The Relationship between Environmental Regulation, Green-Technology Innovation and Green Total-Factor Productivity—Evidence from 279 Cities in China
Abstract
:1. Introduction
2. Literature Review
3. Research Hypothesis
3.1. Formal Environmental Regulation and Green Total-Factor Productivity
3.2. Informal Environmental Regulation and Green Total-Factor Productivity
3.3. Mechanism of Spatial Action
3.4. Moderating and Threshold Effects of Green Technology Innovation
4. Method and Design
4.1. Model Construction
4.2. Variable Description
4.2.1. Explained Variable
4.2.2. Explanatory Variable
4.2.3. Control Variable
4.3. Data Sources and Descriptive Statistics
5. Empirical Analysis
5.1. GTFP in China
5.2. Spatial-Autocorrelation Test and Selection of Spatial-Econometric Model
5.2.1. Spatial-Autocorrelation Test
5.2.2. Selection of Spatial-Econometric Model
5.3. Benchmark Regression Results
5.4. Analysis of Spatial Effects
5.5. Spatial-Heterogeneity Analysis
5.6. Robustness Test
6. Further Research: Moderating and Threshold-Effects of Green-Technology Innovation
6.1. Analysis of Moderating Effect
6.2. Analysis of Threshold Effect
7. Conclusions, Discussion and Policy-Recommendations
7.1. Conclusions
7.2. Discussion
7.3. Policy Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ni, Y.; Chen, B.; Wang, Y. Financial development, environmental regulation and green total factor productivity—An empirical analysis based on spatial Durbin model. J. Guizhou Univ. Financ. Econ. 2020, 38, 12. [Google Scholar]
- Gezhi, W.; Daming, Y. Mechanisms of environmental regulation on technological innovation and green total factor productivity: The moderating role based on fiscal decentralization. J. Ind. Eng. Eng. Manag. 2019, 33, 37–50. [Google Scholar] [CrossRef]
- Gollop, F.M.; Roberts, M.J. Environmental Regulations and Productivity Growth: The Case of Fossil-fueled Electric Power Generation. J. Polit. Econ. 1983, 91, 654–674. [Google Scholar] [CrossRef]
- Gray, W.B.; Shadbegian, R.J. Plant vintage, technology, and environmental regulation. J. Environ. Econ. Manag. 2003, 46, 384–402. [Google Scholar] [CrossRef] [Green Version]
- Pargal, S.; Wheeler, D. Informal regulation of industrial pollution in developing countries: Evidence from Indonesia. J. Polit. Econ. 1996, 104, 1314–1327. [Google Scholar] [CrossRef]
- Xiong, B.; Wang, R. Effect of environmental regulation on industrial solid waste pollution in China: From the perspective of formal environmental regulation and informal environmental regulation. Int. J. Environ. Res. Public Health 2020, 17, 7798. [Google Scholar] [CrossRef]
- Zhao, X.; Sun, B. The influence of Chinese environmental regulation on corporation innovation and competitiveness. J. Clean. Prod. 2016, 112, 1528–1536. [Google Scholar] [CrossRef]
- Luo, Y.; Salman, M.; Lu, Z. Heterogeneous impacts of environmental regulations and foreign direct investment on green innovation across different regions in China. Sci. Total Environ. 2021, 759, 143744. [Google Scholar] [CrossRef]
- Porter, M.E.; van der Linde, C. Toward a New Conception of the Environment-Competitiveness Relationship. J. Econ. Perspect. 1995, 9, 97–118. [Google Scholar] [CrossRef] [Green Version]
- Jaffe, A.B.; Palmer, K. Environmental regulation and innovation: A panel data study. Rev. Econ. Stat. 1997, 79, 610–619. [Google Scholar] [CrossRef]
