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Abstract: Studying construction land expansion (CLE) characteristics and driving factors in resource-
based cities (RBCs) is important to promote efficient land use and maintain ecological equilibrium
in RBCs. This study explores the CLE and its driving factors in RBCs. The results indicated that
(1) the CLE in RBCs became increasingly obvious, and the number of cities with expansion areas
exceeding 20 km2 increased from 29 to 86. In RBCs in different regions, CLE in eastern, central,
and western regions was obvious, while CLE in the northeast region decelerated. The order of CLE
degree at different stages of RBCs was mature, growing, regenerative, and declining. (2) Single
factors such as gross domestic product, fixed-asset investment, and secondary industry added value,
playing a major role. This differs from the dominant role of population and urbanization in existing
research. This occurred because population growth is slow, the urbanization rate is low, population
contraction prominently occurs, and economic development exhibits notable path dependence in
RBCs. (3) Interaction-factor detection demonstrated that the force of two-factor interaction was
greater than that of a single factor, and the interactions of total population with fixed-asset investment
and economic development level strongly drove CLE in RBCs.

Keywords: construction land expansion; resource-based cities; driving factors; Geodetector; China

1. Introduction

Construction land (CL) refers to land for residential areas, transportation facilities, spe-
cial use, mining areas, etc. [1]. Construction land expansion (CLE) indicates other types of
land that are continuously occupied by construction land. CLE changes the habitats, biogeo-
chemistry, hydrology, land cover, and surface energy balance [2]. The disorderly CLE has
increasingly emerged as a limiting factor of regional sustainable development [3]. As one
of the countries with the fastest-growing industrialization and urbanization, China faces
dramatic demands for construction land [4,5]. Due to the large-scale CLE, regional socioe-
conomic and ecological problems, such as the reduction of cultivated land, food shortage,
land price inflation, traffic congestion, and environmental pollution, occur frequently [6,7].
Thus, how to effectively control CLE, deal with the socioeconomic and ecological problems
caused by CLE, and find the solutions for regional sustainable development, has become
an important research concern.

Land use change is a core field of global environmental change and has been a fo-
cus for many researchers in past decades [8,9]. CLE is a significant feature of land use
change, which consumes cultivated land, ecological land, etc. [9–11]; therefore, the CLE
has become the focus of numerous studies [12]. Currently, research on CLE mainly focuses
on three aspects, namely, the impact of CLE on sustainable development, spatiotemporal
evolution characteristics of CLE, and the driving factors of CLE. As to the impact of CLE
on sustainable development, scholars explored the negative effects of CLE; such as the
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decrease in cultivated land [13–15], spatial evolution of rural settlements [16], eco-security
and biodiversity loss [17–19], air pollution [20,21], and the increase in tropospheric ozone
concentration [18]. Regarding the spatiotemporal evolution characteristics of CLE, some
studies discussed the trend of CLE in the past decades [7], while others predicted the
trend of CLE in the future [2,10,22]. The method, such as the sprawl intensity index [23],
exponential landscape expansion index [24,25], spatial center shift model, urban land ex-
pansion estimation [26], and ArcGIS-based spatial analysis [27], have been mainly used
in the analysis of a single city [18], urban agglomeration, or provincial area [27–29], all
cities in a given nation [30,31] and global scale [10,26]. Concerning the driving factors
of CLE, many scholars have proposed that CLE is affected by population growth [32,33],
and economic development [34–36], while others have indicated that CLE is related to the
behavior of local governments [23,37,38]. In general, factors such as population, economic
level, output value of the secondary and tertiary industries, industrial structure, fixed-asset
investment, actual utilization of foreign capital, and fiscal expenditure [23,27,36,38–40], are
often employed in CLE driving factors analysis. While discussing the driving factor of CLE,
many researchers have taken the methods of rank scale theory, correlation analysis, partial
correlation analysis, and econometric models; however, few have been concerned with the
impact of factor interactions on CLE.

Resource-based cities (RBCs) are those whose leading industries involve the exploita-
tion and processing of natural resources, such as minerals, forests, and fossil fuels [41–43].
As national bases for the supply of energy and raw materials, RBCs have made a notable
contribution to national economic development; however, RBCs are also the most typical ar-
eas of ecological destruction in China [44,45]. The agglomeration of population and industry
brought by resource exploitation in RBCs requires substantive CL as the space carrier, such
as mining land, industrial land, oil field, saltworks, quarry, residential land, transportation
land, etc. The CLE, to some extent, reduces ecological land, which poses huge challenges to
ecosystem stability. Exploring CLE spatial patterns and influencing factors in RBCs plays
an important role in improving the efficiency of CL and stabilizing the ecosystem in RBCs.
Unfortunately, relevant researches on RBC focus on the following aspects: the mechanism
and policy measures of sustainable development [46], the factors or mechanisms influenc-
ing transformation, transformation performance and patterns [47–49], alternative industry
selection [50], development efficiency evaluation [51,52] and vulnerability assessment [51],
ecological footprint and ecological carrying capacity [53], social–economic–environmental
coupling coordination characteristics [54,55], spatiotemporal patterns of industry and land
use [23,56], and classification of RBCs [57].

In summary, it is found that the current research on CLE and RBCs could provide
an important reference value; however, there are two gaps. First, although the impact of
multiple factors on CLE has been considered, the impact of the interaction among multiple
factors on CLE has been ignored. Second, there are few studies on CLE in RBCs, which
need to be further expanded. RBCs are widely distributed in China and even the world.
The economic development level and policy tendency change in different regions and
different development stages of RBCs. It is important to identify the spatiotemporal pattern
of CLE in RBCs in various regions and at different development stages to analyze the
driving factors. To fill these gaps, this paper adopted 126 prefecture-level RBCs in China
as research objects, examined the spatial pattern characteristics of CLE in the RBCs, and
studied the driving factors of CLE by taking the Geodetector method from a single element
and element interactions perspective.

