The Use of Elastic Bands in Velocity-Based Training Allows Greater Acute External Training Stimulus and Lower Perceived Effort Compared to Weight Plates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Procedures
2.2.1. Participants
2.2.2. Execution Protocol and Exercise Description
2.2.3. 1RM Calculation
2.2.4. Heart Rate Measurement
2.2.5. Movement Velocity Measurement and Maximum Power
2.2.6. Perceived Exertion Values Measurement
2.2.7. Relative Strength
2.3. Statistical Analyses
3. Results
3.1. Number of Repetitions and Heart Rate Values
3.2. Mean Propulsive Velocity, Maximum Power, and Rating of Perceived Exertion
3.3. Prediction of Load, Number of Repetitions and MPV through the RPE
3.4. Intersession Reliability for Load, Repetitions, Heart Rate, MPV, PMAX, and RPE
4. Discussion
4.1. External Load: Differences between Using Elastic Bands or Weight Plates to Load the Bar
4.2. Internal Load: Differences between Using Elastic Bands or Weight Plates to Load the Bar
4.3. The Use of the Rate of Perceived Exertion of the First Repetition to Quantify the External Load in Squats
4.4. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Flandez, J.; Gene-Morales, J.; Modena, N.; Martin, F.; Colado, J.C.; Gargallo, P. Effects of power resistance training program with elastic bands on body composition, muscle strength and physical function in older women. J. Hum. Sport Exerc. 2020, 15, S1322–S1337. [Google Scholar] [CrossRef]
- Hammami, R.; Gene-Morales, J.; Abed, F.; Selmi, M.A.; Moran, J.; Colado, J.C.; Rebai, H.H. An eight-weeks resistance training programme with elastic band increases some performance-related parameters in pubertal male volleyball players. Biol. Sport 2022, 39, 219–226. [Google Scholar] [CrossRef] [PubMed]
- Saez-Berlanga, A.; Gargallo, P.; Gene-Morales, J.; Babiloni, C.; Colado, J.C.; Juesas, A. Multicomponent elastic training improves short-term body composition and balance in older women. Sci. J. Sport Perform. 2022, 1, 4–13. [Google Scholar] [CrossRef]
- Lopes, J.S.S.; Machado, A.F.; Micheletti, J.K.; de Almeida, A.C.; Cavina, A.P.; Pastre, C.M. Effects of training with elastic resistance versus conventional resistance on muscular strength: A systematic review and meta-analysis. SAGE Open Med. 2019, 7, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Walker, S.; Hulmi, J.J.; Wernbom, M.; Nyman, K.; Kraemer, W.J.; Ahtiainen, J.P.; Häkkinen, K. Variable resistance training promotes greater fatigue resistance but not hypertrophy versus constant resistance training. Eur. J. Appl. Physiol. 2013, 113, 2233–2244. [Google Scholar] [CrossRef]
- Saeterbakken, A.H.; Andersen, V.; Kolnes, M.K.; Fimland, M.S. Effects of Replacing Free Weights With Elastic Band Resistance in Squats on Trunk Muscle Activation. J. Strength Cond. Res. 2014, 28, 3056–3062. [Google Scholar] [CrossRef]
- Saeterbakken, A.H.; Andersen, V.; Tillaar, R.V.D. Comparison of Kinematics and Muscle Activation in Free-Weight Back Squat With and Without Elastic Bands. J. Strength Cond. Res. 2016, 30, 945–952. [Google Scholar] [CrossRef]
- Gene-Morales, J.; Gené-Sampedro, A.; Salvador, R.; Colado, J.C. Adding the load just above the sticking point using elastic bands optimizes squat performance, perceived effort rate, and cardiovascular responses. J. Sport. Sci. Med. 2020, 19, 735–744. [Google Scholar]
