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Abstract: Due to extreme weather phenomena, precipitation-induced flooding has become a frequent,
widespread, and destructive natural disaster. Risk assessments of flooding have thus become a
popular area of research. In this study, we studied the severe precipitation-induced flooding that
occurred in Zhengzhou, Henan Province, China, in July 2021. We identified 16 basic indicators,
and the random forest algorithm was used to determine the contribution of each indicator to the
Zhengzhou flood. We then optimised the selected indicators and introduced the XGBoost algorithm
to construct a risk index assessment model of precipitation-induced flooding. Our results identified
four primary indicators for precipitation-induced flooding in the study area: total rainfall for three
consecutive days, extreme daily rainfall, vegetation cover, and the river system. The Zhengzhou storm
and flood risk evaluation model was constructed from 12 indicators: elevation, slope, water system
index, extreme daily rainfall, total rainfall for three consecutive days, night-time light brightness, land-
use type, proportion of arable land area, gross regional product, proportion of elderly population,
vegetation cover, and medical rescue capacity. After streamlining the bottom four indicators in terms
of contribution rate, it had the best performance, with an accuracy rate reaching 91.3%. Very high-risk
and high-risk areas accounted for 11.46% and 27.50% of the total area of Zhengzhou, respectively,
and their distribution was more significantly influenced by the extent of heavy rainfall, direction of
river systems, and land types; the medium-risk area was the largest, accounting for 33.96% of the
total area; the second-lowest-risk and low-risk areas together accounted for 27.09%. The areas with
the highest risk of heavy rainfall and flooding in Zhengzhou were in the Erqi, Guanchenghui, Jinshui,
Zhongyuan, and Huizi Districts and the western part of Xinmi City; these areas should be given
priority attention during disaster monitoring and early warning and risk prevention and control.

Keywords: precipitation-induced flooding; influencing factors; risk assessment; random forest; XGBoost

1. Introduction

Precipitation-induced flooding refers to the intense accumulation of precipitation,
rising or overflowing water levels in rivers, lakes, and reservoirs, and the inability of water
to drain away due to heavy or continuous rainfall [1]; this can lead to low-lying houses
and farmland becoming waterlogged or inundated, causing significant economic losses
and endangering lives [2]. As a result of extreme weather phenomena exacerbated by
global climate change, precipitation-induced flooding has become one of the most frequent,
widespread, and destructive natural disasters around the world [3].

From 19 to 23 July 2021, Henan Province in central China experienced anomalously
heavy rainfall, with precipitation of >400 mm at 43 observation stations, >300 mm at
154 stations, >200 mm at 467 stations, and >100 mm at 1426 stations. During that time,
19 cities and counties in the province broke their daily precipitation records. Zhengzhou,
the provincial capital, which is located in a flood disaster zone, experienced a total rainfall
of 993.1 mm and a cumulative surface rainfall of 543 mm during the event [4,5]. The city
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broke 70-year records for hourly and daily precipitation since the establishment of the first
meteorological station in Zhengzhou in 1951. The economic losses and human casualties
caused by the floods were considerable [5]. According to data released by the Chinese Min-
istry of Emergency Management, the floods affected 14.786 million people in 150 counties,
county-level cities, and districts in Henan Province and killed 398 people, including 380
(95.5%) people in Zhengzhou [6]. The economic losses sustained by the province amounted
to RMB 120.06 billion, 34.1% of which (RMB 40.9 billion) was in Zhengzhou.

Risk assessments of precipitation-induced flooding can be conducted by analysing
the influencing natural [7], geographical, social, economic, population, and industrial
factors in the study area [8]. The construction of a model to assess the risk of regional
precipitation-induced flooding allows the identification of areas at high risk of such events
within a specific area, which can be made the focus of disaster monitoring and warnings as
well as risk prevention and control work, which is vital for regional economic development
and social stability [9].

The monitoring and early warning of storm and flood disasters and risk management
have been a common concern in the world for nearly half a century; many breakthroughs
have been made in domestic and international research on storm and flood disaster risk
assessment. Regarding the chronological order of application scenarios, existing storm and
flood hazard assessments can be divided into three categories: pre-disaster assessments [10],
mid-disaster follow-up monitoring and assessments, and post-disaster real-world assess-
ments; in terms of research scales, there are studies that consider large areas and watersheds
as units for overall regional risk assessment and centralised control [11]; there are also stud-
ies that consider the differences in the basic characteristics of specific cities [12,13]. From
the perspective of research methods, most of the existing studies are based on statistical
principles combined with 3S technologies [14,15], including hierarchical analysis, entropy
value method, logistic regression method [16], BP neural network evaluation method,
intelligent algorithms combined with RS-GIS technology [17,18], and hydrodynamic mod-
els [19,20], etc.; from the selected index system, the 10 index factors of topographic index,
water system index, number of consecutive rainstorm days, 1 h rainfall, 24 h cumulative
rainfall, land-use type, vegetation cover, population density, old and young population
ratio, and GDP were used with the highest frequency and recognition. Overall, China has
developed a mature system for assessing flood risks, which has been applied widely in
regional flood monitoring and early warning systems as well as in risk prevention and
control. Nevertheless, probing deeper into the existing literature on risk assessments of
precipitation-induced flooding, we found two areas that require further attention. First,
the index systems used are too similar and do not give sufficient consideration to regional
attributes. The assessment indicators chosen in most studies are based on previous studies,
which ignores the fact that the contribution rates to flooding of various indicators depend
on the geographical, climatic, and socio-economic environments of a particular area. Sec-
ond, regarding methods of calculating indicator weights, subjective weighting methods
(such as the analytic hierarchy process [21]) rely too heavily on individual judgements, and
objective weighting methods (such as entropy methods) are hampered by missing data,
leading to questionable results.