2. Data and Methods
2.1. Study Area

In the national sustainable development plan for RBCs (2013–2020) issued by the State
Council, 262 RBCs were identified in China, including 126 prefecture-level cities, 62 county-
level cities, 58 counties (autonomous counties and forest areas), and 16 municipal districts
(development and management zones) [41–43]. In this study, 126 prefecture-level cities
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were chosen as the research objects (Figure 1a). According to the different regions, among
the 126 RBCs, the western region contains the most RBCs (46 cities), accounting for 36.5% of
the total number of prefecture-level RBC in China; there are 37 RBCs in the central region,
accounting for 29.4% of the total number of RBCs; and 23 RBCs in the northeastern region
and 20 in the eastern region, accounting for 18.2% and 15.9%, respectively, of the total
number of RBCs in China (Figure 1a). According to the above plan, RBCs can be divided
into four types, namely, growing, mature, declining, and regenerative types, according to
the resource security ability and sustainable economic and social development capacity;
among these types, the numbers of growing, mature, declining, and regenerative cities are
20, 66, 24 and 16, respectively (Figure 1b). By 2018, 126 RBCs exhibited a construction area
of 85,000 km2, accounting for 31.71% of the total CL area in China, the total population
reached 440 million people, accounting for 31.84% of the total population in China, and the
gross domestic product (GDP) amounted to 20,180.2 billion yuan, accounting for 22.41% of
the national GDP.
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Figure 1. Classification and distribution of RBCs in China. (a) Classification of RBCs by region;
(b) classification of RBCs by development stage.

2.2. Data

This study was conducted at the city scale, and the time span was 1995–2018, of which
the period from 1995 to 2015 was divided into 5-year intervals; since some data for 2020
were unavailable, the latest data were obtained for 2018, thereby ensuring that all data
could be synchronously obtained. Therefore, 2015–2018 was considered a separate period.
The data used in this paper included the following: (1) land use/cover changes (LUCCs)
data were obtained from the Land Use/Land Cover Remote Sensing Detection Database
for 1995, 2000, 2005, 2010, 2015, and 2018, with a spatial resolution of 30 m× 30 m. The first-
level land classification includes 1—cultivated land, 2—forestland, 3—grassland, 4—water
area, 5—CL, which includes urban land (build up area), rural residential land, and other
construction land (mining land, industrial land, oil field, saltworks, quarry, transportation
land, airport, and special land), and 6—unused land, etc. These data were used to extract
the CL area in each RBC. The data were obtained from the Resource and Environmental
Science and Data Center (https://www.resdc.cn/ (accessed on 10 October 2021)) of the
Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of
Sciences. (2) National, provincial and municipal boundary vector data were used to extract
the boundaries of each city. The data originated from 1:1 million data provided by the
National Basic Geographic Information System. (3) In the analysis of influencing factors,
the socioeconomic data involved in the indicators were acquired from the China Urban
Statistical Yearbook from 2001 to 2019, Statistical Yearbook of Provinces (cities and autonomous

https://www.resdc.cn/
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regions), Statistical Bulletin of National Economic and Social Development of Cities from 2000 to
2018, and China Land Resources Statistics Yearbook.

2.3. Methods

Based on LUCCs data, this paper uses reclassification technology to extract the CL of
RBCs, scrutinizes the spatiotemporal differentiation characteristics of CLE by taking the
standard deviation ellipse, and analyzes the driving factors of CLE in RBCs by employing
the geographic detector. The flow of various methods is shown in Figure 2.
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2.3.1. Reclassification

One of the important functions of ArcGIS is the determination of potential information
via classification. According to different research needs, the original data can be reclassified
and extracted in ArcGIS 10.8 software (ESRI, Redlands, CA, USA) to obtain the required
data. This process is referred to as reclassification. The main purposes of reclassification
are as follows: (1) old values are replaced with new values; (2) multiple sets of values are
grouped into one class; (3) the values of a group of grids are reclassified according to the
same level; and (4) specified values are set to null or null values are set to a certain value.
This study used the reclassification method to extract CL in 126 RBCs from the obtained
LUCCs data. There are six first-class land types in the LUCCs data. According to the LUCCs
classification system, mining land, industrial land, oil field, saltworks, quarry, residential
land, transportation land, airport, and special land were categorized as CL types.



Int. J. Environ. Res. Public Health 2022, 19, 16109 5 of 20

2.3.2. Standard Deviation Ellipse

The standard deviation ellipse method was proposed by D. Welty Lefever, a professor
at the University of Southern California, in 1926. This method can be used to analyze
the spatial distribution direction and trend of geographic elements, and reveal the overall
characteristics of the spatial distribution of geographic elements. The standard deviation
ellipse method includes parameters, such as the center of the ellipse, azimuth angle, and
long and short axes. This method has been widely used in the study of economic spatial
patterns and terrain distributions. In this study, the center of the ellipse was used to analyze
the average center of CLE in RBCs.

The azimuth represents the angle formed by the true north of the ellipse and the
clockwise long axis, while the direction and length of the two axes could be used for RBC
analysis. The directional characteristics and dispersion degree of CLE can be calculated
as follows in Equation (1). The direction and length of two axes are used to analyze the
directional characteristics and discrete degree of construction land expansion in RBCs. The
related calculation formulas are as follows:

The mean center of the standard deviation ellipse (Xw,Yw) can be obtained as:

Xw =
∑n

i=1 wixi

∑n
i=1 wi

, Yw =
∑n

i=1 wiyi
∑n

i=1 wi
(1)

The azimuth is α can be calculated as:

tanα =

(
∑n

i=1 w2
i x̃2

i −∑n
i=1 w2

i ỹ2
i

)
+

√(
∑n

i=1 w2
i x̃2

i −∑n
1 w2

i ỹ2
i

)2
+ 4 ∑n

i=1 w2
i x̃2

i ỹ2
i w2

i x̃2
i ỹ2

i

2 ∑n
i=1 w2

i x̃iỹi
. (2)

The x-axis standard deviation σx and y-axis standard deviation σy can be deter-
mined as:

σx =

√√√√∑n
i=1(wix̃i cosα−wiỹi sinα)2

∑n
i=1 w2

i
(3)

σy =

√√√√∑n
i=1(wix̃i sinα−wiỹi cosα)2

∑n
i=1 w2

i
(4)

where (xi,yi) denotes the spatial location of the RBC, wi denotes the corresponding weight,
and (x̃i,ỹi) denotes the coordinate deviation from the spatial location of each RBC to the
average center (Xw,Yw).