- Cormier, P.; Freitas, T.T.; Seaman, K. A systematic review of resistance training methodologies for the development of lower body concentric mean power, peak power, and mean propulsive power in team-sport athletes. Sport. Biomech. 2021, 1–34. [Google Scholar] [CrossRef]
- Aboodarda, S.J.; Page, P.A.; Behm, D.G. Muscle activation comparisons between elastic and isoinertial resistance: A meta-analysis. Clin. Biomech. 2016, 39, 52–61. [Google Scholar] [CrossRef]
- Colado, J.C.; Furtado, G.E.; Teixeira, A.M.; Flandez, J.; Naclerio, F. Concurrent and Construct Validation of a New Scale for Rating Perceived Exertion during Elastic Resistance Training in The Elderly. J. Sport. Sci. Med. 2020, 19, 175–186. [Google Scholar]
- De Oliveira, P.A.; Blasczyk, J.C.; Junior, G.S.; Lagoa, K.F.; Soares, M.; Oliveira, R.; Filho, P.G.; Carregaro, R.L.; Martins, W. Effects of Elastic Resistance Exercise on Muscle Strength and Functional Performance in Healthy Adults: A Systematic Review and Meta-Analysis. J. Phys. Act. Health 2017, 14, 317–327. [Google Scholar] [CrossRef] [PubMed]
- Arazi, H.; Salek, L.; Nikfal, E.; Izadi, M.; Tufano, J.J.; Elliott, B.; Brughelli, M. Comparable endocrine and neuromuscular adaptations to variable vs. constant gravity-dependent resistance training among young women. J. Transl. Med. 2020, 18, 239. [Google Scholar] [CrossRef] [PubMed]
- Larsen, S.; Kristiansen, E.; Tillaar, R.V.D. Effects of subjective and objective autoregulation methods for intensity and volume on enhancing maximal strength during resistance-training interventions: A systematic review. PeerJ 2021, 9, e10663. [Google Scholar] [CrossRef]
- Robertson, R.J.; Goss, F.L.; Rutkowski, J.; Lenz, B.; Dixon, C.; Timmer, J.; Frazee, K.; Dube, J.; Andreacci, J. Concurrent Validation of the OMNI Perceived Exertion Scale for Resistance Exercise. Med. Sci. Sport. Exerc. 2003, 35, 333–341. [Google Scholar] [CrossRef] [Green Version]
- Colado, J.C.; Garcia-Masso, X.; Triplett, T.N.; Flandez, J.; Borreani, S.; Tella, V. Concurrent Validation of the OMNI-Resistance Exercise Scale of Perceived Exertion With Thera-Band Resistance Bands. J. Strength Cond. Res. 2012, 26, 3018–3024. [Google Scholar] [CrossRef]
- Naclerio, F.; Larumbe-Zabala, E. Relative Load Prediction by Velocity and the OMNI-RES 0–10 Scale in Parallel Squat. J. Strength Cond. Res. 2017, 31, 1585–1591. [Google Scholar] [CrossRef]
- Lea, J.W.D.; O’Driscoll, J.M.; Hulbert, S.; Scales, J.; Wiles, J.D. Convergent Validity of Ratings of Perceived Exertion During Resistance Exercise in Healthy Participants: A Systematic Review and Meta-Analysis. Sport. Med. Open 2022, 8, 2. [Google Scholar] [CrossRef]
- Ballmann, C. The Influence of Music Preference on Exercise Responses and Performance: A Review. J. Funct. Morphol. Kinesiol. 2021, 6, 33. [Google Scholar] [CrossRef]
- Greco, F.; Rotundo, L.; Grazioli, E.; Parisi, A.; Carraro, A.; Muscoli, C.; Paoli, A.; Marcolin, G.; Emerenziani, G.P. Effects of self-selected versus motivational music on lower limb muscle strength and affective state in middle-aged adults. PeerJ 2022, 10, e13795. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Lang, A.-G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef] [PubMed]
- Beck, T.W. The Importance of A Priori Sample Size Estimation in Strength and Conditioning Research. J. Strength Cond. Res. 2013, 27, 2323–2337. [Google Scholar] [CrossRef] [PubMed]
