A Future Perspective on Waste Management of Lithium-Ion Batteries for Electric Vehicles in Lao PDR: Current Status and Challenges
Abstract
:1. Introduction
1.1. Lithium-Ion Battery Applications
1.2. EV Lithium-Ion Battery
- Lithium Cobalt Oxide (LiCoO2)-LCO;
- Lithium Manganese Oxide (LiMn2O4)-LMO;
- Lithium Nickel Oxide (LiNiO2)-LNO;
- Lithium Nickel Manganese Cobalt Oxide (LiNiMnCoO2)-NMC;
- Lithium Nickel Cobalt Aluminum Oxide (LiNiCoAlO2)-NCA;
- Lithium-ion Phosphate (LiFePo4)-LFP;
- Lithium Titanate (Li4Ti5O12)-LTO (negative electrodes).
2. Environmental Impact of EV LIBs
2.1. Source and Pollution Pathways
2.1.1. Soil Pollution
2.1.2. Water Pollution
2.1.3. Air Pollution
3. Current Treatment and Disposal of EV LIBs
3.1. Recycling Methods
3.2. Landfilling
4. Current EV LIB Management in the World
4.1. The United States
4.2. European Union
4.3. Japan
4.4. China
4.5. Thailand
4.6. Vietnam
5. Current Management of EV LIBs in Lao PDR
5.1. EV Market and LIB Demand
5.2. Governmental Plan and Project
5.3. Challenges for EV Adoption in Laos
5.4. Waste Management and Current Disposal Legislations
6. Challenges, Discussion, and the Way Forward
- What are spent LIB quantities in the present and future?
- How to monitor the EoL LIBs’ flow chart in the country?
- What, how, and where are elements or hazardous chemicals released from EoL LIBs?
- How, where, and who handles LIB waste?
- What is the mechanism of public and private participants for dealing with EV batteries?
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Yan, H.; Zhang, D.; Duo, X.; Sheng, X. A review of spinel lithium titanate (Li4Ti5O12) as electrode material for advanced energy storage devices. Ceram Int. 2021, 47, 5870–5895. [Google Scholar] [CrossRef]
- Arszelewska, V. Electrochemical Stability of the Next Generation Lithium Batteries. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 24 March 2021. [Google Scholar]
- Ding, Y.; Cano, Z.P.; Yu, A.; Lu, J.; Chen, Z. Automotive Li-ion batteries: Current status and future perspectives. Electrochem. Energy Rev. 2019, 2, 1–28. [Google Scholar] [CrossRef]
- Liu, K.; Wang, Y.; Lai, X. Introduction to Battery Full-Lifespan Management. In Data Science-Based Full-Lifespan Management of Lithium-Ion Battery; Green Energy and Technology; Springer: Cham, Switzerland, 2022; pp. 1–25. [Google Scholar]
- Małek, A.; Marciniak, A. The use of deep recurrent neural networks to predict performance of photovoltaic system for charging electric vehicles. Open Eng. 2021, 11, 377–389. [Google Scholar] [CrossRef]
- Padye, A.; Jaiswal, A.; Loke, K. Electric Vehicle Charging Station for E-Bike. Easy Chair. 2022, 33, 7344. [Google Scholar]
- Miao, Y.; Hynan, P.; Von Jouanne, A.; Yokochi, A. Current Li-ion battery technologies in electric vehicles and opportunities for advancements. Energies 2019, 12, 1074. [Google Scholar] [CrossRef] [Green Version]
- Loganathan, M.K.; Mishra, B.; Tan, C.M.; Kongsvik, T.; Rai, R.N. Multi-Criteria decision making (MCDM) for the selection of Li-Ion batteries used in electric vehicles (EVs). Mater. Today Proc. 2021, 41, 1073–1077. [Google Scholar] [CrossRef]
- Hannan, M.A.; Hoque, M.M.; Hussain, A.; Yusof, Y.; Ker, P.J. State-of-the-art and energy management system of lithium-ion batteries in electric vehicle applications: Issues and recommendations. IEEE Access 2018, 6, 19362–19378. [Google Scholar] [CrossRef]
- Lu, L.; Han, X.; Li, J.; Hua, J.; Ouyang, M. A review on the key issues for lithium-ion battery management in electric vehicles. J. Power Sources 2013, 226, 272–288. [Google Scholar] [CrossRef]
- Houache, M.S.; Yim, C.H.; Karkar, Z.; Abu-Lebdeh, Y. On the Current and Future Outlook of Battery Chemistries for Electric Vehicles—Mini Review. Batteries 2022, 8, 70. [Google Scholar] [CrossRef]
- Ma, J.; Li, Y.; Grundish, N.S.; Goodenough, J.B.; Chen, Y.; Guo, L.; Peng, Z.; Qi, X.; Yang, F.; Qie, L.; et al. The 2021 battery technology roadmap. J. Phys. D Appl. Phys. 2021, 54, 183001. [Google Scholar] [CrossRef]
- Kader, Z.A.; Marshall, A.; Kennedy, J. A review on sustainable recycling technologies for lithium-ion batteries. Emergent Mater. 2021, 4, 725–735. [Google Scholar] [CrossRef]
- Gloeser-Chahoud, S.; Huster, S.; Rosenberg, S.; Baazouzi, S.; Kiemel, S.; Singh, S.; Schneider, C.; Weeber, M.; Miehe, R.; Schultmann, F. Industrial disassembling as a key enabler of circular economy solutions for obsolete electric vehicle battery systems. Resour. Conserv. Recycl. 2021, 174, 105735. [Google Scholar] [CrossRef]
- Wang, S.; Yu, J. A comparative life cycle assessment on lithium-ion battery: Case study on electric vehicle battery in China considering battery evolution. Waste Manag. Res. 2021, 39, 156–164. [Google Scholar] [CrossRef] [PubMed]
- Christensen, P.A.; Anderson, P.A.; Harper, G.D.; Lambert, S.M.; Mrozik, W.; Rajaeifar, M.A.; Wise, M.S.; Heidrich, O. Risk management over the life cycle of lithium-ion batteries in electric vehicles. Renew. Sustain. Energy Rev. 2021, 148, 111240. [Google Scholar] [CrossRef]
- Zeng, X.; Li, M.; Abd El-Hady, D.; Alshitari, W.; Al-Bogami, A.S.; Lu, J.; Amine, K. Commercialization of lithium battery technologies for electric vehicles. Adv. Energy Mater. 2019, 9, 1900161. [Google Scholar] [CrossRef]
- Randhawa, S.; Chopra, L. Pestilential impacts of battery industry discharged metal waste on human health. Mater. Today Proc. 2022, 52, 434–438. [Google Scholar] [CrossRef]
- Wan, T.; Wang, Y. The Hazards of Electric Car Batteries and Their Recycling. IOP Conf. Ser. Earth Environ. Sci. 2022, 1011, 012026. [Google Scholar] [CrossRef]
