Personality, Risk Perceptions, and Health Behaviors: A Two-Wave Study on Reciprocal Relations in Adults
Abstract
:1. Introduction
- Risk perceptions and health behaviors will be reciprocally associated, such that perceptions of risk at time 1 (T1) will positively predict health behaviors (PA and fruit/vegetable consumption) at time 2 (T2). Further, health behaviors at T1 will negatively predict risk perceptions at T2.
- Conscientiousness at T1 will positively predict PA and fruit/vegetable consumption, and negatively predict risk perception at T2.
- Neuroticism at T1 will negatively predict PA and fruit/vegetable consumption and positively predict risk perception at T2.
2. Materials and Methods
2.1. Research Design
2.2. Participants
2.3. Procedure
2.4. Measures
3. Results
3.1. Measurement Models, Longitudinal Invariance, and Factor Score Estimation
3.2. Bivariate Correlations
3.3. Path Models
4. Discussion
Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Read, S.H.; Wild, S.H. Prevention of premature cardiovascular death worldwide. Lancet 2020, 395, 758–760. [Google Scholar] [CrossRef] [PubMed]
- Australian Institute of Health and Welfare. Heart, Stroke and Vascular Disease—Australian Facts. 2021. Available online: https://www.aihw.gov.au/reports/heart-stroke-vascular-diseases/cardiovascular-health-compendium (accessed on 1 September 2020).
- Le, J.; Dorstyn, D.; Mpofu, E.; Prior, E.; Tully, P. Correction to: Health-related quality of life in coronary heart disease: A systematic review and meta-analysis mapped against the International Classification of Functioning, Disability and Health. Qual. Life Res. 2018, 27, 2505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bennie, J.; Pedisic, Z.; van Uffelen, J.; Gale, J.; Banting, L.; Vergeer, I.; Stamatakis, E.; Bauman, A.; Biddle, S. The descriptive epidemiology of total physical activity, muscle-strengthening exercises and sedentary behavior among Australian adults—Results from the National Nutrition and Physical Activity Survey. BMC Public Health 2015, 16, 73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, M.; Wu, J.; Louie, J.; Flood, V.; Gill, T.; Thomas, B.; Cleanthous, X.; Neal, B.; Rangan, A. Typical food portion sizes consumed by Australian adults: Results from the 2011–12 Australian National Nutrition and Physical Activity Survey. Sci. Rep. 2016, 6, 19596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Centers for Disease Control and Prevention. Only 1 in 10 Adults Get Enough Fruits and Vegetables. 2021. Available online: https://www.cdc.gov/nccdphp/dnpao/division-information/media-tools/adults-fruits-vegetables.html (accessed on 1 September 2020).
- Health and Social Care Information Centre. Health Survey for England (2018). 2019. Available online: http://healthsurvey.hscic.gov.uk/support-guidance/public-health/health-survey-for-england-2019.aspx (accessed on 1 September 2020).
- Australian Institute of Health and Welfare. Australia’s Health 2018. 2018. Available online: https://www.aihw.gov.au/getmedia/7c42913d-295f-4bc9-9c24-4e44eff4a04a/aihw-aus-221.pdf.aspx?inline=true (accessed on 1 September 2020).