- Cheng, Z.H.; Kong, S.Y. The effect of environmental regulation on green total-factor productivity in China’s industry. Environ. Impact. Asses. 2022, 94, 106757. [Google Scholar] [CrossRef]
- Lee, C.-C.; Zeng, M.; Wang, C. Environmental regulation, innovation capability, and green total factor productivity: New evidence from China. Environ. Sci. Pollut. Res. 2022, 29, 39384–39399. [Google Scholar] [CrossRef]
- Lena, D.; Pasurka, C.A.; Cucculelli, M. Environmental regulation and green productivity growth: Evidence from Italian manufacturing industries. Technol. Forecast. Soc. 2022, 184, 121993. [Google Scholar] [CrossRef]
- Tong, L.; Chiappetta Jabbour, C.J.; ben Belgacem, S.; Najam, H.; Abbas, J. Role of environmental regulations, green finance, and investment in green technologies in green total factor productivity: Empirical evidence from Asian region. J. Clean. Prod. 2022, 380, 134930. [Google Scholar] [CrossRef]
- Rexhäuser, S.; Rammer, C. Environmental Innovations and Firm Profitability: Unmasking the Porter Hypothesis. Environ. Resour. Econ. 2014, 57, 145–167. [Google Scholar] [CrossRef]
- Yuan, B.; Xiang, Q. Environmental regulation, industrial innovation and green development of Chinese manufacturing: Based on an extended CDM model. J. Clean. Prod. 2018, 176, 895–908. [Google Scholar] [CrossRef]
- Zhan, L.; Guo, P.; Pan, G. The effect of mandatory environmental regulation on green development efficiency: Evidence from China. Environ. Sci. Pollut. Res. 2022, 1–11. [Google Scholar] [CrossRef]
- Lanoie, P.; Patry, M.; Lajeunesse, R. Environmental regulation and productivity: Testing the porter hypothesis. J. Prod. Anal. 2008, 30, 121–128. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, X.; Guo, X. Environmental regulation and green productivity growth: Empirical evidence on the Porter Hypothesis from OECD industrial sectors. Energy Policy 2019, 132, 611–619. [Google Scholar] [CrossRef]
- Zhao, M.L.; Liu, F.Y.; Sun, W.; Tao, X. The relationship between environmental regulation and green total factor productivity in China: An empirical study based on the panel data of 177 cities. Int. J. Environ. Res. Public Health 2020, 17, 5287. [Google Scholar] [CrossRef]
- Li, Y.; Li, S. The Influence Study on Environmental Regulation and Green Total Factor Productivity of China’s Manufacturing Industry. Discrete Dyn. Nat. Soc. 2021, 2021, 1–15. [Google Scholar] [CrossRef]
- Wang, Z.L.; Yang, Y.Q.; Wei, Y. Study on relationship between environmental regulation and green total factor productivity from the perspective of FDI—Evidence from China. Sustainability 2022, 14, 11116. [Google Scholar] [CrossRef]
- Wang, Y.; Shen, N. Environmental regulation and environmental productivity: The case of China. Renew. Sustain. Energy Rev. 2016, 62, 758–766. [Google Scholar] [CrossRef]
- He, Q.; Han, Y.; Wang, L. The impact of environmental regulation on green total factor productivity: An empirical analysis. PLoS ONE 2021, 16, e0259356. [Google Scholar] [CrossRef] [PubMed]
- Luo, G.; Wang, X.; Wang, L.; Guo, Y. The relationship between environmental regulations and green economic efficiency: A study based on the provinces in China. Int. J. Environ. Res. Public Health 2021, 18, 889. [Google Scholar] [CrossRef]
- Qiu, S.; Wang, Z.; Geng, S. How do environmental regulation and foreign investment behavior affect green productivity growth in the industrial sector? An empirical test based on Chinese provincial panel data. J. Environ. Manag. 2021, 287, 112282. [Google Scholar] [CrossRef]