- Gene-Morales, J.; Flandez, J.; Juesas, A.; Gargallo, P.; Miñana, I.; Colado, J.C. A systematic review on the muscular activation on the lower limbs with five different variations of the squat exercise. J. Hum. Sport Exerc. 2020, 15, S1277–S1299. [Google Scholar] [CrossRef]
- O’Connor, B.; Simmons, J.; O’Shea, P. Weight Training Today, 1st ed.; West Publishing: Eagan, MN, USA, 1989. [Google Scholar]
- Epley, B. Poundage chart. In Boyd Epley Workout, 1st ed.; Body Enterprises: Lincoln, NE, USA, 1985; p. 86. [Google Scholar]
- Laurent, C.M.; Green, J.M.; Bishop, P.A.; Sjökvist, J.; Schumacker, R.E.; Richardson, M.T.; Curtner-Smith, M. A Practical Approach to Monitoring Recovery: Development of a Perceived Recovery Status Scale. J. Strength Cond. Res. 2011, 25, 620–628. [Google Scholar] [CrossRef]
- Pérez-Castilla, A.; Piepoli, A.; Delgado-García, G.; Garrido-Blanca, G.; García-Ramos, A. Reliability and Concurrent Validity of Seven Commercially Available Devices for the Assessment of Movement Velocity at Different Intensities During the Bench Press. J. Strength Cond. Res. 2019, 33, 1258–1265. [Google Scholar] [CrossRef]
- Henriques, T. NPTI’s Fundamentals of Fitness and Personal Training, 1st ed.; Human Kinetics: Champaign, IL, USA, 2014. [Google Scholar]
- Blanca, M.J.; Alarcón, R.; Arnau, J.; Bono, R.; Bendayan, R. Non-Normal Data: Is ANOVA still a Valid Option? Psicothema 2017, 29, 552–557. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Erlbaum Associates: Hillsdale, MI, USA, 1988. [Google Scholar]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef] [Green Version]
- Andersen, V.; Fimland, M.S.; Kolnes, M.K.; Jensen, S.; Laume, M.; Saeterbakken, A.H. Electromyographic Comparison of Squats Using Constant or Variable Resistance. J. Strength Cond. Res. 2016, 30, 3456–3463. [Google Scholar] [CrossRef]
- Kompf, J.; Arandjelović, O. Understanding and Overcoming the Sticking Point in Resistance Exercise. Sport. Med. 2016, 46, 751–762. [Google Scholar] [CrossRef] [Green Version]
- Kompf, J.; Arandjelović, O. The Sticking Point in the Bench Press, the Squat, and the Deadlift: Similarities and Differences, and Their Significance for Research and Practice. Sport. Med. 2016, 47, 631–640. [Google Scholar] [CrossRef] [Green Version]
- Israetel, M.A.; McBride, J.M.; Nuzzo, J.L.; Skinner, J.W.; Dayne, A.M. Kinetic and Kinematic Differences Between Squats Performed With and Without Elastic Bands. J. Strength Cond. Res. 2010, 24, 190–194. [Google Scholar] [CrossRef] [PubMed]
- Stevenson, M.W.; Warpeha, J.M.; Dietz, C.C.; Giveans, R.M.; Erdman, A.G. Acute Effects of Elastic Bands During the Free-weight Barbell Back Squat Exercise on Velocity, Power, and Force Production. J. Strength Cond. Res. 2010, 24, 2944–2954. [Google Scholar] [CrossRef]
- Martínez-Cava, A.; Morán-Navarro, R.; Sánchez-Medina, L.; González-Badillo, J.J.; Pallarés, J.G. Velocity- and power-load relationships in the half, parallel and full back squat. J. Sport. Sci. 2018, 37, 1088–1096. [Google Scholar] [CrossRef] [PubMed]
- Soriano, M.A.; Reyes, P.J.; Rhea, M.R.; Marín, P.J. The Optimal Load for Maximal Power Production During Lower-Body Resistance Exercises: A Meta-Analysis. Sport. Med. 2015, 45, 1191–1205. [Google Scholar] [CrossRef] [PubMed]
- Moreira, O.C.; Faraci, L.L.; de Matos, D.G.; Filho, M.L.M.; da Silva, S.F.; Aidar, F.J.; Hickner, R.C.; de Oliveira, C.E. Cardiovascular Responses to Unilateral, Bilateral, and Alternating Limb Resistance Exercise Performed Using Different Body Segments. J. Strength Cond. Res. 2017, 31, 644–652. [Google Scholar] [CrossRef]