- Jackson, A.; Ski, C.; Murphy, B.; Fernandez, E.; Alvarenga, M.; Le Grande, M.; Thompson, D. What role does personality play in cardiovascular disease? Br. J. Card. Nurs. 2018, 13, 330–337. [Google Scholar] [CrossRef]
- Janz, N.; Becker, M. The health belief model: A decade later. Health Educ. Q. 1984, 11, 1–47. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; O’Neill, S.M.; Rothrock, M.; Gramling, R.; Sen, A.; Acheson, L.S.; Rubinstein, W.S.; Nease, D.E.; Ruffin, M.T.; for the Family HealthwareTM Impact Trial. Comparison of risk perceptions and beliefs across common chronic diseases. Prev. Med. 2009, 48, 197–202. [Google Scholar] [CrossRef] [Green Version]
- Brewer, N.T.; Weinstein, N.D.; Cuite, C.L.; Herrington, J.E. Risk perceptions and their relation to risk behavior. Ann. Behav. Med. 2004, 27, 125–130. [Google Scholar] [CrossRef]
- Carpenter, C. A meta-analysis of the effectiveness of health belief model variables in predicting behavior. Health Commun. 2010, 25, 661–669. [Google Scholar] [CrossRef] [Green Version]
- Sheeran, P.; Harris, P.R.; Epton, T. Does heightening risk appraisals change people’s intentions and behavior? A meta-analysis of experimental studies. Psychol. Bull. 2014, 140, 511–543. [Google Scholar] [CrossRef]
- Weinstein, N.D.; Nicolich, M. Correct and incorrect interpretations of correlations between risk perceptions and risk behaviors. Health Psychol. 1993, 12, 235–245. [Google Scholar] [CrossRef] [PubMed]
- Vornanen, M.; Konttinen, H.; Peltonen, M.; Haukkala, A. Diabetes and Cardiovascular Disease Risk Perception and Risk Indicators: A 5-Year Follow-up. Int. J. Behav. Med. 2021, 28, 337–348. [Google Scholar] [CrossRef] [PubMed]
- Skøt, L.; Nielsen, J.; Leppin, A. Who perceives a higher personal risk of developing type 2 diabetes? A cross-sectional study on associations between personality traits, health-related behaviours and perceptions of susceptibility among university students in Denmark. BMC Public Health 2018, 18, 972. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilson, K.; Dishman, R. Personality and physical activity: A systematic review and meta-analysis. Pers. Individ. Differ. 2015, 72, 230–242. [Google Scholar] [CrossRef]
- Gerend, M.; Aiken, L.; West, S. Personality factors in older women’s perceived susceptibility to diseases of aging. J. Pers. 2004, 72, 243–270. [Google Scholar] [CrossRef] [PubMed]
- Bogg, T.; Roberts, B.W. Conscientiousness and health-related behaviors: A meta-analysis of the leading behavioral contributors to mortality. Psychol. Bull. 2004, 130, 887. [Google Scholar] [CrossRef] [Green Version]
- Gartland, N.; Wilson, A.; Lawton, R.; O’Connor, D.B. Conscientiousness and engagement with national health behaviour guidelines. Psychol. Health Med. 2021, 26, 421–432. [Google Scholar] [CrossRef]
- Rhodes, R.E.; Smith, N.E.I. Personality correlates of physical activity: A review and meta-analysis. Br. J. Sport. Med. 2006, 40, 958–965. [Google Scholar] [CrossRef] [Green Version]
- Hagger-Johnson, G.; Sabia, S.; Nabi, H.; Brunner, E.; Kivimaki, M.; Shipley, M.; Singh–Manoux, A. Low conscientiousness and risk of all-cause, cardiovascular and cancer mortality over 17 years: Whitehall II cohort study. J. Psychosom. Res. 2012, 73, 98–103. [Google Scholar] [CrossRef] [Green Version]
- Sahoo, S.; Padhy, S.; Padhee, B.; Singla, N.; Sarkar, S. Role of personality in cardiovascular diseases: An issue that needs to be focused too! Indian Heart J. 2018, 70, S471–S477. [Google Scholar] [CrossRef]