- Wang, L.; Yan, Y. Environmental Regulation Intensity, Carbon Footprint and Green Total Factor Productivity of Manufacturing Industries. Int. J. Environ. Res. Public Health 2022, 19, 553. [Google Scholar] [CrossRef]
- Brännlund, R. Productivity and environmental regulations. Umeå Econ. Stud. 2008, 1–29. [Google Scholar]
- Wu, J.; Xia, Q.; Li, Z. Green innovation and enterprise green total factor productivity at a micro level: A perspective of technical distance. J. Clean. Prod. 2022, 344, 131070. [Google Scholar] [CrossRef]
- Wang, M.; Li, Y.; Liao, G. Research on the impact of green technology innovation on energy total factor productivity, Based on provincial data of China. Front. Environ. Sci. 2021, 9, 710931. [Google Scholar] [CrossRef]
- Song, M.; Peng, L.; Shang, Y.; Zhao, X. Green technology progress and total factor productivity of resource-based enterprises: A perspective of technical compensation of environmental regulation. Technol. Forecast. Soc. 2022, 174, 121276. [Google Scholar] [CrossRef]
- Jiakui, C.; Abbas, J.; Najam, H.; Liu, J.; Abbas, J. Green technological innovation, green finance, and financial development and their role in green total factor productivity: Empirical insights from China. J. Clean. Prod. 2022, 382, 135131. [Google Scholar] [CrossRef]
- Santra, S. The effect of technological innovation on production-based energy and CO2 emission productivity: Evidence from BRICS countries. Afr. J. Sci. Technol. Innov. Dev. 2017, 9, 503–512. [Google Scholar] [CrossRef]
- Meirun, T.; Mihardjo, L.W.W.; Haseeb, M.; Khan, S.A.R.; Jermsittiparsert, K. The dynamics effect of green technology innovation on economic growth and CO2 emission in Singapore: New evidence from bootstrap ARDL approach. Environ. Sci. Pollut. Res. 2021, 28, 4184–4194. [Google Scholar] [CrossRef] [PubMed]
- Mohd Suki, N.; Mohd Suki, N.; Afshan, S.; Sharif, A.; Ariff Kasim, M.; Rosmaini Mohd Hanafi, S. How does green technology innovation affect green growth in ASEAN-6 countries? Evidence from advance panel estimations. Gondwana Res. 2022, 111, 165–173. [Google Scholar] [CrossRef]
- Xiao, S.; He, Z.; Zhang, W.; Qin, X. The Agricultural Green Production following the Technological Progress: Evidence from China. Int. J. Environ. Res. Public Health 2022, 19, 9876. [Google Scholar] [CrossRef]
- Managi, S.; Opaluch, J.J.; Jin, D.; Grigalunas, T.A. Environmental regulations and technological change in the offshore oil and gas industry. Land Econ. 2005, 81, 303. [Google Scholar] [CrossRef]
- Ambec, S.; Cohen, M.A.; Elgie, S.; Lanoie, P. The porter hypothesis at 20: Can environmental regulation enhance innovation and competitiveness? Rev. Environ. Econ. Policy 2013, 7, 2–22. [Google Scholar] [CrossRef] [Green Version]
- Guo, Q.; Zhou, M.; Liu, N.; Wang, Y. Spatial Effects of Environmental Regulation and Green Credits on Green Technology Innovation under Low-Carbon Economy Background Conditions. Int. J. Environ. Res. Public Health 2019, 16, 3027. [Google Scholar] [CrossRef] [Green Version]
- Peng, H.; Shen, N.; Ying, H.; Wang, Q. Can environmental regulation directly promote green innovation behavior?—based on situation of industrial agglomeration. J. Clean. Prod. 2021, 314, 128044. [Google Scholar] [CrossRef]