2.3.3. Geodetector

The Geodetector is a new spatial statistical method used to detect the spatial differen-
tiation of elements and reveal the driving factors behind this process [58], which has been
widely employed in the study of the impact mechanism of the natural environment and
social economy. The Geodetector can not only detect numerical data but can also detect
the impact of the interaction between two factors on the dependent variable, which is an
effective tool to study the driving effect of complex geographic factors. When processing
the original data, this study drew lessons from the existing research to discretize and layer
the independent variable data by using the natural breakpoint method. As such, in this
study, factor differentiation and interaction detection were performed, thereby identifying
the driving factors of CLE in RBCs and their interactions and examining the main influ-
encing factors of CLE and their impact degree after controlling for the interaction among
various factors.

Differentiation and factor detection: the differentiation in Y and the extent to which
a certain factor X can explain the spatial differentiation in attribute Y were determined,
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where Y denotes the CL type in a given RBC, and X is the driving factor. The equation is
as follows:

q = 1− 1
Nσ2

L

∑
h=1

Nhσ
2
h (5)

where q is the influence detection index of the driving factors of CL in the RBC, N is the
number of samples in the entire region, i.e., 126 RBCs, which is the number of sample units
in the partition area, h = 1, 2, 3, . . . , L denotes the stratification of variable or a given factor,
is the variance in the dependent variable within the entire region, and is the variance within
the partition area. The value range of q is [0, 1]. For q = 0, the observed factors do not drive
CLE in the considered RBCs. The larger the value of q is, the greater the driving effect of
the observed factors on CLE in the RBCs.

Interaction detection: in this study, this technique was used to identify the interaction
between different driving factors and evaluate whether the combined action of two driving
factors enhanced or reduced the explanatory power of the dependent variable Y, e.g., factors
A and B influencing the change in CL in RBCs. A new layer C could be obtained by spatially
stacking layers A and B, and the attributes of C were jointly determined by those of A and
B. By comparing the influence of the factors in layers A and B to the influence of the factors
in layer C, we could determine whether the interaction between two factors on CL in RBCs
was greater or less than the influence of a single factor.

Interactive detection occurs as follows: q(A∩B) < min(q(A),q(B)) indicates that the
nonlinearity is reduced after interaction between factors A and B; min(q(A),q(B)) < q(A∩B)
< max(q(A),q(B)) indicates that the single-factor nonlinearity is reduced after interaction
between A and B; q(A∩B) > max(q(A),q(B)) indicates that the two factors mutually increase
after interaction; q(A∩B) > q(A) + q(B) indicates that the two factors enhance each other in a
nonlinear manner; and q(A∩B) = q (A) + q(B) indicates that the two factors are independent.

3. Results
3.1. Spatiotemporal Evolution Characteristics of Construction Land
3.1.1. General Characteristics

ArcGIS software was used to reclassify the LUCCs data and extract the CL area in
RBCs. Statistics revealed that the CL area greatly changed from 1995 to 2018 (Figure 3a), in
which the changes from 2010–2015 and 2015–2018 were very obvious (Figure 3b). From
1995 to 2018, the CL area increased from 53,590.04 to 85,224.76 km2. Adopting 1995 as
the base year, the growth rate of the CL area in 2018 reached 59.03%. During the study
period, the CL growth rate exhibited an increasing trend from 1995 to 2015. From 2010 to
2015, the CL growth rate reached up to 18.67% and the CL area increased by 11,664.47 km2,
while it decreased from 2015 to 2018 because after 2015, to adapt to the new normal of
China’s economy, China has continuously strengthened the protection of cultivated land
and the intensive use of land resources [59]. The government has issued a series of land
policies, such as Guiding Opinions on Further Promoting the Redevelopment of Inefficient
Urban Land (Trial Implementation) [60], National Land Planning Outline (2016–2030) [61],
and National Land Improvement Plan (2016–2020) [62]. These policies have effectively
reinforced the intensive and economical use of land resources, which led to a decline in the
growth rate.
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construction land.

In terms of different regions, CL was mainly distributed in the eastern and central
regions, whereas relatively few CL areas were observed in the western and northeastern
regions. As shown in Figure 4, during the study period, among the four regions, the
eastern, central, and northeastern RBCs exhibited significantly expanded CL areas. From
1995 to 2000, there were 29 cities whose CL area increased by more than 20 km2, such as the
Haixi Mongolian and Tibetan Autonomous Prefecture and Jiaozuo. Only five cities were
observed whose CL area decreased during the same period, namely, Huangshi, Weinan,
Yan’an Xianyang, and Qujing. From 2000 to 2005, there were 48 cities whose CL area
increased by more than 20 km2, such as Longyan, Tangshan, and Dongying. During the
same period, there were nine cities with a reduced CL area, such as Qitaihe, Jixi, and
Mudanjiang. From 2005 to 2010, 59 cities were observed with an increase of more than
20 km2 in their CL area, such as Yulin, Ezhou, and Huangshi. During the same period,
seven cities occurred with a decrease in their CL area, including Baiyin, Shuangyashan, and
Karamay. From 2010 to 2015, there were 101 cities with an increase of more than 20 km2 in
their CL area, such as Zhangjiakou and Yulin, and only 2 cities with a decrease in the CL
area were observed during the same period, namely, Longyan and Hegang. From 2015 to
2018, there were 86 cities with an increase of more than 20 km2 in the CL area, including
Linyi, Ganzhou, and Luliang, while 13 cities with a decrease in the CL area were observed
during the same period, such as Baotou, Wuhai, and Pu’er. In the study area, from 1995
to 2018, there were 9 cities with an increase of more than 20 km2 in their CL area, such as
Jining, Puyang, and Yuncheng. During the study period, the number of cities with a CL
increase exceeding 20 km2 continued to increase, indicating that CLE obviously occurred
in these RBCs.
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3.1.2. Regional Characteristics