To overcome subjectivity and lessen the influence of missing data, the random forest
(RF) and XGBoost algorithms can be used to select the index system as well as to calculate
index weights for the risk assessment of precipitation-induced flooding. RF has been widely
used in research on geological disasters, such as landslides and debris flows, as well as on
air pollution [22]. It can calculate the contribution to the final risk of each factor in the index,
which can be used to screen and optimise flooding assessment indicators. XGBoost can
determine a default direction of the branch for missing data, thereby reducing the resulting
error, and it can handle both classification and numerical features with better inclusiveness,
stability, and accuracy [23].

To assess the precipitation-induced flooding that occurred in the city of Zhengzhou in
the central Chinese province of Henan in July 2021, we chose 16 basic indicators, including
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elevation, slope, river systems, extreme daily rainfall, total rainfall over three consecutive
days, and vegetation cover. We used RF to examine the contributions of each of the
indicators to precipitation-induced flooding and then screened and optimised the indicators
based on the area under the curve (AUC) and accuracy (ACC) of the RF model to create our
risk-assessment index. We then introduced the XGBoost [24] algorithm to construct a risk
index assessment model to identify high-risk zones of the city [25]. This study is expected
to serve as a scientific basis for precipitation-induced flooding prevention and mitigation
planning in Zhengzhou.

2. Materials and Methods
2.1. Overview of the Study Area

The city of Zhengzhou is located in the north-central part of Henan Province in
the lower reaches of the Yellow River [26]. It has been designated by the State Council
as an important core city in central China and a major national transportation hub [27].
Zhengzhou comprises six municipal districts, five county-level cities, and one county [28],
as shown in Figure 1. It has a northern temperate continental monsoon climate, with
an average annual rainfall amount of 640.9 mm and precipitation levels that, in general,
decrease in a south-to-north direction. Its terrain is higher in the southwest and lower in
the northeast. The city contains a complex system of 124 rivers of various sizes [29]; it is
intersected by the two major river systems of the Yellow River and the Huai River. The
other main waterways in Zhengzhou are the Suoxu River, Wei River, Jialu River, Jinshui
River, Xiong’er River, Qili River, and the Dongfeng Canal [30].
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2.2. Research Methods
2.2.1. GIS-Weighted Integrated Evaluation Method

In accordance with natural disaster risk-assessment theory [18,30], this study first
assessed the risk posed by each of the four aspects of flood-aggravating environmental
susceptibility, flood-causing risk, location-specific exposure, and flood-mitigation capability,
which provided a multi-dimensional assessment of the occurrence and influencing factors
of precipitation-induced flooding in Zhengzhou. A weighted comprehensive evaluation
method was used to assess the four aspects. The equation is as follows:

G =
n

∑
i=1

Wi ×Di , (1)

where G is the overall index of each individual assessment, n is the number of indicators,
Wi is the weight of each indicator in the final risk, and Di is the value of each indicator
after normalisation.

Based on the principles of disaster risk assessments, after obtaining the individual
assessment index of flood-aggravating environmental susceptibility, flood-causing risk,
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location-specific exposure, and flood-mitigation capability, we used the power-index-
weighted assessment method to integrate and overlay the individual assessment results
and establish a model for assessing the risk of precipitation-induced flooding in Zhengzhou:

FDRI = f(VH, VE, VS, VR), (2)

where FDRI is the final result of the flood risk assessment; f is the power-index model;
and VH, VE, VS, and VR are the susceptibility, risk, exposure, and mitigation capability
assessment indicators calculated using Equation (8).

2.2.2. Random Forest

RF is an ensemble learning method that constructs a multitude of decision trees [31].
It uses bootstrap resampling to select samples with the same number of features from the
original training dataset [32]. Decision trees are then built for each sample, and predictions
of multiple decision trees are combined to obtain the final result by voting or averaging.

RF uses the Gini Index (GI) for importance weighting and has been used widely in
existing research to evaluate feature importance. This is determined by averaging the
change in the GI for each feature at each decision tree node split and presenting those data
as a percentage of the total average GI changes of all features.

The feature importance score is denoted by the variable importance measure (VIM),
and the Gini Index is denoted by GI [33]. Assuming there are m features (X1, X2, X3, . . . ,
Xm), the first step is to calculate the GI score VIM(Gini)

j of each feature Xj. The j-th feature
is the average change in impurity of the node splits for all decision trees [34]. The equation
is as follows [35]:

GIm =
k

∑
k=1

∑
k′

pmk pmk′ = 1−
|k|

∑
k=1

p2
mk, (3)

VIM(Gini)
jm = GIm − GIl − GIr, (4)

where k is the number of categories, pmk is the proportion of category k in node m, VIM(Gini)
jm

is the change in the GI of feature Xj when node m splits, and GIl and GIr are the GIs of the
two new nodes after the branch [34].