- Du, K.; Cheng, Y.; Yao, X. Environmental regulation, green technology innovation, and industrial structure upgrading: The road to the green transformation of Chinese cities. Energy Econ. 2021, 98, 105247. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, J.; Li, E.Y.; Meng, Z.; Song, Y. Environmental regulation, green technological innovation, and eco-efficiency: The case of Yangtze river economic belt in China. Technol. Forecast. Soc. Chang. 2020, 155, 119993. [Google Scholar] [CrossRef]
- Guo, Y.Y.; Xia, X.N.; Zhang, S.; Zhang, D.P. Environmental regulation, government R&D funding and green technology innovation: Evidence from China provincial data. Sustainability 2018, 10, 940. [Google Scholar] [CrossRef] [Green Version]
- Xinan, L. Environmental regulation, government subsidies and regional green technology innovation. Econ. Surv. 2021, 38, 14–23. [Google Scholar] [CrossRef]
- Behera, P.; Sethi, N. Nexus between environment regulation, FDI, and green technology innovation in OECD countries. Environ. Sci. Pollut. Res. 2022, 29, 52940–52953. [Google Scholar] [CrossRef] [PubMed]
- Yi, M.; Fang, X.; Wen, L.; Guang, F.; Zhang, Y. The heterogeneous effects of different environmental policy instruments on green technology innovation. Int. J. Environ. Res. Public Health 2019, 16, 4660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Féres, J.; Reynaud, A. Assessing the impact of formal and informal regulations on environmental and economic performance of Brazilian manufacturing firms. Environ. Resour. Econ. 2012, 52, 65–85. [Google Scholar] [CrossRef]
- Grossman, G.M.; Krueger, A.B. Environmental Impacts of a North American Free Trade Agreement; National Bureau of Economic Research Working Paper Series; National Bureau of Economic Research, Inc.: Cambridge, MA, USA, 1991. [Google Scholar]
- Xin, S.; Shenshi, Z. Dual environmental regulation, government subsidy and enterprise innovation output. China Popul. Res. Environ. 2019, 29, 31–39. [Google Scholar]
- Li, Y.; Li, F.; Li, X. Environmental regulation, digital inclusive finance and urban industrial upgrading—Analysis based on spatial spillover effect and regulation effect. Inq. Econ. Issues 2022, 1, 50–66. [Google Scholar]
- Liu, Y.; Zhao, X. Carbon performance, green technology innovation and financial performance —An analysis based on moderating and threshold effects. Chinese Certif. Public Account. 2022, 8, 37–44. [Google Scholar] [CrossRef]
- Ren, S.; Wu, H.; Ran, Q. Outward foreign direct investment, institutional environment and green total factor productivity—An empirical study based on generalized quantile and dynamic threshold panel model. Int. Bus. 2019, 3, 83–96. [Google Scholar] [CrossRef]
- Rusiawan, W.; Tjiptoherijanto, P.; Suganda, E.; Darmajanti, L. Assessment of Green Total Factor Productivity Impact on Sustainable Indonesia Productivity Growth. Procedia Environ. Sci. 2015, 28, 493–501. [Google Scholar] [CrossRef] [Green Version]
- Chung, Y.H.; Färe, R.; Grosskopf, S. Productivity and undesirable outputs: A directional distance function approach. J. Environ. Manag. 1997, 51, 229–240. [Google Scholar] [CrossRef] [Green Version]
- Fukuyama, H.; Weber, W.L. A directional slacks-based measure of technical inefficiency. Socio-Econ. Plan. Sci. 2009, 43, 274–287. [Google Scholar] [CrossRef]
- Jiansheng, W.; Yan, N.; Jian, P.; Zheng, W.; Xiulan, H. Research on energy consumption dynamic among prefecture-level cities in China based on DMSP/OLS Nighttime Light. Geogr. Res. 2014, 33, 625–634. [Google Scholar]