The CL area in the RBCs in the four regions exhibited an upward trend (Figure 5a).
During the study period, the CL area in the RBCs was similar between the eastern and
central regions, and these two regions experienced the largest expansion in the CL area
among the four regions. The CL area in the RBCs in the western region increased approx-
imately 2 times, and after 2015, the area exceeded that in northeast region, which was
mainly related to the 2 rounds of western development policies implemented by the state
since 2000. The CL area in the RBCs in the northeastern region still increased, but the extent
was limited because the RBCs in the northeastern region lacked growth momentum, the
population growth rate declined, and the demand for CL decelerated.
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From the perspective of the CL growth rate, from 1995 to 2018, the CL change status
in the RBCs in each region was as follows (Figure 5b): (1) the CL growth rate in the RBCs in
the eastern region indicated a fluctuating upward trend, of which the highest growth rate of
18.33% from 2010–2015 occurred because the eastern region exhibited the fastest economic
growth and highest economic vitality in China. In the process of rapid economic growth,
it was highly necessary to increase the CL area to ensure production and living activities,
so the CL area in the RBCs in this region rapidly expanded. (2) The CL growth rate in
the RBCs in the central region consistently revealed an increasing trend, and the growth
rate was the highest from 2015 to 2018, at 23.93%, indicating that with the implementation
of strategies such as the Rise of Central China and Central Plains Urban Agglomeration,
the RBCs in the central region could achieve more adequate development. With the large
population in the central region, the demand for CL was high, so the CL expansion intensity
and speed were accelerated. (3) The CL area in western RBCs was the smallest among the
four regions, with a total increase of 9051.09 km2. The growth rate was the highest between
2010 and 2015, at 45.48%. From 2015–2018, the growth rate sharply declined, indicating
that the expansion intensity decreased. The RBCs in the western region were characterized
by a small CL area and a relatively low economic development level, so the expansion
was not notable. (4) Before 2010, the CL area in the RBCs in the northeast region slowly
increased, with a growth rate lower than 2% during each period. After 2010, the trend of
CL expansion accelerated, especially between 2015 and 2018, and the growth rate increased
to 15.76%.

3.1.3. Characteristics of the Development Stages

The CL area in the various RBCs at the different development stages continuously
expanded (Figure 6a), but there was a gap in the expansion area. The order of the CLE
area was mature-type RBCs > growing-type RBCs > regenerative-type RBCs > declining-
type RBCs. Among these four types, the total amount of CL in the mature RBCs was
always larger than that in the other three types of RBCs, with the greatest increase in area
representing a total increase of 17,429.07 km2. In regard to CLE in mature RBCs, on the
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one hand, the process benefited from the large number of mature RBCs, namely, 66 cities,
accounting for 52.38% of the total number of cities (126); on the other hand, the economic
development process in these cities occurred at the stage of rapid improvement, in which
it was urgent to extend the industrial chain and construct industrial clusters, resulting
in a high demand for CL. However, the resources in declining cities were increasingly
exhausted, the development momentum was insufficient, these cities gradually declined,
and population growth occurred slowly or the population even decreased (data from the
Seventh National Census), so the CLE phenomenon was accordingly decelerated.
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Based on the CL growth rate, the change in CL in the various types of RBCs from
1995 to 2018 was as follows (Figure 6b): (1) the CL area in the growing RBCs increased
by 5576.95 km2, which is consistent with the overall CL growth rate in the 126 RBCs,
indicating an upward trend from 1995 to 2015, with the fastest growth from 2010 to 2015, at
43.42%, and a downward trend after 2015. (2) The CL area in the mature RBCs increased
by 17,429.07 km2, the growth rate reached peaked (19.82%) from 2010 to 2015, and then
slightly declined. (3) The CL area in the declining RBCs was the smallest among the four
regions, with a total increase of 3301.65 km2, but the growth rate was increasing. (4) The
CL growth rate in the regenerative RBCs was not high, with a total increase of 5327.05 km2,
but the growth rate was also persistently increasing.

3.2. Spatial Concentration Degree and Direction Changes in Construction Land

With the use of ArcGIS software and application of the CL area in each city as the
weight, the standard deviation ellipse of the CL change in the RBCs from 1995 to 2018
(Figure 7a) was obtained, and the relevant parameters are listed in Table 1. Figure 7a shows
that the CL area in the RBCs exhibited a trend of expanding from northeast to southwest.
From 1995 to 2015, the distribution range of the standard deviation ellipse of CL in the RBCs
gradually expanded; however, from 2015 to 2018, the distribution range of the standard
deviation ellipse contracted, indicating that CLE in the RBCs was clustered in space. The
barycenter coordinates moved from (116◦16′ E, 36◦41′ N) to (114◦96′ E, 36◦78′ N), and the
moving distance reached 115 km2. Overall, the azimuth angle increased, and the short axis
of the standard deviation ellipse increased, indicating that the main driving force of CLE
in the RBCs originated from the east–west direction. This finding could be explained as
follows: from 1995 to 2018, the RBCs in the eastern, central, and western regions achieved
a relatively high intensity of land development, the average land development intensity
increased by 4.04%, 2.86%, and 1.08%, respectively, and the CL area significantly expanded.
During the same period, the land development intensity in the RBCs in the northeast region
only increased by less than 1%, and CLE was not obvious (Table 2).
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Table 1. Standard deviation ellipse analysis results.

Years Longitude of
Barycenter

Latitude of
Barycenter

Azimuth
Angle

Area
(km2)

Perimeter
(km)

1995 116◦16′ N 36◦41′ E 32◦23′ 2,031,245.41 5292.25
2000 115◦95′ N 37◦21′ E 33◦86′ 2,104,505.38 5343.40
2005 115◦72′ N 37◦09′ E 34◦28′ 2,192,195.44 5415.20
2010 115◦44′ N 36◦95′ E 35◦39′ 2,260,801.96 5482.58
2015 114◦79′ N 36◦83′ E 37◦19′ 2,331,506.61 5542.20
2018 114◦96′ N 36◦78′ E 35◦41′ 2,298,016.82 5503.07

Table 2. Average value of the land development intensity in the RBCs in the different regions (%).

Region 1995 2018 1995–2018

Northeastern region 2.97 3.78 0.81
Eastern region 8.50 12.54 4.04
Central region 5.18 8.04 2.86
Western region 1.27 2.35 1.08

