Interchangeability between the Data Obtained by Two Powermeters during Road Cycling Competitions: A Case Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Procedures
2.2. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Allen, H.; Coggan, A. Training and Racing with a Power Meter; Velopress: Boulder, CO, USA, 2010. [Google Scholar]
- Leo, P.; Spragg, J.; Podlogar, T.; Lawley, J.S.; Mujika, I. Power profiling and the power-duration relationship in cycling: A narrative review. Eur. J. Appl. Physiol 2021, 122, 301–316. [Google Scholar] [CrossRef] [PubMed]
- Maier, T.; Schmid, L.; Müller, B.; Steiner, T.; Wehrlin, J.P. Accuracy of cycling power meters against a mathematical model of treadmill cycling. Int. J. Sport. Med. 2017, 38, 456–461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hurst, H.T.; Atkins, S.; Sinclair, J.; Metcalfe, J. Agreement between the Stages cycling and SRM powermeter systems during field-based off-road climbing. J. Sci. Cycl. 2015, 4, 21–27. [Google Scholar]
- Bouillod, A.; Pinot, J.; Soto-Romero, G.; Bertucci, W.; Grappe, F. Validity, sensitivity, reproducibility and robustness of the Powertap, Stages and Garmin Vector power meters in comparison with the SRM device. Int. J. Sport. Physiol. Perform. 2016, 12, 1023–1030. [Google Scholar] [CrossRef] [PubMed]
- Shute, R.; Zak, R.; Slivka, D. Validity and reproducibility of commercial cycling power meters in hot and cold environmental temperatures. J. Sci. Cycl. 2019, 8, 32–39. [Google Scholar] [CrossRef]
- Menaspà, P.; Sias, M.; Bates, G.; La Torre, A. Demands of world cup competitions in elite women’s road cycling. Int. J. Sport. Physiol. Perform. 2017, 12, 1293–1296. [Google Scholar] [CrossRef]
- Quod, M.J.; Martin, D.T.; Martin, J.C.; Laursen, P.B. The power profile predicts road cycling MMP. Int. J. Sport. Med. 2010, 31, 397–401. [Google Scholar] [CrossRef]
- Vanhatalo, A.; Jones, A.M.; Burnley, M. Application of critical power in sport. Int. J. Sport. Physiol. Perform. 2011, 6, 128–136. [Google Scholar] [CrossRef] [Green Version]
- Gardner, A.S.; Stephens, S.; Martin, D.T.; Lawton, E.; Lee, H.; Jenkins, D. Accuracy of SRM and Powertap power monitoring systems for bicycling. Med. Sci. Sport. Exerc. 2004, 36, 1252–1258. [Google Scholar] [CrossRef] [Green Version]
- Sanders, D.; van Erp, T.; de Koning, J.J. Intensity and load characteristics of professional road cycling: Differences between men’s and women’s races. Int. J. Sport. Physiol. Perform. 2019, 14, 296–302. [Google Scholar] [CrossRef]
- Etxebarria, N.; D’Auria, S.; Anson, J.M.; Pyne, D.B.; Ferguson, R.A. Variability in power output during cycling in international Olympic-distance triathlon. Int. J. Sport. Physiol. Perform. 2014, 9, 732–734. [Google Scholar] [CrossRef] [PubMed]
- Kyle, C.R. Chain friction, windy hills and other quick calculations. Cycling Sci. 1990, 2, 23–26. [Google Scholar]
- Martin, J.C.; Milliken, D.L.; Cobb, J.E.; McFadden, K.L.; Coggan, A.R. Validation of a mathematical model for road cycling power. J. Appl. Biomech. 1998, 14, 276–291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bertucci, W.; Duc, S.; Villerius, V.; Pernin, J.N.; Grappe, F. Validity and reliability of the PowerTap mobile cycling powermeter when compared with the SRM device. Int. J. Sport. Med. 2005, 26, 868–873. [Google Scholar] [CrossRef] [Green Version]
- Knechtle, B.; Rosemann, T.; Nikolaidis, P.T. Self-Selected Pacing during a 24 h Track Cycling World Record. Int. J. Environ. Res. Public Health 2019, 16, 2943. [Google Scholar] [CrossRef] [Green Version]
- Kuo, Y.H.; Cheng, C.F.; Kuo, Y.C. Determining validity of critical power estimated using a three-minute all-out test in hot environments. Int. J. Environ. Res. Public Health 2021, 18, 9193. [Google Scholar] [CrossRef]