- Dutta, D.; Kumari, A.; Panda, R.; Jha, S.; Gupta, D.; Goel, S.; Jha, M.K. Close loop separation process for the recovery of Co, Cu, Mn, Fe and Li from spent lithium-ion batteries. Sep. Purif. Technol. 2018, 200, 327–334. [Google Scholar] [CrossRef]
- Mahmud, M.P.; Huda, N.; Farjana, S.H.; Lang, C. Comparative life cycle environmental impact analysis of lithium-ion (LiIo) and nickel-metal hydride (NiMH) batteries. Batteries 2019, 5, 22. [Google Scholar] [CrossRef] [Green Version]
- Sobianowska-Turek, A.; Urbańska, W.; Janicka, A.; Zawiślak, M.; Matla, J. The Necessity of Recycling of Waste Li-Ion Batteries Used in Electric Vehicles as Objects Posing a Threat to Human Health and the Environment. Recycling 2021, 6, 35. [Google Scholar] [CrossRef]
- Feng, T.; Guo, W.; Li, Q.; Meng, Z.; Liang, W. Life cycle assessment of lithium nickel cobalt manganese oxide batteries and lithium iron phosphate batteries for electric vehicles in China. J. Energy Storage 2022, 52, 104767. [Google Scholar] [CrossRef]
- Leyssens, L.; Vinck, B.; Van Der Straeten, C.; Wuyts, F.; Maes, L. Cobalt toxicity in humans—A review of the potential sources and systemic health effects. J. Toxicol. 2017, 387, 43–56. [Google Scholar] [CrossRef]
- Ghazaryan, S. Role of copper for human organism. Eur. Pharm. J. 2011, 2, 10. [Google Scholar] [CrossRef]
- Pohanka, M. Copper and copper nanoparticles toxicity and their impact on basic functions in the body. Bratisl. Lek. Listy. 2019, 120, 397–409. [Google Scholar] [CrossRef] [Green Version]
- Driver, C.J.; Ligotke, M.W.; Landis, W.G.; Downs, J.L.; Tiller, B.L.; Moore, E.B., Jr.; Cataldo, D.A. Environmental and Health Effects Review for Obscurant Graphite Flakes; Pacific Northwest Lab.: Richland, WA, USA, 1993; p. 8585. [Google Scholar]
- Rey, I.; Vallejo, C.; Santiago, G.; Iturrondobeitia, M.; Lizundia, E. Environmental impacts of graphite recycling from spent lithium-ion batteries based on life cycle assessment. ACS Sustain. Chem. Eng. 2021, 9, 14488–14501. [Google Scholar] [CrossRef]
- Eales, J.; Bethel, A.; Galloway, T.; Hopkinson, P.; Morrissey, K.; Short, R.E.; Garside, R. Human health impacts of exposure to phthalate plasticizers: An overview of reviews. Environ. Int. 2022, 158, 106903. [Google Scholar] [CrossRef] [PubMed]
- Meshram, P.; Mishra, A.; Sahu, R. Environmental impact of spent lithium-ion batteries and green recycling perspectives by organic acids—A review. Chemosphere 2020, 242, 125291. [Google Scholar] [CrossRef]
- Sironval, V.; Reylandt, L.; Chaurand, P.; Ibouraadaten, S.; Palmai-Pallag, M.; Yakoub, Y.; Ucakar, B.; Rose, J.; Poleunis, C.; Vanbever, R.; et al. Respiratory hazard of Li-ion battery components: Elective toxicity of lithium cobalt oxide (LiCoO2) particles in a mouse bioassay. Arch. Toxicol. 2018, 92, 1673–1684. [Google Scholar] [CrossRef]
- Sironval, V.; Scagliarini, V.; Murugadoss, S.; Tomatis, M.; Yakoub, Y.; Turci, F.; Hoet, P.; Lison, D.; van den Brule, S. LiCoO2 particles used in Li-ion batteries induce primary mutagenicity in lung cells via their capacity to generate hydroxyl radicals. Part. Fibre Toxicol. 2020, 17, 6. [Google Scholar] [CrossRef]
- Crisponi, G.; Fanni, D.; Gerosa, C.; Nemolato, S.; Nurchi, V.M.; Crespo-Alonso, M.; Lachowicz, J.I.; Faa, G. The meaning of aluminium exposure on human health and aluminium-related diseases. Biomol. Concepts 2013, 4, 77–87. [Google Scholar] [CrossRef]
- Sharma, D.K. Heavy Metal Toxicity: Impact on Human Health: A Review. Indian J. Forensic Med. Pathol. 2021, 14, 270–278. [Google Scholar]
- O’Day, P.A.; Pattammattel, A.; Aronstein, P.; Leppert, V.J.; Forman, H.J. Iron Speciation in Respirable Particulate Matter and Implications for Human Health. Environ. Sci. Technol. 2022, 56, 7006–7016. [Google Scholar] [CrossRef] [PubMed]
- Cabral, D.S.; Medeiros, L.C.C.; Alves, B.V.B.; Passos, L.S.; Pereira, T.M.; Merçon, J.; Castheloge, V.D.; Chippari-Gomes, A.R. Do iron and manganese affect the health of the estuarine oyster Crassostrea rhizophorae? Estuar. Coast. Shelf Sci. 2022, 268, 107800. [Google Scholar] [CrossRef]
- Bushkova, O.V.; Yaroslavtseva, T.V.; Dobrovolsky, Y.A. New lithium salts in electrolytes for lithium-ion batteries. Russ. J. Electrochem. 2017, 53, 677–699. [Google Scholar] [CrossRef]
- Bolan, N.; Hoang, S.A.; Tanveer, M.; Wang, L.; Bolan, S.; Sooriyakumar, P.; Robinson, B.; Wijesekara, H.; Wijesooriya, M.; Keerthanan, S.; et al. From mine to mind and mobiles–Lithium contamination and its risk management. Environ. Pollut. 2021, 290, 118067. [Google Scholar] [CrossRef]
- Fernández-Pampin, N.; Plaza, J.J.G.; García, A.; Peña, E.; Rumbo, C.; Barros, R.; Martel, S.; Aparicio, S.; Tamayo-Ramos, J.A. Toxicology assessment of manganese oxide nanomaterials with enhanced electrochemical properties using human in vitro models representing different exposure routes. bioRxiv 2022. [Google Scholar]
- Aljelehawy, Q.H.A. Effects of the lead, cadmium, manganese heavy metals, and magnesium oxide nanoparticles on nerve cell function in Alzheimer’s and Parkinson’s diseases. Cent. Asian J. Med. Pharm. Sci. Innov. 2022, 2, 25–36. [Google Scholar]
- Yap, C.K.; Al-Mutairi, K.A. Comparative Study of Potentially Toxic Nickel and Their Potential Human Health Risks in Seafood (Fish and Mollusks) from Peninsular Malaysia. Biology 2022, 11, 376. [Google Scholar] [CrossRef] [PubMed]
- Gujre, N.; Rangan, L.; Mitra, S. Occurrence, geochemical fraction, ecological and health risk assessment of cadmium, copper and nickel in soils contaminated with municipal solid wastes. Chemosphere 2021, 271, 129573. [Google Scholar] [CrossRef]
- Kaya, M. State-of-the-art lithium-ion battery recycling technologies. Circ. Econ. 2022, 1, 100015. [Google Scholar] [CrossRef]