If the node of feature Xj in decision tree i is set as M, the importance of Xj in tree i is:

VIM(Gini)
jm = ∑

m∈M
VIM(Gini)

jm . (5)

If there are n trees in the RF, the sum of the GI changes of feature Xj in all decision
trees is [36,37]:

VIM(Gini)
j =

n

∑
i=1

VIM(Gini)
ij . (6)

Finally, normalisation is performed to obtain the feature importance of Xj:

VIMj =
VIMj

∑c
i=1 VIMi

. (7)

The accuracy of RF is higher than that of a single algorithm due to it being an ensemble
algorithm [38]. Bootstrap resampling greatly increases the randomness of the training
dataset and corrects for the habit of overfitting, thereby improving stability. It is considered
one of the best machine learning models.

2.2.3. XGBoost

Extreme gradient boosting (XGBoost) [24] is an efficient gradient-boosting decision
tree algorithm that can be used to calculate index weights [39]. XGBoost continuously adds
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trees and splits features to grow a tree. Each time a tree is added [40], a new function is
learned, and each round of prediction is used to fit the residual from the previous round of
prediction [41]. The score of a sample can be predicted based on the features of the sample.
When the training is complete, there are n trees. Each tree will fall to a corresponding leaf
node, and each leaf node corresponds to a score. Finally, the corresponding scores of all
trees are added to obtain the predicted value of the sample. The equation is as follows:

ŷ = ∅(xi) =
k

∑
k=1

fk(xi), (8)

where F =
{

f (x) = ωq(x)

}(
q : Rm → T, ω ∈ RT

)
, (9)

where ωq(x) is the score of leaf node q, and f (x) is a regression tree.
In the XGBoost algorithm, there are strong correlations between successive decision

trees [42]. Each round of prediction is based on the prediction error in the previous round;
thus, it is iteratively constructed, which greatly improves the accuracy of the prediction [43].
Compared with traditional statistical models, it can determine a default direction of a
branch for missing data, thereby reducing the resulting error [44]. It can also handle both
categorical and numerical features, giving the prediction model greater stability.

2.2.4. Accuracy and the Area under the Curve

ACC [45] uses a test set to classify the model, with the proportion of correctly classified
records out of the total number of records used to judge the quality of the classification
results [46].

AUC is the area under the receiver operating characteristic curve enclosed by the
coordinate axis [19,20]. Its value range is usually 0.5–1, and it is commonly used to measure
the prediction performance of machine learning. The closer the AUC is to 1, the higher the
prediction accuracy of the model. When the AUC is close to 0.5, it indicates that the model
has no practical application value.

Using a combination of ACC and AUC to measure the stability and accuracy of a model
can avoid erroneous results caused by skewed data that often occur in data samples [14].

2.3. Data Sources
2.3.1. Flooded Areas

The Sentinel-2 high-resolution, multispectral imaging products used in this study
were downloaded from the Copernicus Open Access Hub (https://scihub.copernicus.eu/)
(accessed on 24 November 2022). Due to the influences of cloud cover and temporal resolu-
tion [47], post-flood images of Zhengzhou were created using Sentinel-2 images from 19 to
25 July 2021, and pre-flood images [48] of Zhengzhou were created using Sentinel-2 images
from 15 to 27 April 2021. The data product was Level-1C, and the spatial resolution was up
to 10 m. After the pre-processing steps of radiometric calibration, geometric correction, and
atmospheric correction were performed on the data, SNAP and ENVI software were used to
change the data format. Using the pre- and post-flood images [49], three region-of-interest
samples were identified: original water bodies, flooded areas, and land areas [50]. The
graph-based segmentation algorithm was used to conduct supervised classification with
comparative experiments [51]. The results were then subjected to primary/secondary
analysis and clustering post-processing as well as manual correction to obtain the flooded
area of Zhengzhou during the precipitation-induced flooding in July 2021, as shown in
Figure 2.

https://scihub.copernicus.eu/
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2.3.2. Assessment Indicators

According to traditional risk-assessment theory, regional precipitation-induced flood-
ing is predominantly caused by meteorological factors, i.e., extreme rainfall, together with
a combination [52] of geo-environmental factors and the vulnerability of the affected lo-
cation [53]. Many recent studies have demonstrated [54] that disaster prevention and
mitigation efforts, such as early warning systems, drainage infrastructure, rescue services,
publicity and education, and emergency shelters to protect against precipitation-induced
flooding are important factors in evaluating a region’s risk of flooding. Thus, based on our
evaluation of the geographical features of Zhengzhou and the availability of data, and after
conducting correlation testing [55] and analysis, we selected the following 16 indicators
across the four categories of flood-aggravating environmental susceptibility, flood-causing
risk, location-specific exposure, and flood-mitigation capability [56]: elevation, slope angle,
slope aspect [57], river system, roads, extreme daily rainfall, total rainfall over three consec-
utive days, night-time light brightness [58], land-use type, proportion of arable land, gross
regional product (GRP), GDP per capita, economic growth rate, proportion of the elderly
population, vegetation cover, and medical rescue services.