- Guoqun, M.; Yanwen, T. Impact of environmental regulation on agricultural green total factor productivity—Analysis based on the panel threshold model. J. Agric. Econ. 2021, 5, 77–92. [Google Scholar] [CrossRef]
- Javorcik, B.S.; Wei, S.-J. Pollution havens and foreign direct investment: Dirty secret or popular myth? Contrib. Econ. Anal. Policy 2003, 3, 1244. [Google Scholar] [CrossRef] [Green Version]
- Jingyan, F. An empirical analysis on industrial characteristics, environmental regulation and air pollution: Guangdong’s manufacturing industry. China Popul. Res. Environ. 2009, 19, 73–77. [Google Scholar]
- Li, C.; Lu, X.; Li, J. The impact of local government competition pressure on regional production efficiency loss. China Soft Sci. 2018, 12, 87–94. [Google Scholar]
- Hansen, B.E. Threshold effects in non-dynamic panels: Estimation, testing, and inference. J. Econ. 1999, 93, 345–368. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Shao, X.; Liu, S.; Ran, R. Driving forces deconstructing green technology innovation dynamics from a spatial perspective: Policy push and market pull. Sci. Technol. Prog. Policy 2022, 39, 54–64. [Google Scholar]
- Bartik, T.J. The Effects of Environmental Regulation on Business Location in the United States. Growth Chang. 1988, 19, 22–44. [Google Scholar] [CrossRef]
- Jorgenson, D.W.; Wilcoxen, P.J. Environmental Regulation and U.S. Economic Growth. RAND J. Econ. 1990, 21, 314–340. [Google Scholar] [CrossRef]
- Xie, R.; Yuan, Y.; Huang, J. Different Types of Environmental Regulations and Heterogeneous Influence on “Green” Productivity: Evidence from China. Ecol. Econ. 2017, 132, 104–112. [Google Scholar] [CrossRef]
Variable | Indicator | Index | Definition |
---|---|---|---|
GTFP | Input | Labor | Number of employees in the municipal area |
Land | The built-up area in the municipal area | ||
Energy | Global stable-night-light value | ||
Capital | Measured by the perpetual inventory method | ||
Expected Output | Economic output | Real GDP of each region | |
Undesired Output | Environmental pollution | Industrial-wastewater discharge | |
Industrial sulfur dioxide emissions | |||
Industrial soot emissions |
Variable Category | Variable Symbol | Number of Observations | Mean Value | Standard Deviation | Minimum Value | Maximum Value |
---|---|---|---|---|---|---|
Explained variable | GTFP | 3627 | 1.016 | 0.130 | 0.206 | 1.877 |
Explanatory variable | FER | 3627 | 0.056 | 0.381 | 4.39 × 10−5 | 17.580 |
IER | 3627 | 0.189 | 0.094 | 0.024 | 0.694 | |
Control variable | INS | 3627 | 1.081 | 0.663 | 0.0943 | 6.533 |
GOV | 3627 | 17.040 | 10.740 | 1.021 | 270.200 | |
FIS | 3627 | 0.483 | 0.361 | 0.0544 | 6.131 | |
OPEN | 3627 | 0.194 | 0.368 | 1.34 × 10−5 | 8.168 | |
FIN | 3627 | 3.029 | 1.740 | 0.213 | 62.890 | |
INVES | 3627 | 11.660 | 2.027 | 3.008 | 16.830 |
Year | GTFP | FER | IER |
---|---|---|---|
2007 | 0.013 *** | 0.034 *** | 0.011 *** |
2008 | 0.017 *** | 0.035 *** | 0.016 *** |
2009 | 0.006 * | 0.028 *** | 0.016 *** |
2010 | 0.013 *** | 0.028 *** | 0.015 *** |
2011 | 0.007 ** | 0.023 *** | 0.010 ** |
2012 | 0.008 ** | 0.028 *** | 0.009 ** |
2013 | 0.022 *** | 0.040 *** | 0.011 *** |
2014 | 0.015 *** | 0.044 *** | 0.009 ** |
2015 | 0.018 *** | 0.060 *** | 0.014 *** |
2016 | 0.020 *** | 0.072 *** | 0.014 *** |
2017 | 0.016 *** | 0.062 *** | 0.013 *** |
2018 | 0.041 *** | 0.024 *** | 0.015 *** |
2019 | 0.027 *** | 0.011 *** | 0.015 *** |