- Mittal, N.; Tien, S.; Lizundia, E.; Niederberger, M. Hierarchical Nanocellulose-Based Gel Polymer Electrolytes for Stable Na Electrodeposition in Sodium Ion Batteries. Small 2022, 18, 2107183. [Google Scholar] [CrossRef]
- Qiao, Y.; Wang, S.; Gao, F.; Li, X.; Fan, M.; Yang, R. Toxicity analysis of second use lithium-ion battery separator and electrolyte. Polym. Test. 2020, 81, 106175. [Google Scholar] [CrossRef]
- Rodríguez-Eugenio, N.; McLaughlin, M.; Pennock, D. Soil Pollution: A Hidden Reality; Penock, L., Sala, M., Verbeke, I., Stanco, G., Eds.; FAO: Rome, Italy, 2018; p. 142. [Google Scholar]
- Ahluwalia, V.K.; Malhotra, S. Environmental Science, 2nd ed.; Ane Book Pvt. Ltd.: New Delhi, India, 2013; pp. 1–358. [Google Scholar]
- Cachada, A.; Rocha-Santos, T.; Duarte, A.C. Soil and Pollution: An Introduction to the Main Issues; University of Aveiro: Aveiro, Portugal, 2018; pp. 1–28. [Google Scholar]
- Barbieri, M.; Sappa, G.; Nigro, A. Soil pollution: Anthropogenic versus geogenic contributions over large areas of the Lazio region. J. Geochem. Explor. 2018, 195, 78–86. [Google Scholar] [CrossRef]
- Liu, D.; Li, Y.; Ma, J.; Li, C.; Chen, X. Heavy metal pollution in urban soil from 1994 to 2012 in Kaifeng City, China. Wat. Air and Soil Poll. 2016, 227, 154. [Google Scholar] [CrossRef]
- Moeckel, C.; Breivik, K.; Nøst, T.H.; Sankoh, A.; Jones, K.C.; Sweetman, A. Soil pollution at a major West African E-waste recycling site: Contamination pathways and implications for potential mitigation strategies. Environ. Int. 2020, 137, 105563. [Google Scholar] [CrossRef] [PubMed]
- Prates, L.F.S.; Karthe, D.; Zhang, L.; Wang, L.; O’Connor, J.; Halim, L.; Dornack, C. Sustainability for All? The Challenges of Predicting and Managing the Potential Risks of End-of-Life Electric Vehicles and Their Batteries in the Global South. Res. Sq. 2022, 1–19. [Google Scholar]
- World Health Organization. The State of Food Security and Nutrition in the World 2018: Building Climate Resilience for Food Security and Nutrition. Food & Agriculture Organization. Available online: https://www.fao.org/3/I9553EN/i9553en.pdf (accessed on 26 May 2022).
- Owa, F.W. Water pollution: Sources, effects, control and management. Int. Lett. Nat. Sci. 2014, 4, 65. [Google Scholar] [CrossRef]
- Dwivedi, A.K. Researches in water pollution: A review. J. Nat. Appl. Sci. 2017, 4, 118–142. [Google Scholar]
- Schwarzenbach, R.P.; Egli, T.; Hofstetter, T.B.; Von Gunten, U.; Wehrli, B. Global water pollution and human health. Annu. Rev. Environ. Resour. 2010, 35, 109–136. [Google Scholar] [CrossRef]
- Sonone, S.S.; Jadhav, S.; Sankhla, M.S.; Kumar, R. Water contamination by heavy metals and their toxic effect on aquaculture and human health through food Chain. Lett. Appl. NanoBioScience 2020, 10, 2148–2166. [Google Scholar]
- Bundhoo, Z. Solid waste management in least developed countries: Current status and challenges faced. J. Mater. Cycles Waste Manag. 2018, 20, 1867–1877. [Google Scholar] [CrossRef]
- Khajuria, A.; Yamamoto, Y.; Morioka, T. Estimation of municipal solid waste generation and landfill area in Asian developing countries. J. Environ. Biol. 2010, 31, 649–654. [Google Scholar] [PubMed]
- Shuptar-Poryvaieva, N.Y.; Gubanova, E.R.; Andryeyeva, N.M.; Shevchenko, T.I. Examining of portable batteries externalities with focus on consumption and disposal phases. J. Assoc. Environ. Resour. Econ. 2020, 4, 24–37. [Google Scholar]
- Vongdala, N.; Tran, H.D.; Xuan, T.D.; Teschke, R.; Khanh, T.D. Heavy metal accumulation in water, soil, and plants of municipal solid waste landfill in Vientiane, Laos. Int. J. Environ. Res. Public Health 2019, 16, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Çelikler, D.; Aksan, Z. Evaluation from an educational perspective of the effects of waste batteries on the environment. Int. J. Sustain. Energy 2015, 4, 12–15. [Google Scholar]
- Rao, P.V. Textbook of Environmental Engineering; PHI Learning Pvt. Ltd.: Delhi, India, 2013; pp. 1–268. [Google Scholar]
- Usmani, R.S.A.; Saeed, A.; Abdullahi, A.M.; Pillai, T.R.; Jhanjhi, N.Z.; Hashem, I.A.T. Air pollution and its health impacts in Malaysia: A review. Air Qual. Atmos. Health 2020, 13, 1093–1118. [Google Scholar] [CrossRef]
- Schwela, D.; Haq, G.; Huizenga, C.; Han, W.J.; Fabian, H.; Ajero, M. Urban Air Pollution in Asian Cities: Status, Challenges and Management; Routledge: London, UK, 2012; pp. 1–268. [Google Scholar]
- Francová, A.; Chrastný, V.; Šillerová, H.; Vítková, M.; Kocourková, J.; Komárek, M. Evaluating the suitability of different environmental samples for tracing atmospheric pollution in industrial areas. Environ. Pollut. 2017, 220, 286–297. [Google Scholar] [CrossRef]
- Cong, X. Air pollution from industrial waste gas emissions is associated with cancer incidences in Shanghai, China. Environ. Sci. Pollut. Res. 2018, 25, 13067–13078. [Google Scholar] [CrossRef]
- Aminzadegan, S.; Shahriari, M.; Mehranfar, F.; Abramović, B. Factors affecting the emission of pollutants in different types of transportation: A literature review. Energy Rep. 2022, 8, 2508–2529. [Google Scholar] [CrossRef]
- Fuinhas, J.A.; Koengkan, M.; Leitão, N.C.; Nwani, C.; Uzuner, G.; Dehdar, F.; Relva, S.; Peyerl, D. Effect of battery electric vehicles on greenhouse gas emissions in 29 European Union countries. Sustainability 2021, 13, 13611. [Google Scholar] [CrossRef]
- Mrozik, W.; Rajaeifar, M.A.; Heidrich, O.; Christensen, P. Environmental impacts, pollution sources and pathways of spent lithium-ion batteries. Energy Environ. Sci. 2021, 14, 6099–6121. [Google Scholar] [CrossRef]
- Herzog, T. World Greenhouse Gas Emissions in 2005. Available online: http://www.wri.org/publication/navigating-the-numbers (accessed on 24 June 2022).