- Helms, E.R.; Storey, A.; Cross, M.R.; Brown, S.R.; Lenetsky, S.; Ramsay, H.; Dillen, C.; Zourdos, M.C. RPE and Velocity Relationships for the Back Squat, Bench Press, and Deadlift in Powerlifters. J. Strength Cond. Res. 2017, 31, 292–297. [Google Scholar] [CrossRef]
- Heredia-Elvar, J.R.; Hernández-Lougedo, J.; Maicas-Pérez, L.; Notario-Alonso, R.; Garnacho-Castaño, M.V.; García-Fernández, P.; Maté-Muñoz, J.L. Reproducibility and Applicability of Traditional Strength Training Prescription Recommendations. Biology 2022, 11, 851. [Google Scholar] [CrossRef]
- Hernández-Belmonte, A.; Courel-Ibáñez, J.; Conesa-Ros, E.; Martínez-Cava, A.; Pallarés, J.G. Level of Effort: A Reliable and Practical Alternative to the Velocity-Based Approach for Monitoring Resistance Training. J. Strength Cond. Res. 2021, 36, 2992–2999. [Google Scholar] [CrossRef]
- Pincivero, D.M.; Coelho, A.J.; Campy, R.M. Perceived exertion and maximal quadriceps femoris muscle strength during dynamic knee extension exercise in young adult males and females. Eur. J. Appl. Physiol. 2003, 89, 150–156. [Google Scholar] [CrossRef]
- Pincivero, D.M.; Timmons, M.K.; Elsing, D. RPE Angle Effects in Young and Middle-Aged Adults. Int. J. Sport. Med. 2010, 31, 257–260. [Google Scholar] [CrossRef]
- Shimano, T.; Kraemer, W.J.; Spiering, B.A.; Volek, J.S.; Hatfield, D.L.; Silvestre, R.; Vingren, J.L.; Fragala, M.S.; Maresh, C.M.; Fleck, S.J.; et al. Relationship Between the Number of Repetitions and Selected Percentages of One Repetition Maximum in Free Weight Exercises in Trained and Untrained Men. J. Strength Cond. Res. 2006, 20, 819–823. [Google Scholar] [CrossRef] [PubMed]
Intensities | Number of Repetitions WP † | Number of Repetitions EB † | Heart Rate WP (bpm) | Heart Rate EB (bpm) |
---|---|---|---|---|
40% 1RM | 15.22 (2.07) | 16.22 (3.57) | 165.65 (16.14) | 155.18 (14.64) * |
55% 1RM | 9.89 (3.36) | 12.33 (2.03) * | 164.82 (12.69) | 154.76 (13.34) * |
70% 1RM | 5.44 (1.42) | 8.39 (1.88) * | 157.59 (13.68) | 153.76 (13.47) |
85% 1RM | 3.11 (1.02) | 6.00 (1.91) * | 153.82 (12.51) | 150.12 (11.94) |
40% 1RM | 55% 1RM | 70% 1RM | 85% 1RM | ||
---|---|---|---|---|---|
MPV (m/s) | First Repetition WP | 0.84 (0.08) # | 0.70 (0.06) †# | 0.58 (0.07) †# | 0.45 (0.07) †# |
First Repetition EB | 0.94 (0.13) | 0.90 (0.09) | 0.80 (0.10) † | 0.73 (0.09) † | |
Last repetition WP | 0.72 (0.08) # | 0.60 (0.05) †# | 0.49 (0.07) †# | 0.38 (0.06) †# | |
Last repetition EB | 0.82 (0.12) | 0.78 (0.09) | 0.69 (0.10) † | 0.63 (0.08) † | |
PMAX (W) | First Repetition WP | 349.26 (115.92) # | 404.41 (125.58) †# | 423.87 (128.09) †# | 385.83 (112.55) # |
First Repetition EB | 408.83 (150.95) | 530.22 (184.01) † | 591.49 (187.40) † | 649.60 (219.79) † | |
Last repetition WP | 300.17 (101.67) # | 343.39 (102.99) †# | 354.42 (106.70) †# | 340.98 (98.11) # | |
Last repetition EB | 355.34 (132.63) | 461.06 (161.20) † | 514.73 (168.61) † | 568.31 (189.90) † | |
RPE | First Repetition WP | 2.72 (1.71) # | 3.94 (1.29) # | 6.11 (1.81) †# | 7.61 (1.65) †# |
First Repetition EB | 1.28 (0.75) | 2.56 (1.15) † | 4.11 (1.41) † | 5.72 (1.90) † | |
Last repetition WP | 6.06 (1.21) # | 6.22 (1.35) # | 7.67 (1.53) # | 8.44 (1.42) †# | |
Last repetition EB | 3.22 (1.26) | 4.28 (1.27) † | 5.78 (1.59) † | 6.67 (1.53) † |
Variable | Condition | r | R2 (SEE) | Significance (p-Value) | Regression Equation | |