- Ferrer, R.; Klein, W. Risk perceptions and health behavior. Curr. Opin. Psychol. 2015, 5, 85–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferrer, R.; Klein, W.; Persoskie, A.; Avishai-Yitshak, A.; Sheeran, P. The Tripartite Model of Risk Perception (TRIRISK): Distinguishing deliberative, affective, and experiential components of perceived risk. Ann. Behav. Med. 2016, 50, 653–663. [Google Scholar] [CrossRef] [PubMed]
- Linke, S.; Robinson, C.J.; Pekmezi, D. Applying psychological theories to promote healthy lifestyles. Lifestyle Med. 2013, 2, 223–231. [Google Scholar] [CrossRef] [Green Version]
- Podsakoff, P.M.; MacKenzie, S.B.; Podsakoff, N.P. Sources of method bias in social science research and recommendations on how to control it. Ann. Rev. Psychol. 2012, 63, 539–569. [Google Scholar] [CrossRef] [Green Version]
- Lee, P.; Macfarlane, D.; Lam, T.; Stewart, S. Validity of the International Physical Activity Questionnaire Short Form (IPAQ-SF): A systematic review. Int. J. Behav. Nutr. Phys. Act. 2011, 8, 115. [Google Scholar] [CrossRef] [Green Version]
- Craig, C.; Marshall, A.; Sjöström, M.; Bauman, A.; Booth, M.; Ainsworth, B.; Pratt, M.; Ekelund, U.; Yngve, A.; Sallis, J.F.; et al. International Physical Activity Questionnaire: 12-country reliability and validity. Med. Sci. Sport. Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef] [Green Version]
- Little, P.; Barnett, J.; Margetts, B.; Kinmonth, A.L.; Gabbay, J.; Thompson, R.; Warm, D.; Warwick, H.; Wooton, S. The validity of dietary assessment in general practice. J. Epidemiol. Community Health 1999, 53, 165–172. [Google Scholar] [CrossRef]
- Murray, G.; Judd, F.; Jackson, H.; Fraser, C.; Komiti, A.; Pattison, P.; Robins, G. Personality for free: Psychometric properties of a public domain Australian measure of the five-factor model. Aust. J. Psychol. 2009, 61, 167–174. [Google Scholar] [CrossRef]
- Asparouhov, T.; Muthén, B. Exploratory structural equation modeling. Struct. Equ. Model. 2009, 16, 397–438. [Google Scholar] [CrossRef]
- Marsh, H.W.; Morin, A.J.S.; Parker, P.D.; Kaur, G. Exploratory structural equation modelling: An integration of the best features of exploratory and confirmatory factor analyses. Ann. Rev. Clin. Psychol. 2014, 10, 85–110. [Google Scholar] [CrossRef]
- Reise, S.P. The rediscovery of bifactor measurement models. Multivar. Behav. Res. 2012, 47, 667–696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morin, A.J.S.; Arens, A.K.; Marsh, H.W. A bifactor exploratory structural equation modeling framework for the identification of distinct sources of construct-relevant psychometric multidimensionality. Struct. Equ. Model. 2016, 23, 116–139. [Google Scholar] [CrossRef]
- Lindwall, M.; Barkoukis, V.; Grano, C.; Lucidi, F.; Raudsepp, L.; Liukkonen, J.; Thøgersen-Ntoumani, C. Method effects: The problem with negatively versus positively keyed items. J. Pers. Assess. 2012, 94, 196–204. [Google Scholar] [CrossRef]
- Skrondal, A.; Laake, P. Regression among factor scores. Psychometrika 2001, 66, 563–575. [Google Scholar] [CrossRef] [Green Version]
- Marsh, H.W. Application of confirmatory factor analysis and structural equation modeling in sport and exercise psychology. In Handbook of Sport Psychology, 3rd ed.; Tenenbaum, G., Eklund, C., Eds.; Wiley: Hoboken, NJ, USA, 2007; pp. 774–798. [Google Scholar]
- Chen, F.F. Sensitivity of goodness of fit indexes to lack of measurement invariance. Struct. Equ. Model. 2007, 14, 464–504. [Google Scholar] [CrossRef]