- UNFCCC. Paris Declaration on Electro-Mobility and Climate Change & Call to Action. 2015. Available online: https://unfccc.int/media/521376/paris-electro-mobility-declaration.pdf (accessed on 24 June 2022).
- Ballinger, B.; Stringer, M.; Schmeda-Lopez, D.R.; Kefford, B.; Parkinson, B.; Greig, C.; Smart, S. The vulnerability of electric vehicle deployment to critical mineral supply. Appl. Energy 2019, 255, 113844. [Google Scholar] [CrossRef]
- Hannan, M.A.; Al-Shetwi, A.Q.; Begum, R.A.; Ker, P.J.; Rahman, S.A.; Mansor, M.; Mia, M.S.; Muttaqi, K.M.; Dong, Z.Y. Impact assessment of battery energy storage systems towards achieving sustainable development goals. J. Energy Storage 2021, 42, 103040. [Google Scholar] [CrossRef]
- Choi, Y.; Rhee, S.W. Current status and perspectives on recycling of end-of-life battery of electric vehicle in Republic of Korea. Waste Manag. 2020, 106, 261–270. [Google Scholar] [CrossRef]
- Sakunai, T.; Ito, L.; Tokai, A. Environmental impact assessment on production and material supply stages of lithium-ion batteries with increasing demands for electric vehicles. J. Mater. Cycles Waste Manag. 2021, 23, 470–479. [Google Scholar] [CrossRef]
- Sambamurthy, S.; Raghuvanshi, S.; Sangwan, K.S. Environmental impact of recycling spent lithium-ion batteries. Procedia CIRP 2021, 98, 631–636. [Google Scholar] [CrossRef]
- Montoya-Bedoya, S.; Sabogal-Moncada, L.A.; Garcia-Tamayo, E.; Martínez-Tejada, H.V. A circular economy of electrochemical energy storage systems: Critical review of SOH/RUL estimation methods for second-life batteries. Green Energy Environ. 2020, 10, 148. [Google Scholar]
- Zhang, X.; Li, Z.; Luo, L.; Fan, Y.; Du, Z. A review on thermal management of lithium-ion batteries for electric vehicles. Energy J. 2022, 238, 121652. [Google Scholar] [CrossRef]
- Dubey, A.K.; Kaur, M.; Bhandari, D. Effect of Lithium Battery on Environment. Europe 2022, 55, 64–69. [Google Scholar]
- Kang, D.H.P.; Chen, M.; Ogunseitan, O.A. Potential environmental and human health impacts of rechargeable lithium batteries in electronic waste. J. Environ. Sci. Technol. 2013, 47, 5495–5503. [Google Scholar] [CrossRef]
- Ahmadi, L.; Young, S.B.; Fowler, M.; Fraser, R.A.; Achachlouei, M.A. A cascaded life cycle: Reuse of electric vehicle lithium-ion battery packs in energy storage systems. Int. J. Life Cycle Assess. 2017, 22, 111–124. [Google Scholar] [CrossRef]
- Gandoman, F.H.; El-Shahat, A.; Alaas, Z.M.; Ali, Z.M.; Berecibar, M.; Abdel Aleem, S.H.E. Understanding Voltage Behavior of Lithium-Ion Batteries in Electric Vehicles Applications. Batteries 2022, 8, 130. [Google Scholar] [CrossRef]
- Wang, Z.; Feng, G.; Zhen, D.; Gu, F.; Ball, A. A review on online state of charge and state of health estimation for lithium-ion batteries in electric vehicles. Energy Rep. 2021, 7, 5141–5161. [Google Scholar] [CrossRef]
- Ezemobi, E.; Silvagni, M.; Mozaffari, A.; Tonoli, A.; Khajepour, A. State of Health Estimation of Lithium-Ion Batteries in Electric Vehicles under Dynamic Load Conditions. Energies 2022, 15, 1234. [Google Scholar] [CrossRef]
- Xu, X.; Hu, W.; Liu, W.; Wang, D.; Huang, Q.; Chen, Z. Study on the economic benefits of retired electric vehicle batteries participating in the electricity markets. J. Clean. Prod. 2021, 286, 125414. [Google Scholar] [CrossRef]
- Hua, Y.; Zhou, S.; Huang, Y.; Liu, X.; Ling, H.; Zhou, X.; Zhang, C.; Yang, S. Sustainable value chain of retired lithium-ion batteries for electric vehicles. J. Power Sources 2020, 478, 228753. [Google Scholar] [CrossRef]
- Chen, M.; Ma, X.; Chen, B.; Arsenault, R.; Karlson, P.; Simon, N.; Wang, Y. Recycling end-of-life electric vehicle lithium-ion batteries. Joule 2019, 3, 2622–2646. [Google Scholar] [CrossRef]
- Stanković, S.; Kamberović, Ž.; Friedrich, B.; Stopić, S.R.; Sokić, M.; Marković, B.; Schippers, A. Options for Hydrometallurgical Treatment of Ni-Co Lateritic Ores for Sustainable Supply of Nickel and Cobalt for European Battery Industry from South-Eastern Europe and Turkey. J. Met. 2022, 12, 807. [Google Scholar] [CrossRef]
- Baum, Z.J.; Bird, R.E.; Yu, X.; Ma, J. Lithium-Ion Battery Recycling─ Overview of Techniques and Trends. ACS Energy Lett. 2022, 7, 712–719. [Google Scholar] [CrossRef]
- Jin, S.; Mu, D.; Lu, Z.; Li, R.; Liu, Z.; Wang, Y.; Tian, S.; Dai, C. A comprehensive review on the recycling of spent lithium-ion batteries: Urgent status and technology advances. J. Clean. Prod. 2022, 340, 130535. [Google Scholar] [CrossRef]
- Harper, G.; Sommerville, R.; Kendrick, E.; Driscoll, L.; Slater, P.; Stolkin, R.; Walton, A.; Christensen, P.; Heidrich, O.; Lambert, S.; et al. Recycling lithium-ion batteries from electric vehicles. Nature 2019, 575, 75–86. [Google Scholar] [CrossRef] [PubMed]
- Miao, Y.; Liu, L.; Zhang, Y.; Tan, Q.; Li, J. An overview of global power lithium-ion batteries and associated critical metal recycling. J. Hazard. Mater. 2022, 425, 127900. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Li, W.; Gupta, V.; Gao, H.; Tran, D.; Sarwar, S.; Chen, Z. Current Challenges in Efficient Lithium-Ion Batteries’ Recycling: A Perspective. Glob. Chall. 2022, 1-10, 2200099. [Google Scholar] [CrossRef]
- Pražanová, A.; Knap, V.; Stroe, D.I. Literature Review, Recycling of Lithium-Ion Batteries from Electric Vehicles, Part I: Recycling Technology. Energy 2022, 15, 1086. [Google Scholar] [CrossRef]
- Du, S.; Gao, F.; Nie, Z.; Liu, Y.; Sun, B.; Gong, X. Life cycle assessment of recycled NiCoMn ternary cathode materials prepared by hydrometallurgical technology for power batteries in China. J. Clean. Prod. 2022, 340, 130798. [Google Scholar] [CrossRef]
- Jiang, S.; Hua, H.; Zhang, L.; Liu, X.; Wu, H.; Yuan, Z. Environmental impacts of hydrometallurgical recycling and reusing for manufacturing of lithium-ion traction batteries in China. Sci. Total Environ. 2022, 811, 152224. [Google Scholar] [CrossRef]
- Beaudet, A.; Larouche, F.; Amouzegar, K.; Bouchard, P.; Zaghib, K. Key challenges and opportunities for recycling electric vehicle battery materials. Sustainability 2020, 12, 5837. [Google Scholar] [CrossRef]
- Tchobanoglous, G.; Kreith, F. Handbook of Solid Waste Management, 2nd ed.; McGraw-Hill Education: New York, NY, USA, 2002; Available online: http://medical.rums.ac.ir/uploads/rums-handbook_of_solid_waste_management.pdf (accessed on 29 June 2022).