Test Statistic | Statistical Value | p Value |
---|---|---|
LM-test-lag | 713.346 | 0.000 |
Robust LM-test-lag | 62.309 | 0.000 |
LM-test-error | 820.611 | 0.000 |
Robust LM-test-error | 169.573 | 0.000 |
LR-test-lag | 101.48 | 0.000 |
Wald-test-lag | 102.56 | 0.000 |
LR-test-error | 74.99 | 0.000 |
Wald-test-error | 74.23 | 0.000 |
Variable | (1) | (2) | (3) | (4) |
---|---|---|---|---|
FE | SDM | |||
FER | 0.091 *** | 0.116 *** | ||
(9.646) | (12.330) | |||
FER2 | −0.004 *** | −0.005 *** | ||
(−6.086) | (−8.479) | |||
IER | −0.207 ** | −0.180 ** | ||
(−2.509) | (−2.271) | |||
IER2 | 0.401 *** | 0.417 *** | ||
(2.788) | (3.028) | |||
INS | 0.022 *** | 0.020 *** | 0.017 *** | 0.016 *** |
(5.115) | (4.580) | (4.266) | (3.865) | |
GOV | −0.000 ** | −0.000 ** | −0.000 ** | −0.000 ** |
(−2.073) | (−2.076) | (−2.378) | (−2.302) | |
FIS | −0.013 | −0.014 | −0.013 | 0.009 |
(−0.664) | (−0.680) | (−0.619) | (0.438) | |
OPEN | 0.002 | −0.011 * | −0.004 | −0.012 * |
(0.302) | (−1.751) | (−0.620) | (−1.935) | |
FIN | −0.014 *** | −0.014 *** | −0.015 *** | −0.015 *** |
(−11.954) | (−11.939) | (−13.626) | (−13.022) | |
INVES | −0.000 | 0.000 | 0.002 | 0.003 * |
(−0.056) | (0.186) | (1.106) | (1.959) | |
Constant | 1.017 *** | 1.038 *** | ||
(51.674) | (48.222) | |||
W × FER | −0.369 *** | |||
(−4.661) | ||||
W × FER2 | 0.006 | |||
(1.087) | ||||
W × IER | −4.414 *** | |||
(−3.973) | ||||
W × IER2 | 11.050 *** | |||
(4.947) | ||||
p | 0.631 *** | 0.496 *** | ||
N | 3627 | 3627 | 3627 | 3627 |
Individual fixed | YES | YES | YES | YES |
Time fixed | YES | YES | YES | YES |
Variable | Direct Effect | Indirect Effect | Total Effect |
---|---|---|---|
FER | 0.113 *** | −0.853 *** | −0.739 *** |
FER2 | −0.005 *** | 0.007 | 0.002 |
IER | −0.207 *** | −9.398 *** | −9.605 *** |
IER2 | 0.478 *** | 23.486 *** | 23.963 *** |
Control variables | YES | YES | YES |
Individual fixed | YES | YES | YES |
Time fixed | YES | YES | YES |
Eastern Cities | Central-Western Cities | First-Class Cities | Second-Class Cities | |
---|---|---|---|---|
Direct-FER | 0.105 *** | 0.420 *** | 0.091 *** | 0.327 *** |
Direct-FER2 | −0.004 *** | −0.546 *** | −0.004 *** | −0.199 *** |
Direct-IER | −0.688 *** | −0.072 | −0.189 | −0.133 |
Direct-IER2 | 1.301 *** | 0.275 ** | 0.123 | 0.256 |
Indirect-FER | −0.289 *** | 4.200 ** | −0.161 *** | 0.738 |
Indirect-FER2 | 0.005 | −7.313 | 0.004 * | −2.036 |
Indirect-IER | −1.100 | −4.377 ** | 5.098 *** | −14.980 *** |
Indirect-IER2 | 1.272 | 14.382 *** | −10.208 *** | 31.681 *** |
Total-FER | −0.185 *** | 4.619 ** | −0.069 * | 1.066 |
Total-FER2 | 0.001 | −7.859 | −0.000 | −2.235 |
Total-IER | −1.788 | −4.449 ** | 4.908 *** | −15.113 *** |
Total-IER2 | 2.573 | 14.658 *** | −10.085 *** | 31.937 *** |
Control variables | YES | YES | YES | YES |
Individual fixed | YES | YES | YES | YES |
Time fixed | YES | YES | YES | YES |
Variable | (1) | (2) | (3) | (4) | (5) | (6) |
---|---|---|---|---|---|---|
Remeasurement of GTFP | 0–1 Weighting Matrix | Economic and Geographic Distance Weighting Matrix | ||||
FER | 0.334 *** | 0.117 *** | 0.121 *** | |||
(7.250) | (12.420) | (12.841) | ||||
FER2 | −0.011 *** | −0.005 *** | −0.005 *** | |||
(−4.094) | (−8.293) | (−8.708) | ||||
IER | −2.954 *** | −0.241 *** | −0.202 ** | |||
(−7.807) | (−3.008) | (−2.508) | ||||
IER2 | 4.475 *** | 0.446 *** | 0.414 *** | |||
(6.795) | (3.227) | (2.986) | ||||