- Muthén, L.K.; Muthén, B.O. Mplus User’s Guide, 8th ed.; Muthén & Muthén: Los Angeles, CA, USA, 1998–2017. [Google Scholar]
- Reise, S.P.; Bonifay, W.E.; Haviland, M.G. Scoring and modeling psychological measures in the presence of multidimensionality. J. Pers. Assess. 2013, 95, 129–140. [Google Scholar] [CrossRef]
- Grice, J.W. Computing and evaluating factor scores. Psychol. Methods 2001, 6, 430–450. [Google Scholar] [CrossRef]
- Monge-Rojas, R.; Godinho, C.A.; Reyes Fernández, B. Modelling Longitudinal Directional Associations Between Self-regulation, Physical Activity, and Habit: Results from a Cross-lagged Panel Model. Int. J. Behav. Med. 2021, 28, 466–478. [Google Scholar] [CrossRef]
- Zhang, C.-Q.; Zhang, R.; Schwarzer, R.; Hagger, M.S. A meta-analysis of the health action process approach. Health Psychol. 2019, 38, 623–637. [Google Scholar] [CrossRef] [Green Version]
- Brotons, C.; Drenthen, A.J.M.; Durrer, D.; Moral, I.; on behalf of European Network on Prevention and Health Promotion (EUROPREV). Beliefs and attitudes to lifestyle, nutrition and physical activity: The views of patients in Europe. Fam. Pract. 2012, 29, i49–i55. [Google Scholar] [CrossRef]
- van Sluijs, E.M.; Griffin, S.J.; Van Poppel, M.N. A cross-sectional study of awareness of physical activity: Associations with personal, behavioral and psychosocial factors. Int. J. Behav. Nutr. Phys. Act. 2007, 4, 53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drake, M.; Morris, M.; Davis, T. Neuroticism’s susceptibility to distress: Moderated with mindfulness. Pers. Individ. Differ. 2017, 106, 248–252. [Google Scholar] [CrossRef]
- Sauer-Zavala, S.; Fournier, J.C.; Steele, S.J.; Woods, B.K.; Wang, M.; Farchione, T.J.; Barlow, D.H. Does the unified protocol really change neuroticism? Results from a randomized trial. Psychol. Med. 2021, 51, 2378–2387. [Google Scholar] [CrossRef] [PubMed]
χ2 | df | p | CFI | TLI | RMSEA | 90% CI | SRMR | |
---|---|---|---|---|---|---|---|---|
TRIRISK model scale | ||||||||
ICM-CFA T1 | 914.37 | 123 | <0.001 | 0.81 | 0.78 | 0.13 | [0.13, 0.14] | 0.08 |
ESEM T1 | 315.84 | 102 | <0.001 | 0.95 | 0.92 | 0.08 | [0.07, 0.09] | 0.03 |
Bifactor ESEM T1 | 177.36 | 87 | <0.001 | 0.98 | 0.96 | 0.06 | [0.04, 0.07] | 0.02 |
Longitudinal invariance | ||||||||
Configural | 779.49 | 464 | <0.001 | 0.97 | 0.96 | 0.05 | [0.04, 0.05] | 0.03 |
Metric | 838.64 | 520 | <0.001 | 0.97 | 0.96 | 0.04 | [0.04, 0.05] | 0.03 |
Scalar | 851.93 | 534 | <0.001 | 0.97 | 0.96 | 0.04 | [0.04, 0.05] | 0.03 |
Strict | 884.74 | 552 | <0.001 | 0.97 | 0.96 | 0.04 | [0.04, 0.05] | 0.04 |
Personality | ||||||||
Neuroticism | 92.88 | 30 | <0.001 | 0.94 | 0.91 | 0.08 | [0.06, 0.10] | 0.04 |
Conscientiousness | 70.81 | 30 | <0.001 | 0.94 | 0.91 | 0.06 | [0.04, 0.08] | 0.04 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1. Age | ||||||||||||
2. Gender | −0.21 * | |||||||||||
3. Relationship status | −0.01 | −0.15 | ||||||||||
4. Prior surgery/heart condition | 0.10 | −0.01 | 0.14 | |||||||||
5. Neuroticism a | −0.19 * | 0.15 | −0.13 | 0.18 | ||||||||
6. Conscientiousness a | 0.08 | −0.05 | 0.13 | −0.04 | −0.49 * | |||||||
7. Risk perception T1 a | −0.11 | 0.03 | −0.06 | 0.38 * | 0.34 * | −0.26 * | ||||||
8. Risk perception T2 a | −0.10 | 0.01 | −0.06 | 0.37 * | 0.33 * | −0.24 * | 0.97 * | |||||
9. Fruit/vegetables T1 | 0.11 | −0.10 | 0.04 | 0.10 | −0.19 * | 0.13 * | −0.19 * | −0.20 * | ||||