Night-time light brightness is a new and popular area of research. It uses the brightness
of various lights at night to identify built-up areas and determine population distributions.
It has been used in fields such as regional economics and urbanisation [59], but it has not
been widely applied in natural disaster risk assessments. This study uses it to indicate the
population density and urbanisation level of Zhengzhou, thereby avoiding the excessively
high correlations of various socio-economic factors in traditional disaster assessments.
Moreover, the raster data have a higher resolution than socio-economic panel data do.

The data sources of all the indicators are shown in Table 1.
Given the different sources and formats of the geographic, meteorological, and socio-

economic data, we used ArcGIS software to transform the projections and resample the
raster data in order to obtain unified coordinates and a resolution of 30 m that would allow
analysis and calculations; this also ensured the accuracy of our assessments. Discrete data
were spatially processed using kriging interpolation and converted into raster data with a
resolution of 30 m.
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Table 1. Data sources of all indicators.

Primary Indicators Secondary Indicators Data Sources

Flood-aggravating
environmental susceptibility

Elevation

Geospatial Data CloudSlope angle

Slope aspect

River system National Catalogue Service for Geographic Information-1:1
million national public basic geographic information

data (2021)Roads

Flood-causing risk
3-day rainfall Data crawling from the National Meteorological

Information CenterExtreme rainfall

Location-specific exposure

Night-time lights
Earth Observation Group of the National Centers for

Environmental Information under the National Oceanic and
Atmosphere Administration (US)

Land use Esri, using Sentinel-2 remote sensing images combined with
an AI land classification modelArable land

Gross regional product

Zhengzhou Municipal Bureau of Statistics
Gross domestic product per capita

Economic growth

Elderly population

Vegetation cover Calculated based on remote sensing data from the Landsat-8
satellite in 2021

Flood-mitigation capability Medical rescue services Data on general hospitals and 3A hospitals from
Baidu Maps

3. Results
3.1. Flood Risk Assessment Index Analysis and Optimisation
Analysis of Indicator Contributions Using RF

To guarantee the integrity of the samples, 300 flooded sample points were randomly
selected from the extracted flooded areas of Zhengzhou and numbered ‘1’. Then, 300 non-
flooded sample points were randomly selected and numbered ‘0’. The spatial distribution
of the 600 sample points is shown in Figure 3. We entered the sample data into the RF
model, with 70% of the sample points (i.e., 210 flooded sample points and 210 non-flooded
sample points) set to be randomly selected, and the remaining 30% of sample points
(i.e., 90 flooded sample points and 90 non-flooded sample points) set as the validation set.
We ran the RF model using Python, with feature importance analysis conducted for the
16 indicators. The main parameters of the RF model were as follows: n_estimators = 100,
criterion = ‘gini’, max_depth = ‘None’, min_samples_split = 2, min_samples_leaf = 20,
max_features = ‘sqrt’, min_impurity_decrease = 0.0, bootstrap = True, oob_score = True,
n_jobs = 1, random_state = None. The ranked contributions of the assessment indicators to
precipitation-induced flooding in Zhengzhou are shown in Figure 4.

Of the 16 assessment indicators, 4 had a contribution rate to the final risk that was
greater than 0.100. In descending order, these were total rainfall over three consecutive
days (0.129), extreme daily rainfall (0.123), vegetation cover (0.110), and river systems
(0.102). The contribution rates of total rainfall over three consecutive days and extreme
daily rainfall were the highest, indicating that sustained and high-volume cumulative
rainfall as well as extremely heavy short-term rainfall are the main factors in Zhengzhou
that lead to precipitation-induced flooding [60]. Vegetation cover can delay and reduce the
level of the flood peak by affecting surface runoff during rainfall, so its contribution rate
was the third highest. The contribution rate of the river system indicator was 0.102, which
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demonstrates that areas with precipitation-induced flooding in Zhengzhou are closely
coupled with the distribution of the city’s river system.
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Five indicators had contribution rates between 0.050 and 0.100. In descending order,
they were land-use type (0.090), elevation (0.070), night-time light brightness (0.064), GRP
(0.061), and slope angle (0.051). The higher contribution of land-use type reflects the
close relationship between land-use type and the spatial distribution of areas prone to
precipitation-induced flooding. The contribution rates of the elevation and slope angle
reflect the fact that topography plays a notable promotional role in precipitation-induced
flooding. The contributions of night-time light brightness and GRP indicate that the spatial
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distribution, development, and migration of the urban population, economy, and industry
have a direct bearing on the spatial locations affected by precipitation-induced flooding.

Three indicators had contribution rates between 0.025 and 0.050: proportion of arable
land (0.048), proportion of the elderly population (0.037), and medical rescue services (0.035).
Arable land and the elderly population are both vulnerable to floods, and medical rescue
services are an important indicator of regional disaster prevention and mitigation capabilities.

Four indicators had contribution rates lower than 0.025: per capita GDP (0.024),
slope aspect (0.022), roads (0.018), and economic growth rate (0.016). This means that the
correlations between these indicators and the final risk of precipitation-induced flooding in
Zhengzhou were relatively weak.

3.2. Optimisation of Flood Risk-Assessment Indicators
Optimisation of Assessment Indicators

Based on the ranking of contribution rates to the final risk, starting with the indicator
with the lowest contribution rate, we removed assessment indicators sequentially to con-
struct the experimental model. A new model was constructed each time an indicator was
removed. We retained the same sample numbers and ratio of the training set to the valida-
tion set and used Python to implement each experimental model in turn. The accuracy and
stability of each model were determined based on the AUC and ACC values, leading to the
optimal model structure. A total of eight experiments were set up, and the results were
recorded in Table 2.

