSAT | APSIM | DSSAT | |
Projected average yield (Rice) (kgha−1) | 4537 | 4583 | 4561 | 4625 | 4681 | 4711 | 4516 | 4584 | 4592 | 4648 |
Average yield change (Rice) (%) [defined as: (average relative yield − 1) × 100] | −37.40 | −14.70 | −13.60 | −7.40 | −38.17 | −13.40 | −20.30 | −8.80 | −21.70 | −10.10 |
Projected average yield (Wheat) (kgha−1) | 3248 | 3356 | 3254 | 3315 | 3314 | 3357 | 3311 | 3406 | 3451 | 3487 |
Average yield change (Wheat) (%) [defined as: (average relative yield − 1) × 100] | 9.00 | −6.00 | 20.00 | 1.00 | 21.80 | −8.80 | 0.80 | −6.00 | 18.70 | −2.90 |
Losers (%) | 58.27 | 48.15 | 24.33 | 33.59 | 46.84 | 49.26 | 19.03 | 15.60 | 12.89 | 15.03 |
Gains (% average net farm returns) | 16.68 | 18.05 | 25.03 | 21.31 | 18.20 | 17.82 | 28.13 | 32.50 | 36.23 | 33.11 |
Losses (%average net farm returns) | −20.17 | −17.31 | −13.34 | −14.50 | −16.94 | −17.52 | −12.78 | −13.13 | −13.19 | −13.10 |
Projected net earnings without climate change (BDTfarm−1) | 23,000 | 23,000 | 23,000 | 23,000 | 23,000 | 23,000 | 23,001 | 23,006 | 23,017 | 23,008 |
Projected net earnings with climate change (BDTfarm−1) | 21,897 | 23,235 | 26,609 | 25,134 | 23,401 | 23,094 | 27,680 | 28,836 | 29,864 | 29,017 |
Projected per-capita earnings without climate change (BDT) | 30,531 | 30,531 | 30,531 | 30,531 | 30,531 | 30,531 | 30,531 | 30,532 | 30,535 | 30,533 |
Projected per-capita earnings with climate change (BDT) | 30,294 | 30,582 | 31,306 | 30,989 | 30,617 | 30,551 | 31,536 | 31,784 | 32,005 | 31,823 |
Projected poverty rate without climate change (%) | 58.74 | 58.74 | 58.74 | 58.74 | 58.74 | 58.74 | 58.74 | 58.74 | 58.74 | 58.74 |
Projected poverty rate with climate change (%) | 59.11 | 58.68 | 57.60 | 58.07 | 58.62 | 58.72 | 57.25 | 56.88 | 56.55 | 56.82 |
Parameters | IKXA | IOXA | IRXA | IEXA | IIXA | |||||
---|---|---|---|---|---|---|---|---|---|---|
APSIM | DSSAT | APSIM | DSSAT | APSIM | DSSAT | APSIM | DSSAT | APSIM | DSSAT | |
Projected average yield without adaptation (Rice) (kg farm−1) | 2261 | 3041 | 3093 | 3306 | 2225 | 3085 | 3605 | 4138 | 3557 | 4076 |
Average yield change (Rice) (%) [defined as: (average relative yield − 1) × 100] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Projected average yield without adaptation (Wheat) (kgfarm−1) | 3558 | 2953 | 3200 | 2930 | 3195 | 2910 | 4284 | 3325 | 3633 | 3265 |
Average yield change (Wheat) (%) [defined as: (average relative yield − 1) × 100] | 22.30 | 2.10 | 10.30 | 1.30 | 10.10 | 0.70 | 32.20 | 3.30 | 12.50 | 1.50 |
Adoption rate (%) | 63.46 | 58.17 | 41.04 | 50.12 | 37.69 | 59.35 | 74.14 | 58.34 | 44.51 | 53.91 |
Projected net earnings without adaptation (BDTfarm−1) | 21,897 | 23,235 | 26,609 | 25,134 | 23,401 | 23,094 | 27,682 | 28,836 | 29,864 | 29,017 |
Projected net earnings with adaptation (BDT farm−1) | 24,723 | 25,611 | 28,144 | 27,108 | 24,606 | 25,562 | 32,986 | 31,846 | 31,823 | 31,620 |
Projected per-capita earnings without adaptation (BDT) | 30,294 | 30,582 | 31,306 | 30,989 | 30,617 | 30,551 | 31,536 | 31,784 | 32,005 | 31,823 |
Projected per-capita earnings with adaptation (BDT) | 30,901 | 31,092 | 31,635 | 31,413 | 30,876 | 31,081 | 32,675 | 32,430 | 32,425 | 32,382 |
Projected poverty rate without adaptation (%) | 59.11 | 58.68 | 57.60 | 58.07 | 58.62 | 58.72 | 57.25 | 56.88 | 56.55 | 56.82 |
Projected poverty rate with adaptation (%) | 58.21 | 57.92 | 57.11 | 57.44 | 58.25 | 57.94 | 55.58 | 55.93 | 55.94 | 56.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chawdhery, M.R.A.; Al-Mueed, M.; Wazed, M.A.; Emran, S.-A.; Chowdhury, M.A.H.; Hussain, S.G. Climate Change Impacts Assessment Using Crop Simulation Model Intercomparison Approach in Northern Indo-Gangetic Basin of Bangladesh. Int. J. Environ. Res. Public Health 2022, 19, 15829. https://doi.org/10.3390/ijerph192315829
Chawdhery MRA, Al-Mueed M, Wazed MA, Emran S-A, Chowdhury MAH, Hussain SG. Climate Change Impacts Assessment Using Crop Simulation Model Intercomparison Approach in Northern Indo-Gangetic Basin of Bangladesh. International Journal of Environmental Research and Public Health. 2022; 19(23):15829. https://doi.org/10.3390/ijerph192315829
Chicago/Turabian StyleChawdhery, Md Rafique Ahasan, Murtuza Al-Mueed, Md Abdul Wazed, Shah-Al Emran, Md Abeed Hossain Chowdhury, and Sk Ghulam Hussain. 2022. "Climate Change Impacts Assessment Using Crop Simulation Model Intercomparison Approach in Northern Indo-Gangetic Basin of Bangladesh" International Journal of Environmental Research and Public Health 19, no. 23: 15829. https://doi.org/10.3390/ijerph192315829
APA StyleChawdhery, M. R. A., Al-Mueed, M., Wazed, M. A., Emran, S. -A., Chowdhury, M. A. H., & Hussain, S. G. (2022). Climate Change Impacts Assessment Using Crop Simulation Model Intercomparison Approach in Northern Indo-Gangetic Basin of Bangladesh. International Journal of Environmental Research and Public Health, 19(23), 15829. https://doi.org/10.3390/ijerph192315829