- Sharifah, N.S.I.; Latifah, A.M. The challenge of future landfill: A case study of Malaysia. J. Toxicol. Environ. Health Sci. 2013, 5, 86–96. [Google Scholar]
- Winslow, K.M.; Laux, S.J.; Townsend, T.G. A review on the growing concern and potential management strategies of waste lithium-ion batteries. Resour. Conserv. Recycl. 2018, 129, 263–277. [Google Scholar] [CrossRef]
- Mathur, N.; Deng, S.; Singh, S.; Yih, Y.; Sutherland, J.W. Evaluating the environmental benefits of implementing Industrial Symbiosis to used electric vehicle batteries. Procedia CIRP 2019, 80, 661–666. [Google Scholar] [CrossRef]
- Fichtner, M. Recent research and progress in batteries for electric vehicles. Batter. Supercaps. 2022, 5, 202100224. [Google Scholar] [CrossRef]
- Abo-Khalil, A.G.; Abdelkareem, M.A.; Sayed, E.T.; Maghrabie, H.M.; Radwan, A.; Rezk, H.; Olabi, A.G. Electric vehicle impact on energy industry, policy, technical barriers, and power systems. Int. J. Thermofluid. 2022, 13, 100134. [Google Scholar] [CrossRef]
- Wang, L.; Wang, X.; Yang, W. Optimal design of electric vehicle battery recycling network–From the perspective of electric vehicle manufacturers. Appl. Energy 2020, 275, 115328. [Google Scholar] [CrossRef]
- Alquthami, T.; Alsubaie, A.; Alkhraijah, M.; Alqahtani, K.; Alshahrani, S.; Anwar, M. Investigating the Impact of Electric Vehicles Demand on the Distribution Network. Energy. J. 2022, 15, 1180. [Google Scholar] [CrossRef]
- Bui, A.; Slowik, P.; Lutsey, N. Evaluating Electric Vehicle Market Growth Across US Cities. 2021. Available online: https://theicct.org/sites/default/files/publications/ev-us-market-growth-cities-sept210.pdf (accessed on 30 June 2022).
- Horowitz, J.; Coffin, D.; Taylor, B. Supply Chain for EV Batteries: 2020 Trade and Value-Added Update. 2021. Available online: https://ssrn.com/abstract=3980828 (accessed on 29 June 2022).
- Slattery, M.; Dunn, J.; Kendall, A. Transportation of electric vehicle lithium-ion batteries at end-of-life: A literature review. Resour. Conserv. Recycl. 2021, 174, 105755. [Google Scholar] [CrossRef]
- Hendrickson, T.P.; Kavvada, O.; Shah, N.; Sathre, R.; Scown, C.D. Life-cycle implications and supply chain logistics of electric vehicle battery recycling in California. Environ. Res. Lett. 2015, 10, 014011. [Google Scholar] [CrossRef]
- Safety Advisory Notice for the Transportation of Lithium Batteries for Disposal or Recycling. 2022. Available online: https://www.phmsa.dot.gov/sites/phmsa.dot.gov/files/2022-05/Final-5-16-Lithium-Battery-Recycling-Safety-Advisory.pdf (accessed on 30 June 2022).
- Kubas, J.; Ballay, M.; Zabovska, K. Analysis of Infrastructure Development in the European Union in the Field of Electromobility. 2022. Available online: https://www.tf.llu.lv/conference/proceedings2022/Papers/TF289.pdf (accessed on 30 June 2022).
- Koengkan, M.; Fuinhas, J.A.; Teixeira, M.; Kazemzadeh, E.; Auza, A.; Dehdar, F.; Osmani, F. The Capacity of Battery-Electric and Plug-in Hybrid Electric Vehicles to Mitigate CO2 Emissions: Macroeconomic Evidence from European Union Countries. World Electr. Veh. J. 2022, 13, 58. [Google Scholar] [CrossRef]
- Koengkan, M.; Fuinhas, J.A.; Belucio, M.; Alavijeh, N.K.; Salehnia, N.; Machado, D.; Silva, V.; Dehdar, F. The Impact of Battery-Electric Vehicles on Energy Consumption: A Macroeconomic Evidence from 29 European Countries. World Electr. Veh. J. 2022, 13, 36. [Google Scholar] [CrossRef]
- European Commission. The Strategic Energy Technology (SET) Plan 2018: European Commission. Available online: https://op.europa.eu/en/publication-detail/-/publication/064a025d-0703-11e8-b8f5-01aa75ed71a1 (accessed on 30 June 2022).
- Directive 2014/94/EU of the European Parliament and of the Council of 22 October 2014 on the Deployment of Alternative Fuels Infrastructure. 2014. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32014L0094 (accessed on 30 June 2022).
- Commission Notices on Technical Guidance on the Classification of Waste (2018/C 124/01). 2018. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.C_.2018.124.01.0001.01.ENG (accessed on 30 June 2022).
- Commission Regulation (EU) No 493/2012 on Laying Down, Pursuant to Directive 2006/66/EC of the European Parliament and of the Council, Detailed Rules Regarding the Calculation of Recycling Efficiencies of the Recycling Processes of Waste Batteries and Accumulators. 2012. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32012R0493 (accessed on 30 June 2022).
- Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on Waste and Repealing Certain Directives. 2008. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32008L0098 (accessed on 1 July 2022).
- Hoarau, Q.; Lorang, E. An assessment of the European regulation on battery recycling for electric vehicles. Energy Policy 2022, 162, 112770. [Google Scholar] [CrossRef]
- Commission Staff Working Document on the Evaluation of the Directive 2006/66/EC on Batteries and Accumulators and Waste Batteries and Accumulators and Repealing Directive 91/157/EEC. 2019. Available online: https://ec.europa.eu/environment/pdf/waste/batteries/evaluation_report_batteries_directive.pdf (accessed on 1 July 2022).
- Windisch-Kern, S.; Gerold, E.; Nigl, T.; Jandric, A.; Altendorfer, M.; Rutrecht, B.; Scherhaufer, S.; Raupenstrauch, H.; Pomberger, R.; Antrekowitsch, H.; et al. Recycling chains for lithium-ion batteries: A critical examination of current challenges, opportunities and process dependencies. J. Waste Manag. 2022, 138, 125–139. [Google Scholar] [CrossRef] [PubMed]
- Meti, J. Trend of Next Generation/Zero Emission Vehicle and Policy in Japan. 2018. Available online: http://www.nedo.go.jp/content/100878195.pdf (accessed on 2 July 2022).