Table 2. Experimental process record sheet.

Experiment Deleted Indicator(s) ACC AUC

1 None 0.880111 0.948667

2 Economic growth 0.889333 0.955333

3 Economic growth, roads 0.887667 0.961889

4 Economic growth, roads, slope aspect 0.906111 0.966333

5 Economic growth, roads, slope aspect, GDP per capita 0.913333 0.967111

6 Economic growth, roads, slope aspect, GDP per capita,
medical response 0.900000 0.967333

7 Economic growth, roads, slope aspect, GDP per capita, medical
response, elderly population 0.891111 0.962778

8 Economic growth, roads, slope aspect, GDP per capita, medical
response, elderly population, proportion of arable land 0.887333 0.957667

GDP: gross domestic product; ACC: accuracy; AUC: area under the curve.

According to the experimental process records, the ACC and AUC in the experimental
model first increased and then decreased. In Experiments 1 to 5, the removal of indicators
with small contribution rates reduced the disruptive data in the model, which continuously
streamlined and optimised the model structurally. As a result, the model’s accuracy and
stability improved, with ACC and AUC values increasing significantly. In Experiments
6 to 9, however, as indicators with larger contribution rates were removed, the effective
data in the model decreased, which affected the model’s performance and caused ACC
and AUC values to gradually decrease. It can be seen from Table 2 that ACC values peaked
in Experiment 5, increasing from 88.0% in Experiment 1 to 91.3%, whereas AUC values
peaked in Experiments 5 and 6, with a value of 0.967. The latter values were close to 1,
indicating that the model’s predictions were highly accurate. Looking at both the ACC
and AUC values, the optimal model structure was that in Experiment 5, in which the four
indicators of economic growth, roads, slope aspect, and per capita GDP were removed.

RF was used to analyse the contribution rate of the 16 indicators, with the model
prediction performance and accuracy judged using AUC and ACC values as various
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indicators were compared and removed. This ultimately led us to the optimal precipitation-
induced flooding assessment index based on local conditions in Zhengzhou. The optimal
index system consists of 12 indicators: elevation, slope angle, river system, extreme daily
rainfall, total rainfall over three consecutive days, night-time light brightness, land use,
proportion of arable land, GRP, proportion of the elderly population, vegetation cover,
and medical rescue services. Each assessment indicator after normalisation is shown in
Figure 5.

Int. J. Environ. Res. Public Health 2022, 19, x FOR PEER REVIEW 10 of 20 
 

 

close to 1, indicating that the model’s predictions were highly accurate. Looking at both 

the ACC and AUC values, the optimal model structure was that in Experiment 5, in which 

the four indicators of economic growth, roads, slope aspect, and per capita GDP were 

removed. 

RF was used to analyse the contribution rate of the 16 indicators, with the model 

prediction performance and accuracy judged using AUC and ACC values as various in-

dicators were compared and removed. This ultimately led us to the optimal precipitation-

induced flooding assessment index based on local conditions in Zhengzhou. The optimal 

index system consists of 12 indicators: elevation, slope angle, river system, extreme daily 

rainfall, total rainfall over three consecutive days, night-time light brightness, land use, 

proportion of arable land, GRP, proportion of the elderly population, vegetation cover, 

and medical rescue services. Each assessment indicator after normalisation is shown in 

Figure 5. 

 

Figure 5. Diagrams of individual precipitation-induced flooding risk-assessment factors. 

3.3. Precipitation-Induced Flooding Risk Assessment 

Assessment Indicator Weighting 

We calculated the weight of each of the 12 assessment indicators selected above rel-

ative to the final risk to construct the risk-assessment model of precipitation-induced 

flooding in Zhengzhou. To overcome the issue of excessive subjectivity in the weighting 

calculation methods of traditional disaster risk assessments as well as to minimise the im-

pact of missing and misattributed data, we used XGBoost to calculate the weights of each 

assessment indicator. The model’s main parameters were set as follows: n_estimators = 

91, max_depth = None, min_samples_leaf = 13, min_samples_split = 2, max_features = 

‘auto’, bootstrap = True, oob_score = False, n_jobs = 1, random_state = 10. Using Python to 

Figure 5. Diagrams of individual precipitation-induced flooding risk-assessment factors.

3.3. Precipitation-Induced Flooding Risk Assessment
Assessment Indicator Weighting

We calculated the weight of each of the 12 assessment indicators selected above
relative to the final risk to construct the risk-assessment model of precipitation-induced
flooding in Zhengzhou. To overcome the issue of excessive subjectivity in the weighting
calculation methods of traditional disaster risk assessments as well as to minimise the
impact of missing and misattributed data, we used XGBoost to calculate the weights of each
assessment indicator. The model’s main parameters were set as follows: n_estimators = 91,
max_depth = None, min_samples_leaf = 13, min_samples_split = 2, max_features = ‘auto’,
bootstrap = True, oob_score = False, n_jobs = 1, random_state = 10. Using Python to
implement the XGBoost model, we obtained the weight of each assessment indicator (as
shown in Table 3).
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Table 3. Index weights for precipitation-induced flooding risk assessment.