To analyze the variation characteristics of CLE in the RBCs in detail, standard deviation
ellipses were generated for each region, and the following results could be obtained: from
1995 to 2018, (1) CLE in the RBCs in Northeast China was not notable, mainly due to the
lack of growth power in the RBCs within this region, and the demand for CL declined.
With increasing land development intensity in southern cities such as Huludao, Panjin,
and Anshan, and decreasing land development intensity in northeastern cities such as
Mudanjiang and Qitaihe, the standard deviation ellipse slightly expanded from north to
south. (2) The expansion direction of the CL area in the RBCs in the eastern region was the
north–south direction. The RBCs in this region were mainly distributed in Hebei, Shandong,
and Jiangsu provinces. The number of RBCs in Zhejiang, Fujian, and Guangdong provinces
was small, and the development intensity was low. The driving force of spatial expansion
in this region mainly originated from Hebei, Shandong, and Jiangsu provinces. From
the perspective of the land development intensity, the land development intensity in
both northern cities, such as Zhangjiakou, Zibo, Dongying, and Laiwu, and southern
cities, such as Suqian and Xuzhou, increased, so the standard deviation ellipse expanded
along the north–south direction. (3) The expansion direction of CL in the RBCs in Central
China was the north–south direction, and the standard deviation ellipse range increased,
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indicating that the urban CL area significantly increased along the north–south direction.
From the perspective of the land development intensity, the land development intensity in
eastern and western cities decreased, such as Huainan, Maanshan, and Bozhou, but the
land development intensity in northern and southern cities increased, such as Yangquan,
Lvliang, Ezhou, and Yichun, so the standard deviation ellipse expanded along the north–
south direction. (4) The expansion direction of CL in the western RBCs was the east–west
direction, and the expansion was very obvious. In this area, only the land development
intensity in Baotou city decreased, whereas the land development intensity in the other
cities exhibited an increasing trend, especially in the RBCs in the southwestern region such
as Zhaotong, Bijie, Qiannan, and Qianxinan, which promoted westward expansion of the
standard deviation ellipse.

To analyze the variation characteristics of ECL in the RBCs in detail, standard deviation
ellipses were generated for each region, and the following results could be obtained: from
1995 to 2018, (1) ECL in the RBCs in Northeast China was not notable, mainly due to the
lack of growth power in the RBCs within this region, and the demand for CL declined.
With increasing land development intensity in southern cities such as Huludao, Panjin,
and Anshan, and decreasing land development intensity in northeastern cities such as
Mudanjiang and Qitaihe, the standard deviation ellipse slightly expanded from north to
south. (2) The expansion direction of the CL area in the RBCs in the eastern region was the
north–south direction. The RBCs in this region were mainly distributed in Hebei, Shandong,
and Jiangsu provinces. The number of RBCs in Zhejiang, Fujian, and Guangdong provinces
was small, and the development intensity was low. The driving force of spatial expansion
in this region mainly originated from Hebei, Shandong, and Jiangsu provinces. From
the perspective of the land development intensity, the land development intensity in
both northern cities, such as Zhangjiakou, Zibo, Dongying, and Laiwu, and southern
cities, such as Suqian and Xuzhou, increased, so the standard deviation ellipse expanded
along the north–south direction. (3) The expansion direction of CL in the RBCs in Central
China was the north–south direction, and the standard deviation ellipse range increased,
indicating that the urban CL area significantly increased along the north–south direction.
From the perspective of the land development intensity, the land development intensity in
eastern and western cities decreased, such as Huainan, Maanshan, and Bozhou, but the
land development intensity in northern and southern cities increased, such as Yangquan,
Lvliang, Ezhou, and Yichun, so the standard deviation ellipse expanded along the north–
south direction. (4) The expansion direction of CL in the western RBCs was the east–west
direction, and the expansion was very obvious. In this area, only the land development
intensity in Baotou city decreased, whereas the land development intensity in the other
cities exhibited an increasing trend, especially in the RBCs in the southwestern region such
as Zhaotong, Bijie, Qiannan, and Qianxinan, which promoted westward expansion of the
standard deviation ellipse.

3.3. Analysis of the Driving Factors of CLE

A large number of empirical studies have demonstrated that population growth, eco-
nomic development, and urbanization affect CLE. Referring to relevant
achievements [23,27,36,38,39,63], this study observed the influences of the total population,
urbanization level, economic development level, fixed-asset investment, fiscal expenditure,
actual utilization of foreign capital, land transfer income, added value of the secondary
and tertiary industries, and resource endowment on CLE (Table 3). Among these factors,
resource endowment refers to the research of Chen Jianbao [64] and Li Hong [65], which can
be represented by the number of employees in the mining industry. Among the 126 RBCs,
the CL area in a small number of RBCs exhibited negative growth, which were not used as
observation objects. Due to the different establishment times of the various RBCs, to ensure
data continuity, single driving factors and the interaction between two factors of CLE in
the RBCs in 2005, 2010, 2015, and 2018 were examined.
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Table 3. Observation index of driving factor analysis of CLE in RBCs.

Variable Symbol Explanation

Construction land area Y Construction land area in the city
Total population X1 Total population of the city

Urbanization level X2 Urban population/total population of the city
Economic development level X3 Gross domestic product of the city

Fixed-asset investment X4 Total investment in the fixed assets of the city
Fiscal expenditure X5 The sum of all financial expenditures

Actual utilization of foreign capital X6 Total amount of foreign capital actually utilized in the current year
Land transfer income X7 Proceeds from the sale of land by local governments

Added value of the secondary industry X8 Final output of the secondary industry
Added value of the tertiary industry X9 Final output of the tertiary industry

natural resources X10 Number of employees in the mining industry

3.3.1. Single-Factor Detection Results

Single factors were detected via the Geodetector, and the results demonstrated that the
total population, economic development level, fixed-asset investment, fiscal expenditure,
and added value of the secondary industry all passed the significance test at the level
of 1%; urbanization level (2015), actual utilization of foreign capital and land transfer
income (2010–2018), added value of the tertiary industry (2005–2015), and natural resources
(2005–2010) passed the significance test at the 5% level (Table 4).

Table 4. Single-factor detection results of CLE in RBCs.

Variable 2005 2010 2015 2018

X1 0.28 (0.00) 0.27 (0.00) 0.32 (0.00) 0.40 (0.00)
X2 0.04 (0.41) 0.02 (0.65) 0.09 (0.03) 0.05 (0.27)
X3 0.40 (0.00) 0.47 (0.00) 0.48 (0.00) 0.49 (0.00)
X4 0.43 (0.00) 0.36 (0.00) 0.35 (0.00) 0.27 (0.00)
X5 0.43 (0.00) 0.31 (0.00) 0.45 (0.00) 0.35 (0.00)
X6 0.16 (0.06) 0.18 (0.00) 0.20 (0.00) 0.27 (0.00)
X7 0.19 (0.08) 0.34 (0.00) 0.20 (0.01) 0.19 (0.01)
X8 0.37 (0.00) 0.33 (0.00) 0.42 (0.00) 0.45 (0.00)
X9 0.40 (0.00) 0.51 (0.00) 0.48 (0.00) 0.06 (0.23)
X10 0.13 (0.02) 0.13 (0.02) 0.09 (0.08) 0.07 (0.39)

In terms of the explanatory power of a single factor, from 2005 to 2015, the economic
development level, added value of the secondary industry, added value of the tertiary
industry, and fixed-asset investment were the main reasons for CLE in the RBCs. From 2015
to 2018, the economic development level, added value of the secondary industry, and fixed-
asset investment were the main reasons for CLE in the RBCs. The above results indicated
that CLE was closely related to the economic level and that economic development drove
the CLE process.