- Lim, S.; Dolsak, N.; Prakash, A.; Tanaka, S. Distributional concerns and public opinion: EV subsidies in the US and Japan. Energy Policy 2022, 164, 112883. [Google Scholar] [CrossRef]
- Next Generation Vehicle Promotion Center. Strategy for Diffusing the Next Generation Vehicles in Japan. 2018. Available online: http://www.cev-pc.or.jp/event/pdf/xev_in_japan_eng.pdf (accessed on 2 July 2022).
- Japan Doubles Electric Vehicle Subsidies. 2020. Available online: https://www.electrive.com/2021/11/23/japan-agrees-on-new-ev-subsidy-budget (accessed on 2 July 2022).
- Energy, L.-I.B. Reuse and Recycling: Environmental Sustainability of Lithium-Ion Battery Energy Storage Systems. 2020. Available online: https://openknowledge.worldbank.org/handle/10986/34446 (accessed on 2 July 2022).
- Zhao, Y.; Pohl, O.; Bhatt, A.I.; Collis, G.E.; Mahon, P.J.; Rüther, T.; Hollenkamp, A.F. A review on battery market trends, second-life reuse, and recycling. Sustain. Chem. 2021, 2, 167–205. [Google Scholar] [CrossRef]
- Nissan Gives EV Batteries a Second Life. 2021. Available online: https://global.nissanstories.com/en/releases/4r (accessed on 3 July 2022).
- DOWA ECO-SYSTEM Increases Processing of Lithium-Ion Batteries and Enables Both Safe Treating and Efficient Metal Recycling. 2021. Available online: https://ir.dowa.co.jp/en/ir/news/news-5617789479587210707.html (accessed on 3 July 2022).
- Velázquez-Martínez, O.; Valio, J.; Santasalo-Aarnio, A.; Reuter, M.; Serna-Guerrero, R. A critical review of lithium-ion battery recycling processes from a circular economy perspective. Batteries 2019, 5, 68. [Google Scholar] [CrossRef] [Green Version]
- Shafique, M.; Rafiq, M.; Azam, A.; Luo, X. Material flow analysis for end-of-life lithium-ion batteries from battery electric vehicles in the USA and China. Resour. Conserv. Recycl. 2022, 178, 106061. [Google Scholar] [CrossRef]
- Li, S.; Zhu, X.; Ma, Y.; Zhang, F.; Zhou, H. The role of government in the market for electric vehicles: Evidence from China. J. Policy Anal. Manage 2022, 41, 450–485. [Google Scholar] [CrossRef]
- Longa, H. Development trend of electric vehicles in China. EMCG 2021, 8, 31. [Google Scholar]
- Wu, Y.A.; Ng, A.W.; Yu, Z.; Huang, J.; Meng, K.; Dong, Z.Y. A review of evolutionary policy incentives for sustainable development of electric vehicles in China: Strategic implications. Energy Policy 2021, 148, 111983. [Google Scholar] [CrossRef]
- Xu, C.; Zhang, W.; He, W.; Li, G.; Huang, J.; Zhu, H. Generation and management of waste electric vehicle batteries in China. Environ. Sci. Pollut. Res. 2017, 24, 20825–20830. [Google Scholar] [CrossRef]
- Boteler, C. China Places Battery Recycling Responsibility on Car Manufacturers. 2018. Available online: https://www.wastedive.com/news/china-battery-recycling-responsibility-car-manufacturers/517978 (accessed on 4 July 2022).
- Bird, R.; Baum, Z.J.; Yu, X.; Ma, J. The regulatory environment for lithium-ion battery recycling. ACS Energy Lett. 2022, 7, 736–740. [Google Scholar] [CrossRef]
- Law of the People’s Republic of China on the Prevention and Control of Environment Pollution Caused by Solid Wastes (2020 Revision). Available online: https://www.piclub.or.jp/wp-content/uploads/2020/08/V.-Law-of-the-People%E2%80%99s-Republic-of-China-on-the-Prevention-and-Control-of-Environment-Pollution-Caused-by-Solid-Wastes-2020-Revision-English.pdf (accessed on 10 October 2022).
- Notice on Printing and Distributing the Interim Measures for the Administration of Recycling and Utilization of New Energy Vehicle Power Batteries. 2018. Available online: http://www.gov.cn/xinwen/2018-02/26/content_5268875.htm (accessed on 4 July 2022).
- Yang, Z.; Huang, H.; Lin, F. Sustainable Electric Vehicle Batteries for a Sustainable World: Perspectives on Battery Cathodes, Environment, Supply Chain, Manufacturing, Life Cycle, and Policy. Adv. Energy Mater. 2022, 12, 2200383. [Google Scholar] [CrossRef]
- Chinda, T. Long-term trend of electric vehicle sales in Thailand. Eng. Manag. Prod. Serv. 2022, 14, 13–25. [Google Scholar] [CrossRef]
- Wangsupphaphol, A.; Chaitusaney, S. Subsidizing Residential Low Priority Smart Charging: A Power Management Strategy for Electric Vehicle in Thailand. Sustainability 2022, 14, 6053. [Google Scholar] [CrossRef]
- Bhandhubanyong, P.; Pearce, J.T. Materials on Wheels: Batteries for Electric Vehicles. ISJET 2022, 6, 41–59. [Google Scholar]
- Briefing, A. Thailand Issues New Incentive Package for Electric Vehicle Industry. 2022. Available online: https://www.aseanbriefing.com/news/thailand-issues-new-incentive-package-for-electric-vehicle-industry (accessed on 7 July 2022).
- Enhancement and Conservation of the National Environmental Quality Act, B.E. 2535. 1992. Available online: http://greenaccess.law.osaka-u.ac.jp/wp-content/uploads/2019/03/Enhancement-and-Conservation-of-the-National-Environmental-Quality-Act.pdf (accessed on 7 July 2022).
- Public Health Act, B.E. 2535. 1992. Available online: http://web.krisdika.go.th/data/document/ext838/838066_0001.pdf (accessed on 8 July 2022).
- Great Expansion of Environmental Management and Recycling Business in Thailand. 2019. Available online: https://www.dowa-eco.co.jp/en/news/archive/20191023.html (accessed on 8 July 2022).
- Schröder, M.; Iwasaki, F.; Kobayashi, H. Current Situation of Electric Vehicles in ASEAN. Promotion of Electromobility in ASEAN: States, Carmakers, and International Production Networks; ERIA Research Project Report FY2021: Jakarta, Indonesia, 2021; pp. 1–32. [Google Scholar]
- Van Tuan, P.; Thao, N.T.P.; Le, T.T.; Linh, N.T.; Tuan, H.M. Factors Influencing Purchasing Intention Toward Electric Vehicle in Vietnam. J. Soc. Commerce 2022, 2, 82–99. [Google Scholar] [CrossRef]
- Tuan, L.A.; Le, A.T.; Tue, D.D. Study of Electric Mobility Development in Viet Nam. 2021. Available online: https://changing-transport.org/wp-content/uploads/Electric-mobility-assessment_Final-report_EN_210813-1.pdf (accessed on 10 July 2022).