Target Primary Indicators Secondary Indicators Weight Indicator Type

Precipitation-induced
flooding risk

Flood-aggravating susceptibility

(a) Elevation 0.085 Negative

(b) Slope angle 0.054 Negative

(c) River system 0.096 Positive

Flood-causing risk
(d) 3-day rainfall 0.146 Positive

(e) Extreme daily rainfall 0.188 Positive

Location-specific exposure

(f) Night-time lights 0.045 Positive

(g) Land use 0.103 Positive

(h) Arable land proportion 0.064 Positive

(i) GRP 0.032 Negative

(j) Elderly population 0.020 Positive

(k) Vegetation cover 0.138 Negative

Flood-mitigating capability (l) Medical response 0.028 Negative

3.4. Assessment Results and Analysis
3.4.1. Analysis of Individual Assessment Results

Based on the model for assessing the risk of precipitation-induced flooding outlined
above, with the help of the spatial overlay analysis function in ArcGIS, we calculated
the assessment index of flood-aggravating environmental susceptibility, flood-causing
risk, location-specific exposure, and flood-mitigation capability for precipitation-induced
flooding in Zhengzhou. Borrowing the five levels of risk classification used in previous
studies [61], we used the natural breaks method to perform classifications. The zoning
maps for each individual assessment aspect are shown in Figures 6–9.
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The zoning map of flood-aggravating environmental susceptibility shows that Zhengzhou’s
susceptibility to precipitation-induced flooding is most significantly affected by its river system.
Areas of ‘very high’ and ‘high’ susceptibility are mainly distributed along the northern Yellow
River system, Baisha Reservoir, Jiangang Reservoir, and other secondary tributaries of the
Yellow and Huai River systems. Areas with very high susceptibility are mainly in Huiji District,
Jinshui District, Erqi District, Zhongmu County, near the Yellow River north of Xingyang City
and Gongyi City, and around Baisha Reservoir in the southeast of Dengfeng City. Southwest
Zhengzhou has relatively high terrain and steep slopes, which facilitate the discharge of flood-
water. As a result, areas with ‘low’ and ‘very low’ susceptibility are mainly distributed in
Dengfeng City, Gongyi City, Xinmi City, and the southwestern part of Xingyang City. The
northern, eastern, and central parts of Zhengzhou have high flood-aggravating environmental
susceptibility due to their flat terrain and limited drainage capacity.

It can be seen from the zoning map of flood-causing risk levels that areas with ‘very
high’ and ‘high’ risks of precipitation-induced flooding in Zhengzhou are concentrated in
Erqi District, Guancheng Hui District, Jinshui District, Zhongyuan District, Huiji District,
and Xinmi City. Erqi District, the western parts of the Guancheng Hui and Jinshui districts,
and the eastern part of Zhongyuan District are the most at risk; this result is closely linked to
the distribution of heavy rainfall. Xingyang City, Shangjie City, Gongyi City, and Dengfeng
City are in areas of moderate risk. Zhongmu County and Xinzheng City have the lowest
risk of precipitation-induced flooding.

The zoning map of location-specific exposure to precipitation-induced flooding shows
that areas with ‘high’ and ‘very high’ exposure are in Xingyang City, Dengfeng City, and
Zhongmu County. Areas with moderate location-specific exposure are mainly in Gongyi
City and Shangjie District in the northwest, Xinmi City and Xinzheng City in the south,
and Huiji District in the north. The Central Plains District, Erqi District, Guancheng Hui
District, and Jinshui District in the north-central area have the lowest exposure. Location-
specific exposure is affected by population, economic, industrial, and resource factors.
Xingyang City, Dengfeng City, and Zhongmu County have developed arable farming, so
they have large proportions of arable land, which is less exposed to flooding; however,
they are economically disadvantaged, as agricultural land has poor resilience to heavy
rainfall and flooding, and it takes that type of land a long time to recover. Zhongyuan
District, Erqi District, Guancheng Hui District, and Jinshui District have high night-time
light brightness, indicating a large range and intensity of anthropogenic activities, so their
population exposure is high, but because their proportions of built-up land are high, their
land exposure is low. The location-specific exposure index is calculated based on the
weights of the various factors, and the exposure levels of Zhongyuan District, Erqi District,
Guancheng Hui District, and Jinshui District were found to be ‘low’ and ‘very low’.

It can be seen from the zoning map of flood-mitigation capability levels that Shangjie
District, Zhongyuan District, Erqi District, Guancheng Hui District, Jinshui District, and
other places near the main central urban area have the highest mitigation capability. Areas
with ‘high’, ‘moderate’, ‘low’, and ‘very low’ levels of mitigation capability are distributed
in descending order as one moves away from areas with the highest mitigation capabilities.
An area’s flood-mitigation capability is determined by factors including infrastructure,
natural conditions, and social welfare, and it is manifested as resistance to flooding and
resilience in recovery. This study used medical rescue services as an assessment indicator.
The closer a location is to the city centre and the main urban area, the higher the density
of large-scale medical institutions, such as general hospitals and 3A hospitals (the highest
classification in China), and, thus, the stronger its ability to mitigate the danger posed
by disasters.