In existing studies [23,27,36,38,39], the population and urbanization level obviously
affect CLE, but this study revealed that the impact of the population on CLE in the RBCs
was limited, and the urbanization level failed to pass the significance test in most years.
This occurred because of the notable path dependence of population growth and eco-
nomic development in the RBCs. During the study period, the population growth and
urbanization rates in the RBCs were lower than those in all cities and non-resource-based
cities (NRBCs) in China (Table 5). There were 37 RBCs with population shrinkage, while
there were 58 NRBCs exhibiting population decline, accounting for 29.60% and 24.58%,
respectively, of the total number of two types of cities, reflecting that the phenomenon of
population decline in the RBCs was highly notable. Therefore, in the RBCs, slow population
growth, a low urbanization rate, and population shrinkage resulted in a lower demand for
CL. In addition, the RBCs established specific industries closely related to resource-based
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industries, such as mining, industry and mining, and manufacturing, and economic growth
depended on scale expansion of these industries. Therefore, a large number of other CL
types (factory and mining land, large industrial land, oilfields, salt fields, quarries, etc.)
were required as space carriers, which could be verified from the structural characteristics
of the various CL types in the RBCs. In the RBCs, the expansion rate of the other CL types
was higher than that of urban and rural residential land (Table 6).

Table 5. Population growth rate and urbanization rate (%).

Area
Population Growth Rate Urbanization Rate

2000–2005 2005–2010 2010–2015 2015–2018 2005 2010 2015 2018

All cities 3.58 3.56 3.44 2.07 34.04 42.60 54.04 57.75
NRBCs 5.05 5.09 4.96 2.96 34.53 43.41 55.21 58.67
RBCs 2.10 2.02 1.91 1.18 33.30 41.36 52.29 56.36

Note: Population growth rate data originate from World POP (www.worldpop.org (accessed on 12 October
2021)); urbanization rate data originate from the China City Statistical Yearbook and Statistical Yearbook of Provinces
and Cities.

Table 6. Expansion rate of the different CL types in RBCs (%).

Land Type 1995–2000 2000–2005 2005–2010 2010–2015 2015–2018

Urban land 0.011 0.031 0.034 0.046 0.140
Rural settlement 0.005 0.003 0.001 0.011 0.022

Other construction land 0.017 0.066 0.065 0.182 0.102

Overall, the economy and investment obviously affected CLE in RBCs. The influence
of economic factors was mainly manifested in the fact that the economic development
level in RBCs mainly depended on extractive, mining, manufacturing, and other industries
requiring a large amount of industrial and mining land for support, so economic growth
drove CLE. Fixed-asset investment is often used in municipal public facilities and real estate;
more importantly, it is used in the construction of industrial infrastructure, such as that in
extractive, mining, and manufacturing industries, thereby promoting an increase in the
CL scale. To a certain extent, land transfer, fiscal expenditure, and fixed-asset investment
reflect the government policy tendency. The government expropriates agricultural land at
a low price and sells it at a high price. Various investment and construction behaviors of
developers after land purchase also promote CLE.

3.3.2. Factor Interaction Detection Results

Based on single-factor analysis, considering the influence of factor interactions on
CLE in the RBCs, factor interaction detection was further used for analysis. The factor
interaction detection results (Table 7) revealed that the relationship was enhanced after
factor interaction, indicating that two-factor interaction could enhance the interpretation of
CLE. Among them, in 2005, the interaction between the total population (X1) and fixed-asset
investment (X4), economic development level (X3), added value of the secondary industry
(X8), fiscal expenditure (X5), and added value of the tertiary industry (X9) was notable, at
0.73, 0.65, 0.62, 0.62, and 0.57, respectively. In 2018, fixed-asset investment (X4) and actual
utilization of foreign capital (X6), total population (X1) and fixed-asset investment (X4),
total population (X1) and economic development level (X3), economic development level
(X3) and fixed-asset investment (X4), and fixed-asset investment (X4) and fiscal expenditure
(X5) exhibited obvious interactions, at 0.69, 0.65, 0.63, 0.62, and 0.62, respectively. From 2005
to 2018, the interaction between the total population, fixed-asset investment, and economic
development level was strong. Each of these three indicators notably impacted CLE. After
the interaction between any two factors, the impact on CLE further increased. This suggests
that with the support of the population, the economic development and investment levels
could be improved, fixed-asset investment could be increased, infrastructure could be

www.worldpop.org
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optimized, the urban development rate could be enhanced, employment opportunities
could be increased, more people could be attracted to gather, and the demand for land
could be expedited, thus promoting CLE to a certain extent.

Table 7. Factor interaction detection results of CLE in RBCs.