- Kresnawan, M.R.; Yurnaidi, Z.; Bilqis, A.; Wijaya, T.N.; Suryadi, B. Electric Vehicle Readiness in Southeast Asia: A PEST Policy Review. IOP Conf. Ser: Earth Environ. Sci. 2022, 97, 012001. [Google Scholar] [CrossRef]
- Rene, E.R.; Sethurajan, M.; Ponnusamy, V.K.; Kumar, G.; Dung, T.N.B.; Brindhadevi, K.; Pugazhendhi, A. Electronic waste generation, recycling and resource recovery: Technological perspectives and trends. J. Hazard. Mater. 2022, 416, 125664. [Google Scholar] [CrossRef]
- Global, V.N. Roadmap Needed to Develop ‘Clean’ Auto Industry. 2021. Available online: https://vietnamnet.vn/en/roadmap-needed-to-develop-clean-auto-industry-730961.html (accessed on 10 July 2022).
- JICA. Basic Data Collection Study on Low-Emission Public Transport System in Lao PDR. 2012. Available online: http://openjicareport.jica.go.jp/pdf/12086088_01.pdf (accessed on 11 July 2022).
- The Preliminary Works for the Technical Cooperation Low-Emission Transport System in Lao PDR. 2014. Available online: https://openjicareport.jica.go.jp/pdf/12182978.pdf (accessed on 11 July 2022).
- The Third Ordinary Session of the National Assembly of Laos. 2022. Available online: https://m.facebook.com/story.php?story_fbid=pfbid0f9aDNWdBibnZpqnhtWv3NQsMjS1UaQJ5U3bCrFtXWbp1TWNoAM79VYBEM9obBk2ul&id=100005992024376 (accessed on 12 July 2022).
- Lau, H.C. Decarbonization roadmaps for ASEAN and their implications. Energy Rep. 2022, 8, 6000–6022. [Google Scholar] [CrossRef]
- Kyophilavong, P.; Komany, S.; Tounalom, K. Decarbonization in Lao PDR: The Options and Challenges. 2021. Available online: https://www.climateworkscentre.org/wp-content/uploads/2022/02/Lao-PDR-Report-Phase-1_Sept-21.pdf (accessed on 12 July 2022).
- MEM Ministry of Energy and Mines. Energy Development Strategy 2021–2030 in Lao PDR; Ministry of Energy and Mines: Vientiane, Laos, 2011; pp. 1–238. [Google Scholar]
- Times, V. Government Targets 1 Percent Electric Vehicle Use by 2025. 2021. Available online: https://www.vientianetimes.org.la/freeContent/FreeConten_Govt_8Oct.php (accessed on 13 July 2022).
- Jica, M. Promotion of Electric Vehicles Usage. 2013. Available online: http://gec.jp/gec/en/Activities/fs_newmex/2013/2013ds01_rep.pdf (accessed on 13 July 2022).
- Namba, M. Material Itineraries of Electric Tuk-Tuks: The Challenges of Green Urban Development in Laos. East Asian Sci. Technol. Soc. 2021, 15, 173–191. [Google Scholar] [CrossRef]
- Kyophilavong, P.; Lamphayphan, T. Financing Infrastructure in Laos, Chapter 4 Lao PDR Country Report. 2014. Available online: https://www.academia.edu/28015572/Financing_Infrastructure_in_Laos (accessed on 13 July 2022).
- Kimura, S.; Joko Purwanto, A.; Ueda, K.; Hiruma, T. Assessment of Electric Vehicle Penetration in the Lao People’s Democratic Republic. 2022, Volume 26, p. 147. Available online: https://www.eria.org/uploads/media/Research-Project-Report/RPR-2021-26/Assessment-of-Electric-Vehicle-Penetration-in-the-Lao-PDR.pdf (accessed on 13 July 2022).
- Mali, B.; Shrestha, A.; Chapagain, A.; Bishwokarma, R.; Kumar, P.; Gonzalez-Longatt, F. Challenges in the penetration of electric vehicles in developing countries with a focus on Nepal. Renew. Energy Focus 2022, 40, 1–12. [Google Scholar] [CrossRef]
- Environmental Protection Law (Revised Version). 2012. Available online: https://policy.asiapacificenergy.org/node/476 (accessed on 13 July 2022).
- JICA. Data Collection Survey on Waste Management Sector in The Lao People’s Democratic Republic, Final Report. 2021. Available online: https://openjicareport.jica.go.jp/pdf/12345914.pdf (accessed on 15 July 2022).
- MONRE. The Asian Network for Prevention of Illegal Transboundary Movement of Hazardous Wastes. 2021. Available online: https://www.env.go.jp/en/recycle/asian_net/Annual_Workshops/2021_PDF/Presentations/2_Country%20update%20and%20response%20to%20plastic%20amendment/Lao_PDR.pdf (accessed on 15 July 2022).
- MONRE. Decision on Pollution Control No. 1687/MONRE/2021. 2021. Available online: http://www.lao44.org/downloadfile/iEDRIu5HnO59ctxo (accessed on 15 July 2022).