3.4.2. Analysis of Assessment Results

The comprehensive assessment of the risk of precipitation-induced flooding in Zhengzhou
was obtained by assigning weights to the four individual assessments of flood-aggravating en-
vironmental susceptibility, flood-causing risk, location-specific exposure, and flood-mitigation
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capability, as shown in Figure 10. The range of the comprehensive risk assessment is [0, 1]. The
closer the value is to 1, the higher the risk of precipitation-induced flooding. It can be seen
from Figure 10 that the risk of precipitation-induced flooding in Zhengzhou is high in central
areas and low in eastern and western areas. Erqi District, Guancheng Hui District, Zhongyuan
District, and Jinshui District in the central part of the city have the highest risk of precipitation-
induced flooding, followed by Huiji District, Xingyang City, and Shangjie District in the north
and Xinmi City in the south. Gongyi City and Dengfeng City in the west and Zhongmu County
and Xinzheng City in the east have a relatively low risk of precipitation-induced flooding.
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Figure 10. Map of the comprehensive risk assessment of precipitation-induced flooding.

To help with regional precipitation-induced flooding prevention and control efforts,
we divided Zhengzhou into very high-risk areas [0.700, 1.000], high-risk areas [0.420, 0.700],
moderate-risk areas [0.245, 0.420], low-risk areas [0.165, 0.245], and very low-risk areas
[0.100, 0.165]. The spatial distributions of these five levels are shown in Figure 11.
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The total area of very high-risk areas in Zhengzhou is 866.81 km2, accounting for
11.46% of the city’s area. These are mainly in Erqi District, Guancheng Hui District, Jinshui
District, Zhongyuan District, Huiji District, and the western part of Xinmi City as well as
the northern part of Xingyang City near the Yellow River system. High-risk areas total
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2081.18 km2 and account for 27.5% of the city’s total area. They are located around the very
high-risk areas, mainly in Xinmi City in the central area, the northern parts of Xingyang City
and Gongyi City, and the eastern part of Dengfeng City. Areas at moderate risk account for
the largest area at 2569.64 km2, which is 33.96% of the city’s total area. They are the most
widely distributed, including the 11 districts, counties, and county-level cities of Dengfeng
City, Gongyi City, Shangjie District, Xingyang City, Xinmi City, Xinzheng City, Zhongmu
County, Guancheng Hui District, Jinshui District, Zhongyuan District, and Huiji District.
The spatial distribution of moderate-risk areas is strongly coupled with geographic factors,
including elevation, slope angle, and land-use type. Low-risk and very low-risk areas cover
1292.25 km2 and 757.12 km2, respectively, and together they account for 27.09% of the total
area of Zhengzhou. They are mainly in Gongyi City and Dengfeng City in the west of
Zhengzhou and Zhongmu County and Xinzheng City in the east.

4. Discussion
4.1. Risk-Assessment Framework of Storm and Flooding Based on Four Indicators of
Precipitation-Induced Flooding Risk

(1) The occurrences of storm and flood disasters are not independent events caused
solely by sudden and heavy rainfall. Rather, the causes are often intertwined with external
factors, including a region’s physical geography and socio-economic situation. Based on
the “Natural Disaster Risk System”, this study conducted a census of all factors causing
storm and flood disasters, and established a basic database of regional storm and flood
disaster risks. The rainstorm and flood risk assessment model in Zhengzhou was effective
in accurately assessing disaster risks from multiple perspectives.

(2) This study used machine learning algorithms to develop a storm and flood risk
assessment system, overcoming traditional problems with indicator selection and weighting
calculation processes being affected by the complex non-linear relationship between data
and excessive subjective human influence. This work lays a foundation for further research
applications of storm and flood risk assessments based on artificial intelligence and big
data that will likely be of growing interest for the field of flood risk analysis.

(3) Drawing on the advantages of big data, remote sensing, global positioning systems
(GPS), and geographical information systems (GIS), this study built on previous research
using remote sensing of night-time light as an indicator, replacing the socio-economic factors
of population density, urbanisation level, and per capita GDP. In doing so, it overcomes
the disadvantage of excessive correlation between traditional socio-economic factors in
such studies. At the same time, its grid-based data improved the accuracy of the evaluation
results compared to traditional socio-economic factors that use the administrative region as
a unit.

4.2. Strategies for Risk Management of Storm and Flood Disasters and Urban Planning
in Zhengzhou

(1) Using the single variable maps and comprehensive risk assessment and zoning
maps of the storm and flood risk in Zhengzhou, each district (city) can be managed
according to its risk level.

The high-risk areas are mainly distributed in the Erqi, Guancheng Hui, Jinshui,
Zhongyuan, and Huiji Districts, and the west of Xinmi City and north of Xingyang City,
which are significantly affected by extreme precipitation. For these high-risk areas, cities
should prioritise improving urban flood prevention emergency plans, strengthening real-
time monitoring of precipitation and real-time evaluation, and improving the mechanism of
information distribution regarding storms and floods. Simultaneously, as the populations
and economies of these areas are relatively dense, improving public awareness of flood
disaster prevention is particularly important [62]. Efforts should be channelled towards
improving public opinion of the environment, promoting public participation in urban
flood control emergency management [63] and exploring flood insurance, thereby boosting
urban flood risk management capabilities.
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The second-highest risk areas included the cities of Xinmi and Xingyang City, the
northern part of Gongyi City, and the eastern part of Dengfeng City, which all experience
location-specific exposure and flood-aggravating susceptibility.