Factor Interaction 2005 2010 2015 2018

X1 ∩ X2 0.43 ↑ 0.45 ↑ 0.59 (*)↑ 0.67 ↑
X1 ∩ X3 0.65 (*)↑↑ 0.69 (*)↑↑ 0.56 (*)↑↑ 0.64 (*)↑↑
X1 ∩ X4 0.73 (*)↑ 0.69 (*)↑ 0.68 (*)↑ 0.65 (*)↑↑
X1 ∩ X5 0.62 (*)↑↑ 0.50 (*)↑↑ 0.50 (*)↑↑ 0.51 (*)↑↑
X1 ∩ X6 0.49 ↑ 0.53 (*)↑↑ 0.46 (*)↑↑ 0.60 (*)↑↑
X1 ∩ X7 0.42 ↑↑ 0.56 (*)↑ 0.45 (*)↑↑ 0.50 (*)↑↑
X1 ∩ X8 0.62 (*)↑↑ 0.54 (*)↑ 0.56 (*)↑↑ 0.61 (*)↑↑
X1 ∩ X9 0.57 (*)↑↑ 0.66 (*)↑ 0.60 (*)↑↑ 0.47 ↑↑
X1 ∩ X10 0.53 (*)↑ 0.56 (*)↑ 0.54 ↑ 0.59 ↑
X2 ∩ X3 0.55 ↑ 0.65 ↑ 0.54 ↑↑ 0.60 ↑
X2 ∩ X4 0.54 ↑ 0.48 ↑ 0.44 ↑↑ 0.48 ↑
X2 ∩ X5 0.53 ↑ 0.50 ↑ 0.65 ↑ 0.62 ↑
X2 ∩ X6 0.43 ↑ 0.39 ↑ 0.37 ↑ 0.40 ↑
X2 ∩ X7 0.37 ↑ 0.46 ↑↑ 0.44 ↑ 0.28 ↑
X2 ∩ X8 0.45 ↑ 0.41 ↑↑ 0.45 ↑↑ 0.54 ↑
X2 ∩ X9 0.52 ↑ 0.56 ↑ 0.53 ↑↑ 0.16 ↑
X2 ∩ X10 0.34 ↑ 0.31 ↑ 0.30 ↑ 0.17 ↑
X3 ∩ X4 0.50 (*)↑↑ 0.52 (*)↑↑ 0.57 (*)↑↑ 0.62 (*)↑↑
X3 ∩ X5 0.50 (*)↑↑ 0.62 (*)↑↑ 0.55 (*)↑↑ 0.61 (*)↑↑
X3 ∩ X6 0.53 ↑↑ 0.66 (*)↑↑ 0.58 (*)↑↑ 0.63 (*)↑↑
X3 ∩ X7 0.46 ↑↑ 0.64 (*)↑↑ 0.58 (*)↑↑ 0.64 (*)↑↑
X3 ∩ X8 0.54 (*)↑↑ 0.59 (*)↑ 0.59 (*)↑↑ 0.54 (*)↑↑
X3 ∩ X9 0.47 (*)↑↑ 0.63 (*)↑↑ 0.51 (*)↑↑ 0.53 ↑↑
X3 ∩ X10 0.52 (*)↑↑ 0.65 (*)↑ 0.56 ↑↑ 0.60 ↑
X4 ∩ X5 0.48 (*)↑↑ 0.49 (*)↑↑ 0.63 (*)↑↑ 0.62 (*)↑↑
X4 ∩ X6 0.53 ↑↑ 0.62 (*)↑↑ 0.56 (*)↑↑ 0.69 (*)↑
X4 ∩ X7 0.51 ↑↑ 0.61 (*)↑ 0.58 (*)↑ 0.51 (*)↑
X4 ∩X8 0.49 (*)↑↑ 0.48 (*)↑↑ 0.55 (*)↑↑ 0.56 (*)↑↑
X4 ∩X9 0.51 (*)↑↑ 0.61 (*)↑↑ 0.56 (*)↑↑ 0.34 ↑
X4 ∩X10 0.55 (*)↑↑ 0.62 (*)↑ 0.58 ↑ 0.39 ↑
X5 ∩ X6 0.53 ↑↑ 0.58 (*)↑↑ 0.55 (*)↑↑ 0.51 (*)↑↑
X5 ∩ X7 0.51 ↑↑ 0.55 (*)↑↑ 0.54 (*)↑↑ 0.51 (*)↑↑
X5 ∩ X8 0.56 (*)↑↑ 0.53 (*)↑↑ 0.54 (*)↑↑ 0.57 (*)↑↑
X5 ∩ X9 0.52 (*)↑↑ 0.60 (*)↑↑ 0.56 (*)↑↑ 0.45 ↑
X5 ∩ X10 0.56 (*)↑↑ 0.52 (*)↑ 0.62 ↑ 0.49 ↑
X6 ∩ X7 0.37 ↑ 0.48 (*)↑↑ 0.42 (*)↑ 0.50 (*)↑
X6 ∩ X8 0.50 ↑↑ 0.45 (*)↑↑ 0.52 (*)↑↑ 0.56 (*)↑↑
X6 ∩ X9 0.49 ↑↑ 0.59 (*)↑↑ 0.56 (*)↑↑ 0.34 ↑
X6 ∩ X10 0.46 ↑ 0.44↑ (*) 0.44 ↑ 0.45 ↑
X7 ∩ X8 0.51 ↑↑ 0.55 (*)↑↑ 0.53 (*)↑↑ 0.55 (*)↑↑
X7 ∩ X9 0.48 ↑↑ 0.57 (*)↑↑ 0.57 (*)↑↑ 0.30 ↑
X7 ∩X10 0.37 ↑ 0.58 (*)↑ 0.45↑ 0.37 ↑
X8 ∩ X9 0.51 (*)↑↑ 0.55 (*)↑↑ 0.50 (*)↑↑ 0.47 ↑↑
X8 ∩ X10 0.53 (*)↑ 0.50 (*)↑ 0.47 ↑↑ 0.52 ↑↑
X9 ∩ X10 0.55 (*)↑ 0.63 (*)↑↑ 0.57 ↑↑ 0.19 ↑

Note: * indicates passing the significance test, ↑↑ indicates mutual enhancement, and ↑ indicates nonlinear
enhancement.

4. Discussion and Conclusions
4.1. Discussion

Based on the above results of this study, the following points should be considered:
First, according to the basic data of CLE research, existing studies mostly use statis-

tical and nighttime light data, which cannot effectively support systematic research on
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CLE in RBCs. Regarding statistical data, due to the influence of factors such as the RBC
establishment time and adjustment of administrative divisions, it is difficult to obtain
comprehensive data pertaining to CL in the 126 prefecture-level RBCs in China, and there
are certain limitations; moreover, nighttime light data are not real land use data and can
only represent the CL status to a certain extent, thus indicating certain limitations. The
LUCCs data used in this study could provide CL data considering the primary LUCCs
classification system based on the boundaries of the 126 RBCs in China and the use of
ArcGIS reclassification technology, which could be used on large scales. To a certain extent,
this approach could overcome the limitations of statistical and nighttime light data.