10. Fruit/vegetables T2 | 0.09 | 0.10 | −0.09 | 0.20 | −0.29 * | 0.22 * | −0.17 * | −0.18 * | 0.48 * | |||
11. PA T1 | 0.10 * | −0.08 | −0.08 | −0.07 | −0.15 * | 0.19 * | −0.17 * | −0.15 * | 0.10 * | 0.10 | ||
12. PA T2 | 0.13 * | −0.14 | −0.16 | 0.00 | −0.23 * | 0.18 * | −0.17 * | −0.15 * | −0.06 | 0.08 | 0.76 * | |
M | 50.61 | Na | Na | Na | −0.03 | 0.02 | −0.01 | 0.00 | 2.96 | 2.84 | 3022 | 2819 |
SD | 6.97 | Na | Na | Na | 0.94 | 0.90 | 0.98 | 0.97 | 0.74 | 0.77 | 3216 | 2986 |
Min | 40 | Na | Na | Na | 1 | 1 | −1.94 | −1.91 | 1 | 1 | 0 | 0 |
Max | 64 | Na | Na | Na | 5 | 4.9 | 2.59 | 2.50 | 4 | 4 | 19,278 | 19,278 |
ba | SE | p | βb | |
---|---|---|---|---|
Prospective relations | ||||
Fruit/Vegetables T1 → Risk perception T2 | −0.19 | 0.07 | 0.006 | −0.15 |
PA T1 → Risk perception T2 | −0.00 | 0.00 | 0.227 | −0.08 |
Neuroticism → Risk perception T2 | 0.22 | 0.07 | 0.001 | 0.22 |
Conscientiousness → Risk perception T2 | −0.10 | 0.07 | 0.137 | −0.10 |
Control variables | ||||
Age → Risk perception T2 | −0.01 | 0.01 | 0.429 | −0.04 |
Gender → Risk perception T2 | −0.09 | 0.11 | 0.404 | −0.04 |
Relationship status → Risk perception T2 | −0.06 | 0.12 | 0.627 | −0.03 |
Prior heart surgery/condition → Risk perception T2 | 0.77 | 0.24 | 0.001 | 0.17 |
ba | SE | p | βb | |
---|---|---|---|---|
Prospective relations | ||||
Risk perception T1 → Fruit/Vegetables T2 | −0.08 | 0.05 | 0.144 | −0.10 |
Neuroticism T1 → Fruit/Vegetables T2 | −0.20 | 0.06 | 0.001 | −0.25 |
Conscientiousness T1 → Fruit/Vegetables T2 | 0.08 | 0.06 | 0.223 | 0.09 |
Risk perception T1 → PA T2 | −343.86 | 237.33 | 0.147 | −0.11 |
Neuroticism T1 → PA T2 | −520.84 | 239.27 | 0.029 | −0.16 |
Conscientiousness T1 → PA T2 | 254.28 | 198.74 | 0.201 | −0.08 |
Control variables | ||||
Age → Fruit/Vegetables T2 | 0.00 | 0.01 | 0.710 | 0.02 |
Gender → Fruit/Vegetables T2 | 0.17 | 0.11 | 0.098 | 0.10 |
Relationship status → Fruit/Vegetables T2 | −0.21 | 0.12 | 0.081 | −0.11 |
Prior heart surgery/condition → Fruit/Vegetables T2 | 0.50 | 0.20 | 0.014 | 0.14 |
Age → PA T2 | 25.14 | 37.88 | 0.507 | 0.06 |
Gender → PA T2 | −549.31 | 462.62 | 0.235 | −0.08 |
Relationship status → PA T2 | −1208.58 | 567.13 | 0.033 | −0.17 |
Prior heart surgery/condition → PAT2 | 602.71 | 676.65 | 0.373 | 0.04 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thøgersen-Ntoumani, C.; Stenling, A.; Izett, E.; Quested, E. Personality, Risk Perceptions, and Health Behaviors: A Two-Wave Study on Reciprocal Relations in Adults. Int. J. Environ. Res. Public Health 2022, 19, 16168. https://doi.org/10.3390/ijerph192316168
Thøgersen-Ntoumani C, Stenling A, Izett E, Quested E. Personality, Risk Perceptions, and Health Behaviors: A Two-Wave Study on Reciprocal Relations in Adults. International Journal of Environmental Research and Public Health. 2022; 19(23):16168. https://doi.org/10.3390/ijerph192316168
Chicago/Turabian StyleThøgersen-Ntoumani, Cecilie, Andreas Stenling, Esther Izett, and Eleanor Quested. 2022. "Personality, Risk Perceptions, and Health Behaviors: A Two-Wave Study on Reciprocal Relations in Adults" International Journal of Environmental Research and Public Health 19, no. 23: 16168. https://doi.org/10.3390/ijerph192316168
APA StyleThøgersen-Ntoumani, C., Stenling, A., Izett, E., & Quested, E. (2022). Personality, Risk Perceptions, and Health Behaviors: A Two-Wave Study on Reciprocal Relations in Adults. International Journal of Environmental Research and Public Health, 19(23), 16168. https://doi.org/10.3390/ijerph192316168