- Moral-González, S.; González-Sánchez, J.; Valenzuela, P.L.; García-Merino, S.; Barbado, C.; Lucia, A.; Foster, C.; Barranco-Gil, D. Time to exhaustion at the respiratory compensation point in recreational cyclists. Int. J. Environ. Res. Public Health 2020, 17, 6352. [Google Scholar] [CrossRef] [PubMed]
- Alvero-Cruz, J.R.; García Romero, J.C.; Ordonez, F.J.; Mongin, D.; Correas-Gómez, L.; Nikolaidis, P.T.; Knechtle, B. Age and Training-Related Changes on Body Composition and Fitness in Male Amateur Cyclists. Int. J. Environ. Res. Public Health 2021, 19, 93. [Google Scholar] [CrossRef]
- Vogt, S.; Schumacher, Y.O.; Roecker, K.; Dickhuth, H.-H.; Schoberer, U.; Schmid, A.; Heinrich, L. Power output during the Tour de France. Int. J. Sport. Med. 2007, 28, 756–761. [Google Scholar] [CrossRef]
- Sanders, D.; van Erp, T. The physical demands and power profile of professional men’s cycling races: An updated review. Int. J. Sport. Physiol. Perform. 2020, 16, 3–12. [Google Scholar] [CrossRef]
- Van Erp, T.; Sanders, D. Demands of professional cycling races: Influence of race category and result. Eur. J. Sport. Sci. 2021, 21, 666–677. [Google Scholar] [CrossRef] [PubMed]
- Van Erp, T.; Lamberts, R.P. Performance Characteristics of TOP5 Versus NOT-TOP5 Races in Female Professional Cycling. Int. J. Sport. Physiol. Perform. 2022, 17, 1070–1076. [Google Scholar] [CrossRef] [PubMed]
- Danek, N.; Smolarek, M.; Michalik, K.; Zatoń, M. Comparison of acute responses to two different cycling sprint interval exercise protocols with different recovery durations. Int. J. Environ. Res. Public Health 2020, 17, 1026. [Google Scholar] [CrossRef] [PubMed]
Competition | Distance (km) | Duration (hh:mm:ss) | Elevation gain (m) | Temperature (°C) | Weather | Average Power (W·kg−1) | Normalized Power (W·kg−1) | Average Cadence (rpm) | |||
---|---|---|---|---|---|---|---|---|---|---|---|
PT | P2M | PT | P2M | PT | P2M | ||||||
RR 1 | 114.5 | 02:58:44 | 1145 | 18.8 | Cloudy | 3.18 | 3.18 | 3.72 | 3.75 | 93 | 96 |
RR 2 | 90 | 02:03:15 | 877 | 26 | Sunny | 3.36 | 3.42 | 4.00 | 4.08 | 97 | 101 |
RR 3 | 125 | 02:57:28 | 1096 | 15.4 | Cloudy | 3.40 | 3.48 | 3.98 | 4.08 | 96 | 98 |
RR 4 | 154 | 03:31:36 | 668 | 25.4 | Sunny | 3.10 | 3.15 | 3.73 | 3.77 | 92 | 96 |
RR 5 | 134.5 | 03:38:44 | 855 | 15.1 | Cloudy and rainy | 3.36 | 3.36 | 3.92 | 3.91 | 93 | 95 |
ITT 1 | 21.5 | 00:31:03 | 152 | 26 | Sunny | 4.93 | 5.10 | 4.92 | 5.09 | 103 | 104 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iglesias-Pino, J.; Herrero-Molleda, A.; Fernández-Fernández, J.; García-López, J. Interchangeability between the Data Obtained by Two Powermeters during Road Cycling Competitions: A Case Study. Int. J. Environ. Res. Public Health 2022, 19, 16446. https://doi.org/10.3390/ijerph192416446
Iglesias-Pino J, Herrero-Molleda A, Fernández-Fernández J, García-López J. Interchangeability between the Data Obtained by Two Powermeters during Road Cycling Competitions: A Case Study. International Journal of Environmental Research and Public Health. 2022; 19(24):16446. https://doi.org/10.3390/ijerph192416446
Chicago/Turabian StyleIglesias-Pino, Javier, Alba Herrero-Molleda, Jaime Fernández-Fernández, and Juan García-López. 2022. "Interchangeability between the Data Obtained by Two Powermeters during Road Cycling Competitions: A Case Study" International Journal of Environmental Research and Public Health 19, no. 24: 16446. https://doi.org/10.3390/ijerph192416446
APA StyleIglesias-Pino, J., Herrero-Molleda, A., Fernández-Fernández, J., & García-López, J. (2022). Interchangeability between the Data Obtained by Two Powermeters during Road Cycling Competitions: A Case Study. International Journal of Environmental Research and Public Health, 19(24), 16446. https://doi.org/10.3390/ijerph192416446