Second, studies have demonstrated [23,27,36,38,39] that the number of permanent
residents, urbanization level, and economic development level play a leading role in CL
expansion, while the influence of fixed-asset investment is limited. However, this study
demonstrated that in the considered RBCs, the population factor slightly influenced CLE,
whereas the economic development level, fixed-asset investment, and added value of the
secondary industry played a leading role in CLE. The reasons were related to the slow
population growth, low urbanization rate, and notable path dependence of economic
development in the RBCs: on the one hand, slow population growth, a low urbanization
rate and highly obvious population contraction in the RBCs resulted in low demand for CL
among urban and rural residents; on the other hand, economic development in the RBCs
exhibited notable path dependence. Economic development mainly relied on secondary
industries closely related to resource industries, such as the extractive, industrial mining,
and manufacturing industries. Economic growth thus depended on the expansion of the
scale of these industries. Therefore, a large number of other CL types (factory and mining
areas, large industrial areas, oilfields, salt fields, quarries, etc.) were required as space
carriers; fixed-asset investment is often used for municipal public facilities and real estate
development. More importantly, it is used in the construction of industrial infrastructure,
such as that in the extraction, mining, and manufacturing industries, thereby promoting
an increase in the CL scale. In addition, in previous studies [66], when the study area
contained numerous RBCs, the degree of influence of various driving factors on CLE was
similar to that determined in this study.

Third, considering the results of this study, the CLE phenomenon was very prominent
in the RBCs, CL was extensively developed, and its intensive utilization space was large.
During the research period, among the 126 RBCs in China, the number of cities with the
CLE amount exceeding 20 km2 was large, reflecting the high demand for production and
living areas in these RBCs over the past 25 years, which imposed notable pressure on the
agricultural production space and ecological space [67]. In green transformation and devel-
opment of RBCs in the future, the scale, timing, and intensity of resource extraction should
be reasonably regulated; the boundaries of urban development, the red line of arable land
protection, and the red line of ecological protection should be scientifically delineated [68];
the mode of economic development should be transformed; industrial structure upgrading
should be accelerated; rational allocation of population, industry, and production factors
should be guided; the efficiency and intensive use of CL should be improved; control of
the land use space should be strengthened; and the RBC development intensity should
be reduced. Around 2015, China launched a series of land policies including Promoting
the Redevelopment of Inefficient Urban Land (Trial Implementation) [60], National Land
Planning Outline (2016–2030) [61], and National Land Improvement Plan (2016–2020) [62],
which have effectively controlled the CLE in RBCs (it is verified by the decline in the growth
rate of CL in RBCs after 2015); these policies have also played an active role in farmland
and ecological space protection. Thus, these policies should be continuously implemented
in the future.

Fourth, there exist differences between this and existing studies in terms of driving
factor analysis conclusions, which may be attributed to the following: (1) there are dif-
ferences in the temporal and spatial study scales, e.g., certain studies focused on CLE at
the national [24], urban agglomeration [9], and provincial [27] scales, while other studies
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focused on CLE during different periods (e.g., 1990–2018 [69], 2000–2015 [23], and 2006–
2015 [24]). This study focused on the driving factors of CLE in 126 RBCs in China from
2005 to 2018. Therefore, the different temporal and spatial research scales could lead to
differences in the obtained driver analysis conclusions. (2) The various studies defined CL
differently. Some studies classified urban built-up areas or urban areas [36] as CL areas,
while other studies [27,69] uniformly defined urban and rural CL areas, rural homesteads,
industrial and mining CL areas, etc., as CL. (3) RBCs and NRBCs exhibit distinct resource
backgrounds, industrial structures, etc., and their development orientations and paths vary.
Different city types may also lead to differences in the driving factors of CLE.

Fifth, concerning analyzing the driving factors for CLE in RBCs, this study takes
economic factors into consideration. Since CLE is affected by a variety of factors and there
is interaction between the factors, in future research, natural factors, policy factors, and
traffic factors should also be included in the analysis framework of the driving factors for
CLE in RBCs to carry out more in-depth research.

4.2. Conclusions

By reclassifying LUCCs data for 126 RBCs from 1995 to 2018, this paper examined the
spatiotemporal pattern of CLE in these RBCs, employed single-factor and factor interaction
detection in the Geodetector, and analyzed the driving degree of different factors on CLE
in the considered RBCs. The conclusions are as follows:

(1) From 1995 to 2018, CLE in the RBCs was prominent, and the expansion trend
gradually increased. The number of cities with an expansion exceeding 20 km2 was large,
from 29 to 86. The RBCs in the eastern and central regions exhibited a large CL area and
rapidly expanded; in the western region, the CL area was small and expanded relatively
slowly; and due to the depletion of resources and loss of population, CL expansion occurred
the slowest in the northeastern region. From the perspective of the development stage, the
CL area in the various RBCs at the different stages continuously expanded overall, but
there was a gap in the expansion rate. The degree of CL expansion could be ranked as
mature, growing, regenerative, and declining RBCs.

(2) Standard deviation ellipse analysis revealed that CLE in the RBCs exhibited
northeast–southwest evolutionary characteristics. Among the RBCs in the four regions,
the expansion process in the northeastern region decelerated, while expansion in the east-
ern, central, and western regions was obvious. In terms of subregions, the CLE range in
the RBCs in the northeastern region expanded to the north and south, and the driving
force mainly originated from southern cities such as Huludao, Panjin, and Anshan. The
expansion direction in the eastern and central regions was the north–south direction, and
the driving force of spatial expansion in the eastern region mainly originated from Hebei,
Shandong, and some cities in Jiangsu province. The driving force of spatial expansion in
the central region originated from cities such as Yangquan, Luliang, Ezhou, and Yichun.
The CL expansion direction in the western region was the east–west direction, and the
driving force in the southwestern region largely originated from cities such as Zhaotong,
Bijie, Qiannan, and Qianxinan.

(3) The Geodetector analysis (via single-factor detection) determined that the economic
development level, fixed-asset investment, and added value of the secondary industry
strongly drove CLE in RBCs, reflecting that the economic scale and investment level in
RBCs greatly impacted CL expansion; fiscal expenditure and the added value of the tertiary
industry notably promoted CLE in most years, indicating that the upgrading of capital
and industrial structure also drove CL expansion. In factor interaction detection, factors
were enhanced after interaction. The driving force of single-factor pairwise interaction
on CLE in RBCs was higher than that of any individual factor, especially the interaction
between the total population, fixed-asset investment, and economic development level,
which was notable, suggesting that the population (potential labor force) generated a
notable interaction effect. Under this support, improvement in the economic development
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and investment levels could accelerate urban development and promote CL expansion to a
certain extent.
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