Control variables | YES | YES | YES | YES | YES | YES |
Individual fixed | YES | YES | YES | YES | YES | YES |
Time fixed | YES | YES | YES | YES | YES | YES |
Variable | Direct Effect | Indirect Effect | Total Effect | Direct Effect | Indirect Effect | Total Effect |
---|---|---|---|---|---|---|
FER | 0.565 *** | 12.487 * | 13.052 * | |||
(5.454) | (1.664) | (1.733) | ||||
FER2 | −0.105 *** | −6.406 ** | −6.511 ** | |||
(−2.883) | (−2.304) | (−2.330) | ||||
FER × GTI | −0.264 *** | −2.540 | −2.804 | |||
(−3.087) | (−0.415) | (−0.455) | ||||
FER2 × GTI | 0.071 *** | 4.068 ** | 4.140 ** | |||
(3.008) | (2.204) | (2.231) | ||||
GTI | −0.695 *** | 28.167 *** | 27.472 *** | −0.695 *** | 28.167 *** | 27.472 *** |
(−3.250) | (3.453) | (3.361) | (−3.250) | (3.453) | (3.361) | |
IER | −0.133 | −9.404 *** | −9.537 *** | |||
(−1.614) | (−3.146) | (−3.188) | ||||
IER2 | 0.280 * | 24.713 *** | 24.993 *** | |||
(1.902) | (3.700) | (3.731) | ||||
IER × GTI | 4.560 *** | −142.060 *** | −137.501 *** | |||
(3.888) | (−3.192) | (−3.083) | ||||
IER2 × GTI | −5.593 *** | 149.397 ** | 143.805 ** | |||
(−3.418) | (2.550) | (2.447) | ||||
Control variables | YES | YES | YES | YES | YES | YES |
Individual fixed | YES | YES | YES | YES | YES | YES |
Time fixed | YES | YES | YES | YES | YES | YES |
Independent Variable | Model | F-Stat | Prob | Critical Value | Threshold Value | 95% Confidence Interval | ||
---|---|---|---|---|---|---|---|---|
10% | 5% | 1% | ||||||
FER | Single | 131.22 | 0.000 | 38.187 | 46.757 | 74.855 | 0.0245 | [0.0226, 0.0247] |
Double | 21.58 | 0.170 | 26.371 | 35.109 | 56.324 | — | — | |
IER | Single | 90.96 | 0.000 | 36.367 | 43.011 | 53.605 | 0.0031 | [0.0029, 0.0032] |
Double | 74.25 | 0.006 | 32.356 | 41.932 | 64.390 | 0.2861 | [0.2742, 0.2923] | |
Triple | 24.48 | 0.489 | 44.238 | 56.561 | 84.378 | — | — |
Variable | (1) | (2) |
---|---|---|
FER (GTI ≤ 0.0245) | 0.290 *** | |
(10.136) | ||
FER (GTI > 0.0245) | 0.589 *** | |
(9.471) | ||
IER (GTI ≤ 0.0031) | 0.075 * | |
(1.908) | ||
IER (0.0031 < GTI ≤ 0.2861) | 0.232 *** | |
(6.587) | ||
IER (GTI > 0.2861) | 0.551 *** | |
(11.812) | ||
Control variables | YES | YES |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Y.; Lin, T.; Xiao, Q. The Relationship between Environmental Regulation, Green-Technology Innovation and Green Total-Factor Productivity—Evidence from 279 Cities in China. Int. J. Environ. Res. Public Health 2022, 19, 16290. https://doi.org/10.3390/ijerph192316290
Ma Y, Lin T, Xiao Q. The Relationship between Environmental Regulation, Green-Technology Innovation and Green Total-Factor Productivity—Evidence from 279 Cities in China. International Journal of Environmental Research and Public Health. 2022; 19(23):16290. https://doi.org/10.3390/ijerph192316290
Chicago/Turabian StyleMa, Yuhua, Tong Lin, and Qifang Xiao. 2022. "The Relationship between Environmental Regulation, Green-Technology Innovation and Green Total-Factor Productivity—Evidence from 279 Cities in China" International Journal of Environmental Research and Public Health 19, no. 23: 16290. https://doi.org/10.3390/ijerph192316290
APA StyleMa, Y., Lin, T., & Xiao, Q. (2022). The Relationship between Environmental Regulation, Green-Technology Innovation and Green Total-Factor Productivity—Evidence from 279 Cities in China. International Journal of Environmental Research and Public Health, 19(23), 16290. https://doi.org/10.3390/ijerph192316290