- Asif, M.; Jajja, M.S.S.; Searcy, C. A Review of Literature on the Antecedents of Electric Vehicles Promotion: Lessons for Value Chains in Developing Countries. IEEE Tran. Eng. Manag. 2021, 1–14, 161. [Google Scholar] [CrossRef]
- Jajja, M.S.S.; Hassan, S.Z.; Asif, M.; Searcy, C. Manufacturing value chain for battery electric vehicles in Pakistan: An assessment of capabilities and transition pathways. J. Clean. Prod. 2021, 328, 129512. [Google Scholar] [CrossRef]
- Richa, K.; Babbitt, C.W.; Gaustad, G.; Wang, X. A future perspective on lithium-ion battery waste flows from electric vehicles. Resour. Conserv. Recycl. 2014, 83, 63–76. [Google Scholar] [CrossRef]
- Chang, T.C.; You, S.J.; Yu, B.S.; Yao, K.F. A material flow of lithium batteries in Taiwan. J. Hazard. Mater. 2009, 163, 910–915. [Google Scholar] [CrossRef]
- Kim, H.; Jang, Y.C.; Hwang, Y.; Ko, Y.; Yun, H. End-of-life batteries management and material flow analysis in South Korea. Front. Environ. Sci. Eng. 2018, 12, 3. [Google Scholar] [CrossRef]
- He, L.; Sun, B. Exploring the EPR system for power battery recycling from a supply-side perspective: An evolutionary game analysis. J. Waste Manag. 2022, 140, 204–212. [Google Scholar] [CrossRef]
- Dawson, L.; Ahuja, J.; Lee, R. Steering extended producer responsibility for electric vehicle batteries. Environ. Law Rev. 2021, 23, 128–143. [Google Scholar] [CrossRef]
- Zheng, M.; Salim, H.; Liu, T.; Stewart, R.A.; Lu, J.; Zhang, S. Intelligence-assisted predesign for the sustainable recycling of lithium-ion batteries and beyond. Energy Environ. Sci. 2021, 14, 5801–5815. [Google Scholar] [CrossRef]
- Lv, C.; Zhou, X.; Zhong, L.; Yan, C.; Srinivasan, M.; Seh, Z.W.; Liu, C.; Pan, H.; Li, S.; Wen, Y.; et al. Machine learning: An advanced platform for materials development and state prediction in lithium-ion batteries. J. Adv. Mater. 2022, 34, 2101474. [Google Scholar] [CrossRef]
EV Models | Battery Supplier | Cell Chemistry | |
---|---|---|---|
Positive Electrode | Negative Electrode | ||
Audi e-tron GT/Audi Q4 e-tron-SUV/BMW i3/Chevrolet Bolt/Hyundai KONA Electric/Hyundai ioniq 5-LR AWD/Kia Niro/Kia Soul EV/Kia EV6-LRAWD/Nissan Leaf Plus/Renault Zoe e-tech electrique/Smart fortwo Electric/Volvo XC40/VW eGolf/Volkswagen ID.3 | LG Chem/Samsung SDI/SK Innovation/AESC/Sanyo/Li-Tec | NMC | C |
Tesla Model S/Toyota rav4 EV | Panasonic | NCA | C |
Tesla Model 3/Tesla X | Panasonic | NCA | SiO-C or Si-C |
BYD Tang Electric/Chevrolet Spark EV | BYD/LG Chem/A123 | LFP | C |
Fiat 500e/Ford Focus Electric/Renault Zoe | Samsung SDI/Li Energy Japan/LG Chem | NMC-LMO | C |
Ford Focus Electric/Mitsubishi iMiEV | LG Chem/Li Energy Japan | LMO-NMC | C |
Honda fit EV | Toshiba | NMC | LTO |
Nissan Leaf | AESC | LMO-NCA | C |
Main Component | Electrochemical Parameters and Material | Human Health Impact |
---|---|---|
Anode current collector, | Copper | The highest concentration of Cu led to cardiovascular, immunity, and nervous system risks [25,26]. |
Anode, | ||
Separator/Binders, | Graphite | High concentrations of graphite flakes affect mechanisms of the respiratory systems, and a minor risk of physical-mechanical damage to unprotected skin and eyes also exists, with human carcinogenic toxicity [27,28]. |
Cathode, | ||
Cathode current collector, | Plastic | Negative impact on body function and increased risk of disorders and diseases [29,30]. |
Electrolyte | ||
Cobalt | Inflammatory lung, allergic skin reaction, etc. [31,32]. | |
Aluminum | Al toxicity causes harm to the brain system, bone marrow, and osteomalacia [33,34]. | |
Iron/Streel | Particulate matter of Fe leads to risks of cardiopulmonary diseases and stroke and increased vulnerability to inflammation-associated pathologies such as respiratory diseases and lung cancers [35,36]. | |
Lithium | High concentrations of Li cause toxicity to human cardiomyocytes, and itcan affect hematopoietic stem cell differentiation and glycogen synthesis during fetal development, etc. [37,38]. | |
Manganese | Mn nanoparticles can access the brain, causing damage to neurological syndromes, such as Parkinson’s disease [39,40]. | |
Nickel | Ni chronic exposure in the body has adverse negative health effects in humans, such as lung fibrosis, renal disease, cardiovascular disease, and respiratory tract cancer [41,42]. | |
Electrolyte | Electrolytes of LIBs usually include both organic solvents and inorganic solutions, can cause corrosive skin burns, eye damage, and produce hazardous gas, leading to respiratory systems [43,44,45]. |
Methodologies | Advantages | Disadvantages |
---|---|---|
Hydrometallurgical |
|
|
Pyrometallurgical |
|
|
Direct recycling |
|
|
Battery Component | Sources of Pollutant | Specific Pollution | Route | Affected Environment | Hazard |
---|---|---|---|---|---|
Pack casing | Steel | Fe, Al, Ni, Cr, other | Leaching | Land Natural waters | In excess toxic to wildlife Accumulation in plants and crops |
Module casing | Steel Aluminum | Fe, Ni, Cr, other Al | Leaching | Land Natural waters | In excess toxic to wildlife Accumulation in plants and crops |
Cell packing | Aluminum foil Polymers Ni-Coated steel | Al, Ni PET, PP | Leaching Fire | Natural waters Land Air | In excess toxic to wildlife Accumulation in plants and crops |
Cathode | Metal Metal oxides | Al LMO—Li/Mn/O LFP—Li/Fe/P/O NMC—Li/Ni/Mn/Co/O LCO—Li/Co/O NCA—Li/Ni/Co/Al/O | Leaching Dust | Land Natural waters Air | Toxic to the various organism Toxic to humans if breathed In excess toxic to wildlife Accumulation in plants and crops |
Anode | Copper Graphite | Cu C (nanomaterial) LTO—Li/Ti/O | Leaching | Land Natural waters | In excess toxic to wildlife Accumulation in plants and crops Toxic to humans if breathed Microplastics accumulation |
Separator | Polymers | Polyethylene (PE) Polypropylene (PP) | Leaching Fire Dust | Land Natural waters Air | Microplastics accumulation |
Binder | PDVF | HF | Fire | Air | Toxic to humans if breathed Toxic to humans if in contact |
Electrolyte | Ethylene carbonate Propylene carbonate Dimethyl carbonate Diethyl carbonate Salts: LiPF6 Additives | HF | Fire Vapors/gases Leaching | Air Land Natural waters | Toxic to humans if breathed Toxic to humans if in contact Toxic to wildlife Accumulation in soils |
SOx | |||||
HCN | |||||
H2 | |||||
CO | |||||
CO2 | |||||
NOX | |||||
COS | |||||
HCl | |||||
Degradation products of electrolyte | |||||
C2H4; CH3COCHO etc. | |||||
Ionic liquids | |||||
Unknown additives/degradation products |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Noudeng, V.; Quan, N.V.; Xuan, T.D. A Future Perspective on Waste Management of Lithium-Ion Batteries for Electric Vehicles in Lao PDR: Current Status and Challenges. Int. J. Environ. Res. Public Health 2022, 19, 16169. https://doi.org/10.3390/ijerph192316169
Noudeng V, Quan NV, Xuan TD. A Future Perspective on Waste Management of Lithium-Ion Batteries for Electric Vehicles in Lao PDR: Current Status and Challenges. International Journal of Environmental Research and Public Health. 2022; 19(23):16169. https://doi.org/10.3390/ijerph192316169
Chicago/Turabian StyleNoudeng, Vongdala, Nguyen Van Quan, and Tran Dang Xuan. 2022. "A Future Perspective on Waste Management of Lithium-Ion Batteries for Electric Vehicles in Lao PDR: Current Status and Challenges" International Journal of Environmental Research and Public Health 19, no. 23: 16169. https://doi.org/10.3390/ijerph192316169
APA StyleNoudeng, V., Quan, N. V., & Xuan, T. D. (2022). A Future Perspective on Waste Management of Lithium-Ion Batteries for Electric Vehicles in Lao PDR: Current Status and Challenges. International Journal of Environmental Research and Public Health, 19(23), 16169. https://doi.org/10.3390/ijerph192316169