---|---|---|---|---|---|---|
Load (kg) | WP | 0.59 | 0.35 (20.97) | <0.001 | 35.21 + (6.07 × RPE) | |
EB | 0.49 | 0.24 (22.62) | <0.001 | 46.01 + (5.90 × RPE) | ||
Number of repetitions | WP | 0.67 | 0.45 (3.80) | <0.001 | 15.46 + (−1.38 × RPE) | |
EB | 0.69 | 0.48 (3.35) | <0.001 | 15.78 + (−1.48 × RPE) | ||
%1RM | WP | 0.76 | 0.58 (11.07) | <0.001 | 36.31 + (5.14 × RPE) | |
EB | 0.78 | 0.61 (10.63) | <0.001 | 41.53 + (6.14 × RPE) | ||
MPV (m/s) | WP | First repetition | 0.75 | 0.57 (0.11) | <0.001 | 0.89 + (−0.05 × RPE) |
Last repetition | 0.58 | 0.34 (0.12) | <0.001 | 0.90 + (−0.05 × RPE) | ||
EB | First repetition | 0.68 | 0.46 (0.10) | <0.001 | 0.99 + (−0.04 × RPE) | |
Last repetition | 0.54 | 0.29 (0.10) | <0.001 | 0.90 + (−0.03 × RPE) |
RPE | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
Load EB (kg) | 51.91 | 57.81 | 63.71 | 69.61 | 75.51 | 81.41 | 87.31 | 93.21 | 99.11 | 105.01 |
Load WP (kg) | 41.28 | 47.35 | 53.42 | 59.49 | 65.56 | 71.63 | 77.70 | 83.77 | 89.84 | 95.91 |
Number of repetitions EB | 14.30 | 12.82 | 11.34 | 9.86 | 8.38 | 6.90 | 5.42 | 3.94 | 2.46 | 0.98 |
Number of repetitions WP | 14.08 | 12.70 | 11.32 | 9.94 | 8.56 | 7.18 | 5.80 | 4.42 | 3.04 | 1.66 |
%1RM EB | 47.67 | 53.81 | 59.95 | 66.09 | 72.23 | 78.37 | 84.51 | 90.65 | 96.79 | 102.93 |
%1RM WP | 41.45 | 46.59 | 51.73 | 56.87 | 62.01 | 67.15 | 72.29 | 77.43 | 82.57 | 87.71 |
MPV first repetition EB | 0.95 | 0.91 | 0.87 | 0.83 | 0.79 | 0.75 | 0.71 | 0.67 | 0.63 | 0.59 |
MPV first repetition WP | 0.84 | 0.79 | 0.74 | 0.69 | 0.64 | 0.59 | 0.54 | 0.49 | 0.44 | 0.39 |
MPV last repetition EB | 0.87 | 0.84 | 0.81 | 0.78 | 0.75 | 0.72 | 0.69 | 0.66 | 0.63 | 0.60 |
MPV last repetition WP | 0.85 | 0.80 | 0.75 | 0.70 | 0.65 | 0.60 | 0.55 | 0.50 | 0.45 | 0.40 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Babiloni-Lopez, C.; Gene-Morales, J.; Saez-Berlanga, A.; Ramirez-Campillo, R.; Moreno-Murcia, J.A.; Colado, J.C. The Use of Elastic Bands in Velocity-Based Training Allows Greater Acute External Training Stimulus and Lower Perceived Effort Compared to Weight Plates. Int. J. Environ. Res. Public Health 2022, 19, 16616. https://doi.org/10.3390/ijerph192416616
Babiloni-Lopez C, Gene-Morales J, Saez-Berlanga A, Ramirez-Campillo R, Moreno-Murcia JA, Colado JC. The Use of Elastic Bands in Velocity-Based Training Allows Greater Acute External Training Stimulus and Lower Perceived Effort Compared to Weight Plates. International Journal of Environmental Research and Public Health. 2022; 19(24):16616. https://doi.org/10.3390/ijerph192416616
Chicago/Turabian StyleBabiloni-Lopez, Carlos, Javier Gene-Morales, Angel Saez-Berlanga, Rodrigo Ramirez-Campillo, Juan Antonio Moreno-Murcia, and Juan C. Colado. 2022. "The Use of Elastic Bands in Velocity-Based Training Allows Greater Acute External Training Stimulus and Lower Perceived Effort Compared to Weight Plates" International Journal of Environmental Research and Public Health 19, no. 24: 16616. https://doi.org/10.3390/ijerph192416616
APA StyleBabiloni-Lopez, C., Gene-Morales, J., Saez-Berlanga, A., Ramirez-Campillo, R., Moreno-Murcia, J. A., & Colado, J. C. (2022). The Use of Elastic Bands in Velocity-Based Training Allows Greater Acute External Training Stimulus and Lower Perceived Effort Compared to Weight Plates. International Journal of Environmental Research and Public Health, 19(24), 16616. https://doi.org/10.3390/ijerph192416616