These regions have developed fluvial systems and a high proportion of arable land.
Therefore, the focuses for preventing storm and flood disasters should be flood control
engineering and urban land-use planning, including: building flood walls and embank-
ments along the river, strengthening existing flood control and drainage infrastructure, and
preparing early flood warning and emergency plans. Furthermore, it is also important to
strengthen land-use planning, management, and control, prioritise urban flood prevention,
and coordinate and adapt urban construction to floods.

The eleven medium-risk areas include Zhongmu County; the cities of Dengfeng,
Gongyi, Xingyang, Xinmi, and Xinzheng; and the Shangjie, Guancheng Hui, Jinshui,
Zhongyuan, and Huiji Districts. These areas are moderately affected by flood-aggravating
susceptibility, flood-causing risk, and location-specific exposures, but more importantly,
they have a weak ability to prevent and reduce disasters. Therefore, emphasis should be
placed on improving regional emergency management capabilities and enhancing public
awareness of flood controls. On one hand, it is necessary to formulate emergency plans in
large- and medium-sized cities, strengthen the allocation and coordination of manpower,
and improve supervision and management to ensure timely early warnings reach every
affected individual. On the other hand, the publication and education of meteorological
information and emergency response capabilities [64] can be improved to enhance disaster
prevention and self-rescue awareness.

The moderately low-risk and low-risk areas are mainly distributed in Zhongmu
County, Xinzheng City, and the intersection of Gongyi Dengfeng Cities. Apart from public
outreach and education, no other risk management is required.

(2) Under global warming, the frequency and intensity of extreme climate disasters
have increased significantly for cities that are currently affected. Urban planning and con-
struction are intrinsic to extreme climate risks. Multi-scale theoretical and practical research
of disaster mitigation, adaptation, and planning is an important means of mitigating ex-
treme climate disasters and improving urban resilience for the future. Using multiple forms
of information technologies to conduct urban storm and flood disaster risk assessments,
high-risk areas can be identified and urban flood control and drainage plans developed in
advance. This is consistent with the three-step strategy of “assessment–warning–strategy”,
and using flood control and risk reduction projects to manage flood disasters. Effectively
restricting the construction and urban planning of lower-level sponge cities is beneficial to
strengthening the blue and green lines, which represent water bodies and natural systems,
management of ecological spaces, and vertical urban management. This method also allows
for the optimisation of engineering decision-making, restricting or optimising projects and
socio-economic development in risk areas, and improving early warning and forecasting.

5. Conclusions

Using the precipitation-induced flooding event that occurred in the city of Zhengzhou
in the central Chinese province of Henan in July 2021 as a case study, we used the RF and
XGBoost algorithms to examine the influencing factors and conduct a risk assessment of
precipitation-induced flooding in Zhengzhou. Our research led to the following conclusions.

(1) Based on our evaluation of the geographical features of Zhengzhou and the quality
of available data, we selected 16 indicators from the four aspects of geography, meteorol-
ogy, population, and economy. We used RF to examine the contribution of each indicator
to precipitation-induced flooding. We found that the four indicators with the highest
contributions were (in descending order) total rainfall over three consecutive days, ex-
treme daily rainfall, vegetation cover, and river systems. The indicators with the next
highest contributions were land-use type, elevation, night-time light brightness, GDP, and
slope angle.
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(2) Based on the AUC and ACC of the RF model, we streamlined the indicators to
create an optimised risk-assessment index. After removing the four indicators of economic
growth, roads, slope aspect, and per capita GDP, which were the four bottom-ranked
indicators in terms of contribution, the model’s prediction accuracy and performance
were optimal.

(3) We used XGBoost to calculate the weights of the streamlined indicators for the
final objective of constructing a risk-assessment model of precipitation-induced flooding
in Zhengzhou to individually assess the four aspects of flood-aggravating environmental
susceptibility, flood-causing risk, location-specific exposure, and flood-mitigation capability,
which were integrated to obtain the final risk-assessment results of precipitation-induced
flooding in Zhengzhou. The results showed that very high-risk and high-risk areas account
for 11.46% and 27.50% of the total area of Zhengzhou, respectively. Their distribution is
significantly affected by heavy rainfall, river systems, and land-use type. The areas with the
highest risk of precipitation-induced flooding in Zhengzhou are Erqi District, Guancheng
Hui District, Jinshui District, Zhongyuan District, Huiji District, and western Xinmi City.

(4) This study innovatively introduced a machine learning algorithm in the construc-
tion of a risk-assessment system for flooding; this overcomes the problem that the process
of screening index factors and calculating weights is affected by complex non-linear rela-
tionships between data and excessive human subjective influence, improving the accuracy
of the research results. This study can help government departments to identify high-risk
areas and provide a scientific basis for storm and flood prevention and mitigation planning.
However, there are still some limitations in this paper: (i) due to the limitation of data
acquisition, only 18 basic factors were selected for secondary optimisation and screening,
and it is proposed to expand the basic database in multiple ways in future studies and to
continue to explore more comprehensive storm and flood hazard impact factors and their
mechanism of action; (ii) due to the limitation of the original data type, some of the data
were sourced from statistical tables and processed as panel data by the kriging difference
method, resulting in the lack of precision of the data. In the future, we may consider and
seek other raster data with higher accuracy for similar replacement.
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